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Dynamically corrected gates are extended to non-Markovian open quantum systems where limitations on
the available controls and/or the presence of control noise make existing analytical approaches unfeasible. A
computational framework for the synthesis of dynamically corrected gates is formalized that allows sensitivity
against non-Markovian decoherence and control errors to be perturbatively minimized via numerical search,
resulting in robust gate implementations. Explicit sequences for achieving universal high-fidelity control in a
singlet-triplet spin qubit subject to realistic system and control constraint are provided, which simultaneously
cancel to the leading order the dephasing due to non-Markovian nuclear-bath dynamics and voltage noise affecting
the control fields. Substantially improved gate fidelities are predicted for current laboratory devices.
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I. INTRODUCTION

Achieving high-precision control over quantum dynamics
in the presence of decoherence and operational errors is
a fundamental goal across coherence-enabled quantum sci-
ences and technologies. In particular, realizing a universal
set of quantum gates with sufficiently low error rate is
a prerequisite for fault-tolerant quantum computation [1].
Open-loop control based on time-dependent modulation of
the system dynamics has been extensively explored as a
physical-layer error-control strategy to meet this challenge.
Two main approaches have been pursued to date: On the
one hand, if the underlying open-system relaxation dynamics
is fully known, then powerful variational techniques and/or
numerical algorithms from optimal quantum control theory
(OCT) may be invoked to optimize the target gate fidelity; see,
e.g., [2–5] for representative contributions. On the other hand,
dynamically corrected gates (DCGs) [6] have been introduced
having maximum design simplicity and portability in mind:
Close in spirit to well-established dynamical decoupling
techniques for quantum state preservation in non-Markovian
environments [7], DCG sequences can achieve a substantially
smaller net decoherence error than individual “primitive” gates
by making minimal reference to the details of the system
and control specifications. In principle, the use of recursive
control design makes it possible for the final accuracy to be
solely limited by the shortest achievable control time scale [8].
Remarkably, simple DCG constructions underly the fidelity
improvement reported for spin-motional entangling gates in
recent trapped-ion experiments [9].

While obtaining a detailed quantitative characterization of
the noise mechanisms to overcome is imperative to guarantee
truly optimal control performance, this remains practically
challenging for many open quantum systems of interest.
In addition, current approaches for applying OCT methods
to non-Markovian environments rely on obtaining suitable
simplifications of the open-system equations of motion (e.g.,
via identification of a finite-dimensional Markovian embed-
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ding [2] or approximation through time-local coupled linear
equations [5])—which may be technically challenging and/or
involve nongeneric assumptions. Since in DCG schemes
the error cancellation is engineered at the level of the full
system-plus-environment Hamiltonian evolution, two signif-
icant advantages arise: (1) environment operators may be
treated symbolically, avoiding the need for an explicit equation
of motion for the reduced dynamics to be derived; and (2) in
contrast to error-control approaches designed in terms of gate
propagators (notably, fully compensating composite pulses for
systematic control errors [10,11]), working at the Hamiltonian
level allows one to more directly relate to physical error
mechanisms and operational constraints. Despite incorporat-
ing realistic requirements of finite maximum control rates and
amplitudes, analytic DCG constructions nonetheless rely on
the assumption that complete control over the target system
can be afforded through a universal set of stretchable control
Hamiltonians [6]. This requirement is typically too strong
for laboratory settings where only a limited set of control
Hamiltonians can be turned on and off with sufficient precision
and speed, and universality also relies on internal always-on
Hamiltonians. Furthermore, portability comes at the expense
of longer sequence durations, making DCGs more vulnerable
to uncompensated Markovian decoherence mechanisms.

In this work, we introduce a control methodology that
results in an automated recipe for synthesizing DCGs via
numerical search. This is accomplished by relaxing the porta-
bility requirement and utilizing the full details of the control.
While the resulting “automated DCGs” (aDCGs) are still
synthesized without quantitative knowledge of the underlying
error sources, they overcome the restrictive assumptions of
analytical schemes and lead to drastically shorter sequences.
As an additional key advantage, our Hamiltonian-engineering
formulation lends itself naturally to incorporating robustness
against multiple error sources, which can enter the controlled
open-system Hamiltonian in either additive or multiplicative
fashion. This allows for aDCGs to simultaneously cancel
non-Markovian decoherence and control errors, as long as
the combined effects remain perturbatively small.

We quantitatively demonstrate these advantages by fo-
cusing on a highly constrained control scenario—the two-
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electron singlet-triplet (S-T0) spin qubit in GaAs quantum dots
(QDs) [12]. In spite of groundbreaking experimental advances
[13–16], boosting single-qubit gate fidelities is imperative
for further progress towards scalable quantum computation
and is attracting intense theoretical effort [17–19]. Recently
introduced SUPCODE composite-pulse sequences [19], for
instance, are (analytically) designed to achieve insensitivity
against decoherence induced by coupling to the surrounding
nuclear-spin bath; however, they do not incorporate robustness
against voltage noise, which is an important limitation in
experiments [16]. Here, we provide explicit aDCG sequences
for high-fidelity universal control in S-T0 qubits, which cancel
the dominant decoherence and exchange-control errors, while
respecting the stringent timing and pulsing constraints of
realistic S-T0 devices. The resulting sequences use a very
small number of control variables and a fixed base pulse
profile, which streamlines their experimental implementation.
Up to two orders of magnitude improvement in gate fidelities
are predicted for parameter regimes appropriate for current
experimental conditions.

II. CONTROL-THEORETIC SETTING

We consider in general a d-dimensional target quantum
system S coupled to an environment (bath) B, whose total
Hamiltonian H on HS ⊗ HB reads

H = [HS + Hctrl,0(t)] ⊗ IB + He,

He ≡ He,int + He,ctrl(t), (1)

where IB(S) denotes the identity operator on B(S), HS accounts
for the internal (“drift”) system’s evolution in the absence
of control, and the time-dependent Hctrl,0(t) represents the
intended control Hamiltonian on S. The total “error Hamil-
tonian” He encompasses the bath Hamiltonian, unwanted
interactions with the bath, as well as deviations of the applied
control Hamiltonian from Hctrl,0(t), subject to the requirement
that the underlying correlation times are sufficiently long.
Formally, we require that ‖He‖ � ‖H (t)‖, where ‖X‖ is the
operator norm of X = X† (maximum absolute eigenvalue of
X) [6,7]. In order to “mark” the error sources, we characterize
the strength of each independent contribution to He,int in terms
of dimensionless parameters {δα}, in such a way that, without
loss of generality, we may express

He,int = IS ⊗ HB + HSB ≡
∑

α

δαSα ⊗ Bα,

with Sα being a Hermitian operator basis on HS and Bα

acting on HB , respectively, and the bath internal Hamiltonian
HB ≡ δe

0B0. We assume that the Bα are norm bounded but
otherwise quantitatively unspecified. In particular, if Bα are
treated as scalars (Bα = �αIB), then we may formally recover
the limit of a classical bath, whereby B0 = 0 and the system
Hamiltonian is effectively modified in a random (yet slowly
time-dependent) fashion. Note that, as long as we are interested
in canceling effects that are first order in the error sources,
there is no distinction between the Bα being actual operators
or scalars. Similarly, we characterize the independent error

sources in Hctrl,0(t) by letting

He,ctrl(t) =
∑

β

δβHβ(t) ⊗ IB,

where Hβ(t) are known system operators, while the param-
eters δβ remain unspecified. For notational convenience, we
shall label all of the unknown parameters symbolically and
collectively by δ ≡ {δα,δβ}.

In an ideal error-free scenario, δ = 0, the system evolves
directly under the action of the control, in the presence
of its internal drift Hamiltonian. We assume that in this
limit, S is completely controllable, that is, arbitrary unitary
transformations on S can be synthesized as “primitive gates”
by suitably designing Hctrl,0(t) in conjunction with HS . As
mentioned, we are particularly interested in the situation where
the latter is essential for controllability to be achieved [20]. The
available control resources may be specified by describing

Hctrl,0(t) =
∑

a

ca(t)Ha ⊗ IB,

in terms of the admissible (nominal) control inputs and
Hamiltonians. Beside restrictions on the set of tunable Hamil-
tonians Ha , limited “pulse-shaping” capabilities will typically
constrain the control inputs ca(t) as system-dependent features
of the control hardware. For concreteness, we assume here that
Hctrl,0(t) is decomposed as a sequence of shape-constrained
pulses applied back to back and also constrains pulse ampli-
tudes {hi} and durations {τi} to technological limitations such
as hmin � hi � hmax,τmin � τi � τmax.

Ideally, if the target unitary gate is Q, then the objective
for gate synthesis is to devise a control Hamiltonian Hctrl,0(t)
such that (up to a phase)

Q = T exp

{
−i

∫ τ

0
[HS + Hctrl,0(s)]ds

}
, (2)

where T denotes time ordering and τ is the running time of the
control. The ideal evolution naturally defines a toggling-frame
unitary propagator given by

UQ(t) = T exp

{
−i

∫ t

0
[HS + Hctrl,0(s)]ds

}
, (3)

which traces a path from IS to Q over τ . If He �= 0, then
application of Hctrl,0(t) over the same time interval results in a
total propagator of the form

U
(δ)
Q[τ ] ≡ U

(0)
Q[τ ] exp

(−iE
(δ)
Q[τ ]

)
,

where U
(0)
Q[τ ] = Q, and E

(δ)
Q[τ ] is an “error action” operator on

HS ⊗ HB that isolates the effects of undesired terms in the
evolution [6]:

exp
( − iE

(δ)
Q[τ ]

) = T exp

[
−i

∫ τ

0
UQ(s)†HeUQ(s)ds

]
. (4)

The norm of the error action can be taken to quantify the error
amplitude per gate (EPG) in the presence of δ. The EPG in
turn upper bounds the fidelity loss between the ideal and actual
evolution on S once its “pure-bath” components are removed.
More concretely, define

modBE ≡ E − IS ⊗ TrS(E)/d,
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that is, a projector that removes the pure-bath terms in E (note
that modBE = E if E is a pure-system operator of the form
A ⊗ IB , as for a classical bath). Then the following (not tight)
upper bound for the (Uhlman) fidelity loss holds independently
of the initial states [8,21]:

1 − fU �
∥∥modBE

(δ)
Q[τ ]

∥∥.

Thus, reducing the EPG can be used as a proxy for reducing
gate fidelity loss. While for a primitive gate implementation
the EPG scales linearly with δ, the goal of DCG synthesis is
to perturbatively cancel the dependence on δ in E

(δ)
Q[τ ], up to a

desired order of accuracy, to realize the gate in a manner that
is as error free as possible as long as δ is small. For simplicity
and immediate application, we focus here on first-order aDCG
constructions, for which ‖modBE

(δ)
Q[τ ]‖ = O(δ2).

III. SYNTHESIZING DYNAMICALLY
CORRECTED GATES

A. Existential approach

Recall that there are two main requirements in first-
order analytical DCG constructions [6,8]: (i) primitive gate
implementations of the generators of a “decoupling group”
associated with the algebraic structure of EPGs and (ii)
particular implementations of the target gate Q (as Q∗) and
the identity gate (as IQ) as sequences of primitive gates such
that Q∗ and IQ share the same first-order EPG, making them
a “balance pair.” While (i) is provided by controllability and
leads directly to a constructive procedure for correcting to the
first order the identity evolution, (ii) is essential for modifying
this procedure in such a way that the net first-order error
cancellation is maintained, but Q is effected instead.

Generating balance pairs requires further adjustment of
gate control parameters to form a controllable relationship
between EPGs of gate implementations, holding as an identity
regardless of the value of δ (or Bα). For example, in the absence
of drift dynamics and control errors, such a controllable
relationship can be engineered by “stretching” pulse profiles in
time while the amplitudes are reduced proportionally, resulting
in different realizations of the same target, with EPGs that scale
linearly with the gate duration. Similarly, in the presence of
a multiplicative control error, primitive gates with physically
equivalent (modulo 2π ) angles of rotation result in different
EPGs (note that similar geometric ideas are used in designing
composite pulses [11]). We argue next that knowing the control
description and marking the error sources {δj } does still lead
to (ii), as long as control constraints allow us to tap into a
continuum of different gate implementations.

The multitude of pathways for realizing a primitive gate Q

increases with gate duration and subsegments as a result of
availability of more control choices and ultimately a simpler
control landscape [22]. Assume (A1) that such primitive
implementations may be parametrized as Q[τ ]. We aim to
show that a balance pair or, alternatively, a direct cancellation
of the EPG of Q may be found. The gist of our argument is
most easily given for a single qubit, with the Pauli operators
chosen as the operator basis {Sα} for error expansion. Using
the fact that the interactions among different error sources
can be ignored up to the first order, the basic idea is to start

with the first error source δ1 and then use the resulting gates
recursively for the next error source until all error sources are
exhausted. Ignoring error sources other than δ1, let us thus
expand E

(δ1)
Q[τ ] = δ1

∑
α eQ[τ ],αSα ⊗ B1.

In addition, assume (A2) that as a function of the parameter
τ , the range of the real-valued functions eQ[τ ],α extends
to infinity in positive or negative directions. Consider now
“projection blocks” composed of two Pauli gates applied back
to back, that is,

Pα[τα] ≡ Sα[τα]Sα[τα],

with a corresponding EPG given by 2δ1eSα [τα],αSα ⊗ B1, which
is purely along Sα . By virtue of assumption (A2), we can find
a continuum of (τ,τα) pairs such that 2eSα [τα ],α = ±eQ[τ ],α for
all Pauli directions α, meaning that we may reproduce each
error component in E

(δ1)
Q[τ ] up to a sign. Those Pauli components

α− that reproduce error with a negative sign are combined in
sequence with Q[τ ] to form a longer gate,

Q∗ = Q[τ ]
∏
α−

Pα− [τα− ].

If all Pauli components can be matched with negative signs,
then the resulting gate will cancel all error components
and a DCG construction is provided by Q∗. Otherwise, the
Pauli components α+ that are matched with positive sign are
combined to produce an identity gate,

IQ =
∏
α+

Pα+ [τα+ ],

which matches the error of Q∗. Hence, (Q∗,IQ) form a balance
pair and can be used to produce a continuum of constructions
of a DCG Q(1)[τ ] that cancels the error source δ1. Provided
that the assumption (A2) remains valid for this new composite
construction, we can repeat the procedure to remove the other
error sources.

We remark that assumption (A2) essentially implies that
the domain of the errors as a function of implementation
parameters for a fixed unitary gate is not compact, so that
arbitrary magnitudes of each error component can be sampled
by appropriately choosing the implementation parameters.
Such arbitrary large domains need not exist in the primitive
gate implementations (naturally or due to constraints), or only
discrete error values may be reachable. Nonetheless, we may
still enlarge the accessible range of errors for the target gate
Q by attaching a continuously parametrized family of identity
gates. Universal controllability of the system implies that not
only any gate U but also its inverse U−1 may be reached.
Implementing U , followed by its inverse U−1, produces an
implementation of the identity IU that is “parametrized” by the
original gate U . In the absence of degeneracies (relationships
between the errors that could be used separately to provide
a balance pair), the EPG associated with EU has then a
continuous domain. Clearly, applying IU followed by the target
gate Q still realizes the gate Q, but the resulting EPG is now
given by EQ + EIU

, which is parametrized by U . By applying
sufficiently many copies of IU before applying Q, the error
can be extended to arbitrary large domains as desired.
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B. aDCGs: Computational approach

The aDCG sequences generated by following the above
existential argument tend to be far too long and complex to be
useful in realistic control scenarios. Also note that, in principle,
the construction of single- or two-qubit DCGs in n-qubit
registers may be handled similarly by using multiqubit Pauli
operators as a basis for EPG expansion and for building pro-
jection blocks. However, the sequence complexity tends in this
case to also grow exponentially with n [8], making the need for
more efficient synthesis procedures even more essential. Just as
complete controllability provides an existential foundation to
numerical OCT approaches for unitary gate synthesis when
He = 0 [18], our argument legitimates a numerical search
for aDCGs in the presence of He. Since the objectives of
gate realization and perturbative error cancellation are not
inherently competing, the numerical search can be described
as a multiobjective minimization problem, as we detail next.

Let the nominal control Hamiltonian Hctrl,0(t) be
parametrized in terms of control variables {xi} and define
objective functions as follows:

F ({xi}) = dist
(
U

(δ=0)
Q[τ ] ,Q

)
, (5)

BjGj ({xi}) = ∥∥∂ modBE
(δ)
Q[τ ]

/
∂δj

∥∥
δ=0, (6)

where j labels independent error sources and Bj symbolically
denotes bath operators that mark error sources in He,int (recall
that Bj = IB for control error sources) to ensure that F and
Gj only depend on the known quantities xi . Minimizing only
the first objective, F = 0, corresponds to achieving exact ideal
primitive gate synthesis, given by Eq. (2). As an appropriate
distance measure for unitary operators in Eq. (5), we use

dist(U,V ) = [1 − |Tr(U †V )|/d]1/2, (7)

which is a standard phase-invariant choice [18]. Minimizing
the objectives in Eq. (6) corresponds to first-order sensitivity
minimization. Thus, solving for F = 0 = Gj,∀j , results in
an implementation of Q that is insensitive to the perturbative
parameters δj , yielding a robust control solution as long as δj

is small.
Evaluating Gj apparently requires solving the full

time-dependent system-plus-bath Schrödinger equation
parametrized by the controllable pulse shapes. In fact, once
the error sources (including bath operators) are treated as first-
order symbolic variables, Gj can be evaluated by effectively
solving the Schrödinger equation on the system only, in order
to determine the appropriate toggling-frame propagator, given
by Eq. (3), and then evaluating the required error action,
given by Eq. (4), by invoking a Magnus expansion [6].
Specifically, if the control variables xi ≡ {(τi,hi)}, then the
sequence propagator reads

U
(δ)
Q[τ ] ≡ U (δ)

xn
(τn) · · · U (δ)

x1
(τ1),

where τ = ∑
i τi and U (δ)

xi
(s) is the ith pulse propagator

corresponding to the variable xi at time s, with its associated
first-order error action,

E
(δ)
Uxi

=
∫ τi

0
U (0)

xi
(s)†HeU

(0)
xi

(s)ds.

To the first order in δ, the total EPG is in turn given by

E
(δ)
Q[τ ] =

∑
i

V
†
i E

(δ)
Uxi

Vi,

where Vi ≡ U (0)
xi−1

· · · U (0)
x1

denote the “partial” product of gate
propagators up to and excluding the ith gate [6]. While,
as noted, for a first-order aDCG the resulting accuracy
‖modBE

(δ)
Q[τ ]‖ = O(δ2), a more quantitative estimate of the

actual conditions of applicability requires estimating the
dominant uncorrected second-order errors. Technically, this
can be carried out by means of standard algebraic techniques;
however, it is not straightforward [23] and is beyond our
present scope. Instead, we focus in what follows on addressing
the construction and performance of first-order aDCGs in
concrete illustrative settings.

IV. APPLICATION TO SINGLET-TRIPLET QUBITS

Consider first the following single-qubit specialization of
Eq. (1):

H = 1
2 [Bσx + J0(t)σz] ⊗ IB + He, (8)

He = IS ⊗ δ0B0 + σx ⊗ δ1Bx + J0(t)δ2σz,

where the operator-valued δ1Bx and the system drift B couple
to the system along σx , and the nominal control J0(t) and a
multiplicative error δ2 couple along σz. Although explicitly
included, the bath internal Hamiltonian does not play a role
in the first-order removal of decoherence and is automatically
accounted for in modB . On the other hand, the drift term B

is essential for complete controllability and analytical DCG
constructions are not viable even in the limit δ2 → 0. Thus,
the need to effectively address both noise sources δ1,δ2 for a
generic operating point B mandates the use of aDCGs.

While useful as a template for single-axis control scenarios
in the presence of internal drift and dephasing, a semiclassical
version of the above model is relevant, in particular, to describe
a universally controllable S-T0 qubit. In this case, the logical
qubit subspace is spanned by {|S〉,|T0〉}, i.e., the singlet and
triplet states of two electrons on separate QDs, [14,15,19,24]
and, provided that the number of bath nuclear spins is
sufficiently large [24], the following simpler Hamiltonian is
appropriate and widely used for this system [18,19]:

H = 1
2 [B + δB(t)]σx + 1

2J (t)σz. (9)

Physically, the drift term B is a known static magnetic field
gradient between the two QDs that includes an Overhauser
field from the nuclear spin bath, δB(t) (corresponding to
2δ1Bx) accounts for random fluctuations of B due to coupling
to nuclear flip-flop processes [25], and J (t) is the exchange
splitting. In practice, J (t) is tuned by control of an electrostatic
gate voltage [14], and voltage fluctuations due to charge
noise result in a noisy control Hamiltonian of the form
J (t) = J0(t)[1 + δJ (t)], where δJ (t) thus corresponds to 2δ2.
We assume that both noise sources may be treated as Gaussian
quasistatic processes, with their “run-to-run” distribution
being characterized by standard deviations σδB and σδJ . While
in practice the noise is not completely static, we expect our
considerations to remain valid as long as high-frequency noise
components decay sufficiently fast and the resulting aDCGs

042329-4



AUTOMATED SYNTHESIS OF DYNAMICALLY CORRECTED . . . PHYSICAL REVIEW A 86, 042329 (2012)

are short relative to time scales over which white charge noise
may become important. Phenomenologically, the dephasing
induced by the fluctuating Overhauser field is consistent with a
power-law noise spectrum of the form S(ω) ∼ ω−2 over a wide
spectral range [26]. Likewise, recent experiments indicate that
voltage noise also arises overwhelmingly due to low-frequency
components with an approximate 1/f decay at low operating
temperatures [16]. From experimentally measured values of
T �

2 , we use here σδB/(2π) � 0.15 MHz [13] and σδJ � 1/50
[27].

In constructing aDCGs, we shall choose values of the
internal drift (B) and the nominal control field J0(t) that are
appropriate for the QD setting of Eq. (9). We stress, however,
that the same solution is found from (and applies to) the fully
quantum model Hamiltonian of Eq. (8). In practice, the drift
term B can be set to a fixed value, B/(2π ) ∈ [0.03,0.2] GHz,
which we choose at 0.1 GHz [28]. The control field J0(t)/(2π )
is taken to be positive and smaller than Jmax/(2π ) = 0.3 GHz.
We recognize the finite rise, delay, and drop times associated
with pulse generators by fixing a pulse profile. Thus, during
each pulse, with time t ′ measured from the pulse start, the
control function J0(t ′) is given by hic(t ′/τi), where c(x) is the
pulse-shape function. We digitize the pulse-shape function for
numerical evaluation. In contrast to merely bounding the pulse
times and allowing pulse durations as extra control variables,
we enforce the pulse durations to be fixed at τi ≡ τ = 3 ns,
which is compatible with the currently most widespread pulse
generators’ temporal resolution of 0.83 ns. The search space of
the pulse amplitude control variables is thus given by xi = hi .
While removing τi from the control variables results in more
severe constraints, it also corresponds to a reduction of the
search space. We verified that all of our results were reproduced
with variable but lower-bounded pulse widths as well. The
objective functions F , G1, and G2 are computed explicitly in
terms of each constituting pulse parameter hi according to the
general procedure described in Sec. III B.

For the resulting multiobjective minimization, we introduce
numerical weight factors λ1 and λ2 and form a single objective
function

O({hi}) ≡ F + λ1G1 + λ2G2.

Choosing small values of λi (= 10−5) work best in directing
the search from solutions that first synthesized the target gate
only (F = 0), to an error-corrected solution minimizing all
objectives, F = 0, G1 = 0 = G2. Motivated by our existential
argument, the intuition is to avoid the local minima associated
with multiple objectives and focus on a single objective
which, once realized, will give weight to the other objectives
iteratively. We solve each aDCG search problem using an off-
the-shelf (Matlab’s FMINCON function) search routine (within
minutes), with the default choice for solving constrained
nonlinear optimization without specifying a precalculated
gradient or Hessian. We start the search with a small number
of pulses, n, which is then incremented until the minimal
value of the objective function comes close to the machine
precision (≈10−16). Figure 1 (top) depicts the synthesized
control profiles for a universal set of single-qubit aDCGs.

Once aDCG sequences are found, evaluating their effec-
tiveness for the S-T0 qubit can take direct advantage of the
effectively closed-system nature of the model Hamiltonian
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FIG. 1. (Color online) Upper panel: aDCG control profiles for
exp(−iπσz/8) (top) and the Hadamard gate (bottom). Lower panel:
Fidelity loss for uncorrected vs corrected gates, evaluated as 1−f =
dist(U (δB,δJ )

Q ,Q)2 [Eq. (7)], for Q = exp(−iπσz/8) as a function of
relative magnetic-field-gradient error δB/B [B/(2π ) = 0.1 GHz].
δJ = 0 corresponds to perfect exchange control, while δJ = 0.01
is close to current experimental values. The fact that δJ = 0.01 is
fixed is responsible for the eventual performance plateau, where δJ

noise dominates over δB effects. Nevertheless, the aDCG advantage
is always maintained.

in Eq. (9), thus avoiding the need for explicit spin-bath
simulations and quantum process tomography. Figure 1
(bottom) depicts the fidelity loss for an uncorrected (n = 3
pulses, obtained through the same numerical procedure with
λ1 = λ2 = 0) vs corrected implementation (n = 17 pulses).
The higher slope of the fidelity loss as a function of δB when

FIG. 2. (Color online) Ensemble-averaged fidelity loss as a
function of relative magnetic-field-gradient and exchange-control
noise for uncorrected (top, dark) vs corrected (bottom, light) im-
plementation of Q = exp(−iπσz/8). The solid (black) lines on each
surface correspond to typical values σδJ ≈ 0.02 and σδB/B ≈ 10−3

for current S-T0 devices.
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δJ = 0 is the signature of a perturbative error cancellation
and the aDCG advantage is maintained even with δJ > 0,
implying robustness with respect to both error types.

In order to make contact with experimentally relevant
ensemble-averaged fidelities, we further evaluate the average
of single-run fidelities f (δB,δJ ) with respect to noise real-
izations, by assuming that δB and δJ are independent and
normally distributed random variables with variance σ 2

δB and
σ 2

δJ . The results are summarized in Fig. 2. Both noise sources
adversely impact the expected gate fidelity, but aDCGs are
far less affected, resulting in robust gates roughly as long as
σδB/B + σδJ � 0.1.

V. CONCLUSION

Our procedure can be interpreted as an automated gate
compiler, which incorporates detailed information about the
controllable parameters and their range of operations, along
with qualitative information about the error sources affecting
the evolution. Compared to mere (primitive) gate synthesis,
the resulting increase in complexity scales proportionally
to the number of error sources. Our approach applies to
any Hamiltonian control setting, and for weak-enough error
sources, even higher-order cancellation can be achieved in
principle.

Thanks to the slow dynamics of the nuclear spin bath
and fast control pulses available, electron spin qubits provide
an ideal experimental testbed for validating our approach.
While additional experimental details may be captured in
more sophisticated ways, we believe that our framework
is general and flexible enough for its effectiveness not to
be compromised. In particular, further analysis is needed
to quantify the effect of white electrical noise on aDCG
sequences, as well as to possibly minimize its influence by
penalizing large values of the exchange splitting in the nu-
merical search. It is thus our hope that significantly improved
single-gate fidelities will be achievable in S-T0 qubits by aDCG
sequences that operate under realistic noise levels and control
limitations.
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