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Thermal entanglement in an exactly solvable Ising-XXZ diamond chain structure
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Most quantum entanglement investigations are focused on two qubits or some finite (small) chain structure,
since the infinite chain structure is a considerably cumbersome task. Therefore, the quantum entanglement
properties involving an infinite chain structure is quite important, not only because the mathematical calculation
is cumbersome but also because real materials are well represented by an infinite chain. Thus, in this paper
we consider an entangled diamond chain with Ising and anisotropic Heisenberg (Ising-XXZ) coupling. Two
interstitial particles are coupled through Heisenberg coupling or simply two-qubit Heisenberg, which could
be responsible for the emergence of entanglement. These two-qubit Heisenberg operators are interacted with
two nodal Ising spins. An infinite diamond chain is organized by interstitial-interstitial and nodal-interstitial
(dimer-monomer) site couplings. We are able to get the thermal average of the two-qubit operator, called the
reduced two-qubit density operator. Since these density operators are spatially separated, we could obtain the
concurrence (entanglement) directly in the thermodynamic limit. The thermal entanglement (concurrence) is
constructed for different values of the anisotropic Heisenberg parameter, magnetic field, and temperature. We
also observed the threshold temperature via the parameter of anisotropy, Heisenberg and Ising interaction, external
magnetic field, and temperature.
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I. INTRODUCTION

Quantum entanglement is one of the most attractive types
of correlations that can be shared only among quantum
systems [1]. In recent years, many efforts have been devoted to
characterize qualitatively and quantitatively the entanglement
properties of condensed matter systems, which are the natural
candidate to apply for quantum communication and quantum
information. In this sense, it is very important to study the
entanglement of solid state systems such as spin chains [2].
The Heisenberg chain is one of the simplest quantum systems
which exhibits entanglement.

In the last decade, several diamond chain structures
have been discussed. It is interesting to consider the quan-
tum antiferromagnetic Heisenberg model on a generalized
diamond chain, which describes real materials such as
Cu3(CO3)2(OH)2, known as natural azurite. Honecker et al.
[3] studied the dynamic and thermodynamic properties for
this model. In addition, Pereira et al. [4,5] investigated the
magnetization plateau of delocalized interstitial spins, as well
as magnetocaloric effect in kinetically frustrated diamond
chains. More recently, Lisnii [6] studied a distorted diamond
Ising-Hubbard chain, and that the model also reveals the geo-
metrical frustration. Thermodynamics of the Ising-Heisenberg
model on a diamond-like chain was widely discussed in
Refs. [7–10].

The motivation for the study of the Ising and anisotropic
Heisenberg (Ising-XXZ) model on a diamond chain, according
to experiments of the natural mineral azurite, theoretical
calculations of the Ising-XXZ model, as well as the ex-
perimental result of the dimer (interstitial sites) exchange
parameter is based on a number of recent works. The 1/3
magnetization plateau and the double peaks both in the
magnetic susceptibility and specific heat were observed in the
experimental measurements [11,12]. It should be noticed that
the dimer (interstitial sites) exchange is much stronger than

those nodal sites. Various types of theoretical Heisenberg-
model approximate methods were proposed: renormalization
of the density matrix renormalization group of the transfer
matrix, density functional theory, high-temperature expansion,
variational mean-field-like treatment based on the Gibbs-
Bogoliubov inequality, and Lanczos diagonalization on a
diamond chain to explain the experimental measurements
(magnetization plateau and the double peaks) in the natural
mineral azurite [13]. The localizable entanglement (LE) has
been calculated for ground states of arbitrary Hamiltonians
numerically by making use of the density renormalization
group formalism and exhibited characteristic features at a
quantum phase transition. The LE is completely characterized
by the maximal connected correlation function for ground
states of spin-1/2 systems [14]. All of these theoretical studies
are approximate. There is another possibility. Since dimer
interaction is much higher than the rest, it can be represented
as an exactly solvable Ising-Heisenberg model. In addition,
experimental data on the magnetization plateau coincide with
the approximation Ising-Heisenberg model [4,7,15,16].

Several studies have been done on the threshold temperature
for the pairwise thermal entanglement in the Heisenberg
model with a finite number of qubits. Thermal entanglement
of the isotropic Heisenberg chain of spin has been studied
in the absence [17] and in the presence of an external
magnetic field [18,19]. The pairwise thermal entanglement
of nearest-neighbor qubits is independent of the sign of
exchange constants and the sign of magnetic fields in the XX
even-number qubit ring with a magnetic field. The thermal
entanglement in Heisenberg XX decreases with increasing
temperature and the threshold temperature value Tth is in-
dependent of the external magnetic field. Although in some
references the threshold temperature Tth is called the quantum
critical temperature, here we call it the threshold temperature
to avoid misunderstanding with the magnetic phase transition
temperature.
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It is quite relevant to study the thermal entanglement of the
Ising- XXZ on diamond chain, as Ananikian et al. [15,16] have
discussed the thermal entanglement of the Ising-Heisenberg
chain in the isotropic limit in the cluster approach. The paper
is organized as follows: In Sec. II we present the Ising-XXZ
model on diamond chain. We obtain the exact solution of
the model via the transfer-matrix approach and its dimer
(two-qubit) reduced density operator in Sec. III. In Sec. IV, we
discuss the thermal entanglement of the Heisenberg reduced
density operator of the model, such as concurrence and
threshold temperature. Finally, concluding remarks are given
in Sec. V.

II. ISING-XXZ DIAMOND HAMILTONIAN

In this work, we study the Ising-XXZ model with mixed
nodal Ising spins and interstitial anisotropic Heisenberg spins
in the presence of an external magnetic field on a diamond-
like chain. The thermodynamic properties were previously
discussed in Refs. [6–9]. A diamond-like chain is schemat-
ically illustrated in Fig. 1. The Hamiltonian operator can be
expressed as follows:

H =
N∑

i=1

J (Sa,i ,Sb,i)� + J1
(
Sz

a,i + Sz
b,i

)
(μi + μi+1)

−h0
(
Sz

a,i + Sz
b,i

) − h

2
(μi + μi+1), (1)

where (Sa,i ,Sb,i)� = Sx
a,iS

x
b,i + S

y

a,iS
y

b,i + �Sz
a,iS

z
b,i corre-

sponds to the interstitial anisotropic Heisenberg spins coupling
(J and �), while the nodal-interstitial (dimer-monomer)
spins are representing the Ising-type exchanges (J1). The
Hamiltonian also includes a longitudinal external magnetic
field h0 acting on Heisenberg spins and a magnetic h acting on
Ising spins. For convenience, we will consider the case h0 = h.

The quantum Heisenberg spin coupling can be expressed
using matrix notation. We have

(Sa,i ,Sb,i)� =

⎡
⎢⎢⎣

�
4 0 0 0
0 −�

4
1
2 0

0 1
2 −�

4 0
0 0 0 �

4

⎤
⎥⎥⎦ (2)

site- 

FIG. 1. (Color online) Schematic representation of Ising-XXZ
diamond chain. The red line represents the quantum bipartite
coupling.

and

Sz
a,i + Sz

b,i =

⎡
⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

⎤
⎥⎦ . (3)

We obtain the following eigenvalues by diagonalization of
the two-qubit Heisenberg (dimer) exchange and by assuming
fixed values for μi and μi+1:

E1(μi,μi+1) = J�

4
+

(
J1 − h

2

)
(μi + μi+1) − h,

E2(μi,μi+1) = J

2
− J�

4
− h

2
(μi + μi+1) ,

(4)
E3(μi,μi+1) = −J

2
− J�

4
− h

2
(μi + μi+1) ,

E4(μi,μi+1) = J�

4
−

(
J1 + h

2

)
(μi + μi+1) + h,

where their corresponding eigenstate in terms of standard basis
{|↑ ↑〉,|↓ ↓〉,|↑ ↓〉,|↓ ↑〉} are given respectively by

|ϕ1〉 = |↑ ↑〉, (5)

|ϕ2〉 = 1√
2

(|↑ ↓〉 + |↓ ↑〉), (6)

|ϕ3〉 = 1√
2

(|↑ ↓〉 − |↓ ↑〉) , (7)

|ϕ4〉 = |↓ ↓〉. (8)

In quantum information the states |ϕ2〉 and |ϕ3〉 are known
as the “magic basis” or Bell state, where two-qubit Heisenberg
are maximally entangled. These states are responsible for the
rise of entanglement at finite temperature.

In order to study the two-qubit entanglement, we use the
concurrence [20,21], which is defined by

C = |〈ϕi |ϕ̃i〉|, (9)

where |ϕ̃i〉 means the spin-flip state. Therefore, the concur-
rence C will be for states |ϕ2〉 and |ϕ3〉, which corresponds
to qubits that are maximally entangled. If the states |ϕ1〉 and
|ϕ4〉 have no concurrence (C = 0), that means the qubits are
unentangled. Later we give the definition of entanglement in
more detail.

A. Zero-temperature phase diagram of entangled state

In this section we study the phase diagram of the entangled
states, similar to the magnetic phase previously discussed
in Refs. [7,9], where it was observed three magnetic states,
a frustrated (FRU) state, a ferrimagnetic (FIM) state, and a
ferromagnetic (FM) state. Although we only have two states
(entangled and unentangled), we discuss here the entangled
region which is closely related to the magnetic states. It can
be expressed as the following states:

|ENT〉 =
N∏

i=1

|ϕ3〉i ⊗ |μ〉i , (10)

|UFI〉 =
N∏

i=1

|ϕ1〉i ⊗ |−〉i , (11)
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|UFM〉 =
N∏

i=1

|ϕ1〉i⊗ | +〉i , (12)

where |μ〉i stands for arbitrary values (μ = ±1/2) of the nodal
spin in the ith block.

According to the Bell states given in Eqs. (6) and (7), at zero
temperature the entangled (ENT) state is fully spanned in the
frustrated state for zero magnetic field, while the ferrimagnetic
and ferromagnetic state is spanned by unentangled states
denoted by UFI and UFM, respectively.

In Fig. 2(a) we plot the phase diagram � versus J1/J at
zero temperature for h/J = h0/J = 0, where the ground-state
energy of the entangled state is EENT = −1/2 − �/4, while
for the unentangled state (ferrimagnetic state) it is EUFI =
−J1/J + �/4, and for the unentangled state (ferromagnetic
state) it is given by EUFM = J1/J + �/4. The phase boundary
between UFI and UFM is simply J1/J = 0, and the phase
boundary between the UFI and ENT states is given by ( J1

J
=

�/2 + 1/2), while the phase boundary between UFM and
ENT (frustrated) state is given by (J1/J = −�/2 − 1/2).

In Fig. 2(b) we plot the phase diagram � versus h/J at
zero temperature for J1/J = 1 and h/J = h0/J , where the
eigenvalues for the unentangled state UFM is given by EUFM =
1 + �/4 − 3h/(2J ), while for the entangled state (quantum
ferrimagnetic state) denoted by |ENQ〉 = ∏N

i=1 |ϕ3〉i ⊗ |+〉i ,
and its eigenvalues is EENQ = −1/2 − �/4 − h/2J . We also
have the unentangled state UFI whose eigenvalue becomes
EUFI = −1 + �/4 − h/(2J ). The phase boundary between
UFM and UFI is given by h/J = 2, whereas between the
ENQ and UFI states it is limited by � = 1, while for the ENQ
and UFM states we have � = 2h/J − 3.

Finally, in Fig. 2(c) we illustrate the phase diagram
J1/J versus h/J at zero temperature for � = 1 and h/J =
h0/J , where the eigenvalues are given by EENQ = −3/4
− h/(2J ), EUFI = 1/4 − J1/J − h/(2J ) and EUFM = 1/4 +
J1/J − 3h/(2J ). The phase boundary between the ENQ and
UFI states is limited by J1/J = 1, while the boundary between
UFI and UFM is given by J1 = h/2, and between the ENQ and
UFM states the boundary follows the curve J1/J = h/J − 1.
The doted line corresponds to the phase diagram for � = 0.5,
whereas the dashed line represents the phase diagram for
� = 1.5.

However, entangled states will change with increasing
temperature. This will be discussed in Sec. IV.

III. PARTITION FUNCTION AND DENSITY OPERATOR

With the aim of studying any thermal quantities, we first
need to obtain a partition function on a diamond chain.
As mentioned earlier [22–25], this model can be solved
exactly through a decoration transformation and transfer-
matrix approach [26]. In order to summarize this approach
we will define the following operator as a function of Ising
spin particles μ and μ′:

�(μ,μ′) = e−βHab(μ,μ′), (13)

where Hab(μ,μ′) corresponds to the rth-block Hamiltonian
(1) (without summations), which depends on the neighboring
Ising spins μ and μ′. Alternatively, the operator (13) could be
written in terms of two-qubit operator eigenvalues (4), which
is

�(μ,μ′) =
4∑

i=1

e−βεi (μ,μ′)|ϕi〉〈ϕi |. (14)

Straightforwardly, we can obtain the Boltzmann factor by
tracing out over the two-qubit operator,

w(μ,μ′) = trab[�(μ,μ′)] =
4∑

i=1

e−βεi (μ,μ′), (15)

where the Ising-XXZ diamond chain partition function can be
written in terms of Boltzmann factors,

ZN =
∑
{μ}

w(μ1,μ2) · · ·w(μN,μ1). (16)

Using the transfer-matrix notation, we can write the
partition function of the diamond chain straightforwardly by
ZN = tr(WN ), where the transfer matrix is expressed as

W =
[

w
(

1
2 , 1

2

)
w

(
1
2 ,− 1

2

)
w

(− 1
2 , 1

2

)
w

(− 1
2 ,− 1

2

)
]

, (17)

where the transfer-matrix elements are denoted by w++ ≡
w( 1

2 , 1
2 ), w+− ≡ w( 1

2 ,− 1
2 ), and w−− ≡ w(− 1

2 ,− 1
2 ).

After performing the diagonalization of the transfer matrix
(17), the eigenvalues are

�± = w++ + w−− ± Q

2
, (18)

. .

.

.

.

.

.

FIG. 2. Phase diagrams of entangled state at zero temperature. The entangled state in frustrated phase is denoted by ENT, whereas the
entangled state in the quantum ferrimagnetic phase we denote by ENQ. The unentangled state in ferrimagnetic phase is denoted by UFI and
the unentangled ferromagnetic state is denoted by UFM.
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assuming that Q = [(w++ − w−−)2 + 4w2
+−]1/2. Therefore,

the partition function for finite chain under periodic boundary
conditions is given by

ZN = �N
+ + �N

− . (19)

In the thermodynamic limit the partition function will be
simplified, which results in ZN = �N

+ . It is worth noticing that
this result was widely used in Refs. [6–9].

A. Two-qubit operator

In order to calculate the two-qubit Heisenberg operator
bonded by Ising particles μ and μ′, we assume that the Ising
spin of the particle is fixed. Thus, the qubits operator elements
in the natural basis becomes

� =

⎡
⎢⎢⎣

�1,1 0 0 0
0 �2,2 �2,3 0
0 �3,2 �3,3 0
0 0 0 �4,4

⎤
⎥⎥⎦ , (20)

where the elements of the two-qubit operator are given by

�1,1(μ,μ′) = e−βε1(μ,μ′),

�2,2(μ,μ′) = 1
2 (e−βε2(μ,μ′) + e−βε3(μ,μ′)),

(21)
�2,3(μ,μ′) = 1

2 (e−βε2(μ,μ′) − e−βε3(μ,μ′)),

�4,4(μ,μ′) = e−βε4(μ,μ′).

The thermal average for each two-qubit Heisenberg opera-
tor will be used to construct the reduced density operator.

B. Reduced density operator and transfer-matrix approach

We will perform the reduced density operator bounded by
Ising particles along a diamond chain. We can proceed by
tracing out over all Heisenberg spins and Ising spins except at
the rth block in Heisenberg spins on a diamond chain. Using
the transfer-matrix approach, we are able to write the reduced
density operator by the following expression

ρi,j = 1

ZN

∑
{μ}

w(μ1,μ2) · · · w(μr−1,μr )�i,j (μr,μr+1)

×w(μr+1,μr+2) · · · w(μN,μ1). (22)

Alternatively, using the transfer-matrix notation, we can
write the reduced density operator as

ρi,j = 1

ZN

tr(Wr−1Pi,jW
N−r ) = 1

ZN

tr(Pi,jW
N−1), (23)

where we are assuming

P i,j =
[

�i,j

(
1
2 , 1

2

)
�i,j

(
1
2 ,− 1

2

)
�i,j

(− 1
2 , 1

2

)
�i,j

(− 1
2 ,− 1

2

)
]

. (24)

The corresponding matrix U that diagonalizes the transfer
matrix W can be given by

U =
[

�+ − w−− �− − w−−
w+− w+−

]
(25)

and

U−1 =
[

1
Q

−�−−w−−
Qw+−

− 1
Q

�+−w−−
Qw+−

]
. (26)

Finally, the reduced density operator defined in Eq. (22)
must be expressed by

ρi,j =
tr

(
U−1PijU

[
�N−1

+ 0

0 �N−1
−

])

�N+ + �N−
. (27)

This result is valid for arbitrary number N of cells in a diamond
chain under periodic boundary conditions.

C. Reduced density operator in thermodynamic limit

Real systems are well represented in the thermodynamic
limit (N → ∞); hence, the reduced density operator elements
after some algebraic manipulation becomes

ρi,j = 1

�+

{
�i,j

(
1
2 , 1

2

) + �i,j

(− 1
2 ,− 1

2

)
2

+2�i,j

(
1
2 ,− 1

2

)
w+−

Q

+
[
�i,j

(
1
2 , 1

2

) − �i,j

(− 1
2 ,− 1

2

)]
(w++ − w−−)

2Q

}
,

(28)

where we have assumed (�−/�+)N → 0 in thermodynamic
limit.

All elements of reduced density operator immersed on a
diamond chain are

ρ =

⎡
⎢⎣

ρ1,1 0 0 0
0 ρ2,2 ρ2,3 0
0 ρ3,2 ρ3,3 0
0 0 0 ρ4,4

⎤
⎥⎦ . (29)

It is worth noting that this reduced density operator is the
thermal average two-qubit Heisenberg operator immersed in
the diamond chain, and it can be verified that tr(ρ) = 1. The
cluster approach [15] becomes identical to transfer-matrix
approach (the present approach) only when the magnetic field
is zero. Later, in the next section (Fig. 8) we show the difference
between both approaches.

IV. TWO-QUBIT HEISENBERG ENTANGLEMENT

Quantum entanglement is a special type of correlation
which only arises in quantum systems. Entanglement reflects
nonlocal distributions between pairs of particles, even if they
are removed and do not directly interact with each other. In
order to measure the entanglement of anisotropic Heisenberg
qubits in the Ising-Heisenberg model on a diamond chain,
we study the concurrence (entanglement) of the two-qubit
Heisenberg (dimer), which interacts with two nodal Ising spins
using the definition proposed by Wooters et al. [20,21].

The concurrence could be expressed in terms of a matrix
R:

R = ρ · (σy ⊗ σy) · ρ∗ · (σy ⊗ σy), (30)
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FIG. 3. Density plot of concurrence C as function of T/J and �.
Black color corresponds to the maximally entangled region, while
by white color is the unentangled region, the gray region means the
entanglement with degrees of different intensity. In (a) we display
C in the absence of the magnetic field and in (b) we display C for
h/J = 1.

which is constructed as a function of the density operator ρ,
given by Eq. (29), with ρ∗, which we represent by the complex
conjugate of matrix ρ.

Thereafter, the concurrence of two-qubit Heisenberg cou-
pling (bipartite) could be obtained in terms of eigenvalues of
a positive Hermitian matrix R:

C(ρ) = max{
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4,0}, (31)

with eigenvalues λ1 � λ2 � λ3 � λ4. Equation (31) can be
reduced to

C(ρ) = 2max{ρ2,3 − √
ρ1,1ρ4,4,0}. (32)

A. Concurrence

As presented above the entanglement can be studied in
terms of concurrence defined by Eq. (32), as a function
of Hamiltonian parameters defined in Eq. (1), as well as
temperature and external magnetic field.

In Fig. 3 we illustrate the density plot of concurrence C
as a function of T/J and � for a fixed value of J1/J = 1.
Black corresponds to the maximum entangled region (C = 1),
while white is the unentangled region (C = 0). Gray means
the different degrees of entanglement (0 < C < 1). After that
we use this representation for the concurrence C, depending
on the parameters of the Hamiltonian (1). The entangled
region represented by different gray intensities depends also
on the temperature. For high temperature the fuzzy region
increases, while for the low-temperature phase between the
entangled region and the unentangled region the boundary
becomes sharper. In Fig. 3(a) it is shown that the model
is maximally entangled only for � � 1 in the absence of
the magnetic field, while the concurrence C is always less
than 1 for � < 1. The concurrence C becomes smaller with
increasing temperature and the entanglement disappears at
high temperatures. In Fig. 3(b) we display C for h/J = 1,
where the concurrence behaves similar to Fig. 3(a). But there
is the maximum entangled region Fig. 3(b) for � � 1.0 and at
temperatures less than T/J ≈ 0.2.

The density plot of concurrence C as a function of magnetic
field h/J and J1/J is shown in Fig. 4. To represent the
concurrence we use the same representation as in Fig. 3 for

FIG. 4. Density plot of concurrence C as function of h/J and
J1/J . In (a) we display of � = 1.0 and (b) is for � = 2.0. The black
(white) region corresponds to C = 1 (0), and by gray regions we
indicate a concurrence 0 < C < 1.

a fixed value of T/J = 0.3. In Fig. 4(a) we display C for a
� = 1.0; thus, we can show that the concurrence is always
less than C � 0.5. The largest entanglement occurs for small
|J1/J | � 1 and small magnetic field h/J � 2. Whereas in
Fig. 4(b) we display C for � = 2.0, and the entanglement
becomes stronger than for � = 1, but the concurrence is still
limited to the regions |J1/J | � 1.5 and h/J � 3.

Another case is shown in Fig. 5 for the density plot of
concurrence C as a function of h/J and T/J , at a fixed value
of J1/J = 1. The black (white) region indicates the entangled
(unentangled) region, while the gray region corresponds to
0 < C < 1. The concurrence is not very significant for � =
1, as shown in Fig. 5(a). For values of 0 � h/J � 2 the
entanglement becomes C � 0.25 at small temperatures, while
at higher temperatures it disappears. For � = 1.5 the situation
has changed; we observe the maximally entangled region
for values of 0 � h/J � 2.3 and T/J � 0.2, as shown in
Fig. 5(b), and at higher temperatures and a strong magnetic
field entanglement vanishes asymptotically.

The concurrence as a function of temperature T/J for
fixed values of J1/J = 1 is shown in Fig. 6, for several
values of the magnetic field. First of all, we illustrate the
concurrence for � = 2 in Fig. 6(a). The concurrence reaches
its maximum value C = 1 in the absence of magnetic field and
at low temperature, whereas at high temperature entanglement
disappears, the threshold temperature occurs at T/J ≈ 1.1,
which is represented by a dash-dotted line. The behavior of

FIG. 5. Density plot of concurrence C as a function of h/J and
T/J . In (a) we display C for a � = 1 and in (b) we display C for
� = 1.5. The black (white) region corresponds to C = 1 (0), and by
gray regions we indicate a concurrence 0 < C < 1.
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FIG. 6. (Color online) Concurrence as a function of temperature
for a fixed value of J1/J = 1. In (a) we display concurrence for
� = 2 and (b) displays concurrence for � = 0.9.

the concurrence varies in a strong magnetic field, and the
entanglement curve in most cases is lower than in the absence
of a magnetic field. In the case of h/J = 2.4 (solid line), the
maximum value of concurrence C = 1 is only achieved at very
low temperature T/J , although the threshold temperature T/J

is slightly larger than that in the absence of a magnetic field.
In the case of the magnetic field be h/J = 2.5 (dashed line),
the concurrence achieves the highest value around C = 0.5
at zero temperature. While for h/J = 2.6 (dotted line), the
system becomes unentangled at zero temperature, but at low
temperatures near T/J ≈ 0.3 it reaches its maximum value
around C ≈ 0.38. Second, in Fig. 6(b) the behavior of the
concurrence for a fixed value of the anisotropic parameter � =
0.9, and for different magnetic field values are shown. Now,
the behavior of concurrence decreases with different values
of the magnetic field and has a peak near T/J ≈ 0.3. The
concurrence for all of these magnetic fields are unentangled
at zero temperature and there is a temperature threshold near
to Tth/J ≈ 0.64 for 0 � h/J � 2.4, while for h/J � 2.5 the
threshold temperature jumps to Tth/J � 0.75.

In Fig. 7(a) the concurrence as a function of the anisotropy
parameter � in the absence of a magnetic field for various
fixed temperatures is plotted. For � � 1 the system is
unentangled, and for � � 1 the system becomes entangled.
The maximum of the entangled region is achieved for larger
anisotropic parameters, but when the temperature increases
the entanglement decreases. The concurrence as a function
of the anisotropy parameter � and for a fixed magnetic
field h/J = 2.5 is plotted in Fig. 7(b) for the same set of

FIG. 7. (Color online) Concurrence as a function of anisotropic
parameter �: (a) h/J = 0 and (b) h/J = 2.5 with different fixed
values of temperature.

FIG. 8. (Color online) (a) Concurrence against external magnetic
field, for different values of temperature with anisotropic parameter
� = 1. (b) Concurrence as a function of temperature assuming fixed
values of the anisotropic parameter and a fixed magnetic field hJ =
0.2. By the solid lines we represent the cluster-approach results [15]
whereas by the dashed lines we represent our result.

temperatures as shown in Fig. 7(a). Here we can observe the
influence of the magnetic field for the concurrence; at low
temperature (T/J = 0.01) the system is entangled for the
values around of � ≈ 2, whereas for higher temperature a
small entanglement appears even for � < 1.

Finally, in Fig. 8(a) we display the concurrence as a function
magnetic field, assuming a fixed value of the anisotropy
parameter � = 1. In this plot the difference between the
cluster approach [15] and the transfer-matrix approach used
here is also shown. By the solid lines we represent the
transfer-matrix approach, while with dashed lines we denote
the cluster approach [15]. While in Fig. 8(b) the concurrence as
a function of temperature (T/J ) is illustrated, by the
continuous line we observe the cluster approach, and by the
dashed line we represent our current result. For the anisotropic
parameter � = 1.1 and for fixed magnetic field h/J = 0.2.
Clearly, the cluster approach shows a double peak (solid line),
whereas by dashed lines we represent our current approach
discussed here. Therefore, we can conclude that the small
peak is absorbed due to the Ising coupling of the diamond
chain structure. However, the small peak is rather irrelevant
since the concurrence maximum value is around C ≈ 0.01.

The difference between both approaches is consistent, since
the entanglement on the diamond chain must be lower than for
the cluster approach, where only the nearest Ising spins are
considered, and we ignored the remaining diamond blocks
coupling contributions, so the cluster approach is equivalent
to infinite uncoupled diamond blocks.

B. Entanglement threshold temperature

In Fig. 9(a) we display the phase diagram of the entangled
region and the untangled region, as a function of the Ising cou-
pling parameter J1/J against threshold temperature for a fixed
values of magnetic field h/J = 0.1 and for several anisotropy
parameters. For each curve, the left side (T/J < Tth/J ) of this
region corresponds to the entangled state, while for right side
(T/J > Tth/J ) the system becomes an unentangled region.
The entangled region depends of the anisotropy parameter �;
as long as the anisotropy parameter increases the entangled
region increases, too. For a large negative value of J1/J < 0,
the unentangled region is limited around Tth/J � 0.3, whereas
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FIG. 9. (Color online) Phase diagram of Ising coupling parameter
J1/J as a function threshold temperature Tth/J . (a) For several values
of anisotropy parameter �. (b) For several values of external magnetic
field h/J .

for Tth/J � 0.3 we still have an entangled region, although
this entanglement leads to a weakly entangled region for large
negative value of J1/J , even for small a anisotropy parameter
�. However, for large positive values of J1/J the system
becomes a fully unentangled region, but for large values of
anisotropy parameter � tries to enhance the entanglement,
although it always becomes an unentangled region for J1/J

large enough. In Fig. 9(b) we display the phase diagram of
entangled region and untangled region as a function of the
Ising coupling parameter J1/J against threshold temperature
for a fixed value of the anisotropy parameter � = 1, and for
several values of magnetic field. For null magnetic field the
entangled region is limited by the dotted curve (the upper
and lower side of this curve are symmetric), but as soon
as the magnetic field is turned on, this symmetry is broken
even for a low magnetic field like h/J = 0.2 (described by
the dash-dotted line), the system will always be entangled
for J1/J � −1.5 and Tth/J � 0.28. For a stronger magnetic
field this limit increases until it achieves the asymptotic limit
Tth/J ≈ 0.910 239. The largest value of threshold temperature
Tth/J ≈ 0.910 239 occurs when J1/J = 0 and for arbitrary
values of magnetic field. Of course, this limiting threshold
temperature also depends on the magnitude of anisotropic
parameters, as we can verify in Fig. 9(a).

Other important density plots are displayed in Fig. 10 for
the concurrence C as a function of � against J1/J , assuming a
fixed temperature T/J = 0.3. This density plots follow same
pattern (definition) as those illustrated in Fig. 3; the black

FIG. 10. (Color online) Density plot concurrence C as function
of � versus J1/J . In (a) we display C for a null magnetic field and in
(b), we display C for h/J = 1.

FIG. 11. (Color online) Density plot concurrence C as function
of T/J versus J1/J . In (a) we display C for h/J = 0 and in (b) we
display C for h/J = 1.

(white) region corresponds to C = 1 (0), while a gray region
corresponds to 0 < C < 1. In Fig. 10(a) the maximally entan-
gled region only appears for � > 1; we can also verify that the
illustration is symmetric [C(J1/J ) = C(−J1/J )] only when
h = 0. However, when the external magnetic field is turned on
[i.e., (h/J = 1)], the symmetry J1/J ↔ −J1/J is broken as
shown in Fig. 10(b). When J1/J > 0 the boundary between
the entangled region and the unentangled region is sharper,
while for J1/J < 0 the boundary between the entangled region
and the unentangled region becomes less pronounced. The
maximally entangled region becomes stronger for a large
value of the anisotropy parameter � > 1 compared to the
entanglement without magnetic field. This result is similar
to the previous result discussed by Zhou et al. [27], when they
studied the anisotropy effect of a two-qubit Heisenberg model
with external magnetic field, although they discussed only
one-couple qubits. The red solid line is used to represent the
boundary between the entangled region and the unentangled
region. This curve is also known as the threshold-temperature
curve; clearly for null magnetic field the threshold temperature
rounds symmetrically the entangled region, this is not so
evident when external magnetic field is switched on. Even
for a rather weak external magnetic field, the entangled
region spreads out for J1/J < 0. The entanglement emerge for
J1/J < −1, [Fig. 10(b)], despite the concurrence being tiny
and at first glance the concurrence still looks like in Fig. 10(a),
but the threshold temperature is highly different compared
to that without magnetic field, such as there is no threshold
temperature for J1/J < −1 and � � −0.3.

The density plot of concurrence C as a function of T/J

versus J1/J is depicted in Fig. 11 for a fixed value of
� = 1.0. We show again that the maximally entangled region
vanishes for higher temperature T/J ≈ 0.3. In Fig. 11(a)
the density plot of concurrence C is displayed for h/J = 0,
and the maximally entangled region is limited by |J1/J | � 1,
following the same kind of density plot as in Fig. 10, by the
solid red line we represent the threshold temperature limiting
the entangled region. Whereas for h/J = 1, as displayed in
Fig. 11(b), the maximally entangled region shrunk to −0.5 �
J1/J � 1, despite the entangled region being spread out
with weakly entangled region for J1/J < 0 and Td/J � 0.5,
consequently the symmetry in J1/J ↔ −J1/J is broken, this
is better illustrated as a function of the threshold temperature
curve described by the red solid line.
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V. CONCLUSIONS

In general most of the quantum entanglement studied of an
infinite chain is a cumbersome issue; motivated by this fact
we investigate the quantum entanglement of the Ising-XXZ
diamond chain. Even when Ising coupling does not contribute
directly in quantum entanglement, we discuss the Heisenberg
two-qubit entanglement effect on Ising-Heisenberg diamond
chain structure. First we obtain the Heisenberg dimer operators
immersed in a diamond chain with Ising coupling. Using this
result we are able to obtain the average of the two-qubit oper-
ator. Thereafter, the concurrence is obtained straightforwardly
in terms of the reduced density matrix operator elements. Using
the concurrence, we study the entanglement of the Ising-XXZ
diamond chain as a function of Hamiltonian parameters, such
as temperature as well as external magnetic field.

Usually the entangled region vanishes when the temperature
increases; in some cases [see for instance Figs. 10(b) and
11(b)] the entanglement vanishes asymptotically when the
external magnetic field is switched on. The entangled region
is limited by the so-called threshold temperature, but for
some other parameters [like in Figs. 10(b) and 11(b)] the

threshold temperature only occurs in the asymptotic limit.
From our result we conclude that there is no double peak
in the concurrence as a function of temperature, such as that
obtained by the use of the cluster approach [15] [see Fig. 8(b)];
the disappearance of the tiny peak can be understood as a
dissipation due to the qubits are immersed in diamond chain
structure. However this small peak is irrelevant, since the
degree of entanglement is rather small: C = 0.01.

It would be interesting also in the future to consideration
the case of tripartite entanglement for Heisenberg coupling
of an Ising-Heisenberg chain instead of bipartite Heisenberg
coupling. Somewhat similar to that considered by Tsomokos
et al. [28] where the tripartite coupling was studied at the zero
temperature.

ACKNOWLEDGMENTS

O.R. and S.M. de Souza thank CNPq and Fapemig for
partial financial support. This work was supported by the
French-Armenian Grant No. CNRS IE-017 (N.A.) and by the
Brazilian FAPEMIG Grant No. CEX BPV 00028-11 (N.A.).

[1] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod.
Phys. 80, 517 (2008); R. Horodecki et al., ibid. 81, 865 (2009);
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