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In optical implementations of the phase-encoded BB84 protocol, the bit information is usually encoded in the
phase of two consecutive photon pulses generated in a Mach-Zehnder interferometer. In the actual experimental
realization, the loss in the arms of the Mach-Zehnder interferometer is not balanced, for example because only
one arm contains a lossy phase modulator. Therefore, the amplitudes of the pulses are not balanced, and the
structure of the signals and measurements no longer corresponds to the (balanced) ideal BB84 protocol. Hence,
the BB84 security analysis no longer applies in this scenario. We provide a security proof of the unbalanced
phase-encoded BB84. The resulting key rate turns out to be lower than the key rate of the ideal BB84 protocol.
Therefore, in order to guarantee security, the loss due to the phase modulator cannot be ignored.
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Quantum key distribution (QKD) provides a way for two
distant parties (Alice and Bob) to establish a shared secret
key with absolute confidentiality. Many protocols [1] have
been suggested to achieve this goal, among which the BB84
protocol [2] is the most well-known example. In the BB84
protocol, Alice randomly chooses between two conjugate
bases of a qubit Hilbert space and encodes the bit value of
the key elements in the basis states. She sends these states to
Bob through a quantum channel, who measures them randomly
in one of the conjugate bases. After having collected enough
data, they perform error correction to eliminate the errors in
their data, followed by privacy amplification to guarantee the
security of the generated key from an eavesdropper (Eve).

In optical implementations, the bit information is usually
encoded in a photonic degree of freedom, e.g., in the
polarization of photons or the phase of two consecutive photon
pulses. In the phase-encoded protocol, the phase between two
consecutive pulses prepared by Alice determines the bit and
the basis value of the sent signal. In the actual experimental
realization of the phase-encoded BB84 protocol with Mach-
Zehnder interferometers (see Fig. 1), the phase modulator,
which is in one arm of the interferometer, introduces loss.
While this does not change the observed error rate in the
data, it changes the signal states and the measurements of the
protocol. Since this is now a different protocol, the security
proofs tailored to the BB84 protocol no longer apply in this
scenario.

In this work, we provide a security proof of the phase-
encoded BB84 in the infinite key limit where we take into
account the loss in the phase modulator (“unbalanced phase-
encoded protocol”). We use the security approach presented in
Refs. [3,4] to calculate the key rate. This security approach is
valid when Eve is restricted to collective attacks, but in many
cases, such as protocols on finite-dimensional Hilbert spaces,
it also holds for the more general coherent attacks [5,6].

In the limit where the phase reference is a strong pulse corre-
sponding to the extreme case of an unbalanced interferometer,
the security has been analyzed in Ref. [7]. Furthermore, a
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first rough security proof approach linking the unbalanced
phase-encoded protocol to the BB84 protocol at the cost of
key rate has been presented in Ref. [8].

We provide a qubit-based security proof, that is later
extended to optical modes. At the source side, we extend the
validity of the qubit-based security proof to optical modes
using the tagging approach introduced in Refs. [9,10] in the
decoy framework [11–13]. On the other hand, the squashing
model in Refs. [14–16] justifies the assumption of a qubit-
based security proof at the receiver’s side.

I. PROTOCOL SETUP AND PROOF TECHNIQUES

A. Unbalanced phase-encoded protocol

A scheme of the protocol setup is provided in Fig. 1. Alice
sends photon pulses through a Mach-Zehnder interferometer
with a long arm and a short arm, to create the signal states.
In the long arm, Alice changes the relative phase ϕx of the
two pulses with a phase modulator to imprint the basis and
the bit information on the signal. Alice chooses the phases
ϕx = π

2 x for x ∈ {0,1,2,3} with equal probability for the four
signal states. The phases ϕx ∈ {0,π} and ϕx ∈ {π/2,3π/2}
correspond to the bit values {0,1} in the “even” and “odd”
basis. Likewise, the receiver (Bob) detects the signals by means
of a Mach-Zehnder interferometer. Bob chooses the phase
ϕB ∈ {0,π/2}, which determines the basis (“even” or “odd”)
of his measurement. Bob chooses each measurement setting
with probability 1/2.

The pulses arrive in Bob’s detectors in three different time
slots, either in the top output port (slots c1, c2, and c3 in Fig. 1)
or in the bottom output port (slots d1, d2, and d3 in Fig. 1).
Only the middle clicks (slots c2 and d2) are used for the key
generation. The outside clicks (slots c1, c3, d1, and d3) are
pulses that did not interfere at Bob’s second beamsplitter. If
the signal produces interference (e.g., the detectors click in
the middle time slot), then Bob determines the bit value of the
incoming signal based on his phase setting.

To obtain the data for the key generation, Alice and Bob
apply a sifting step, in which they announce to each signal the
basis (“even” or “odd”) publicly and discard all data points
where the basis did not match.
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FIG. 1. (Color online) Alice and Bob use a Mach-Zehnder interferometer to prepare and detect the signal pulses. Only the interfering
pulses, which produce clicks in the time slots c2 and d2 (black-red and red-black overlapping pulses), are used for the key generation.

The lossy phase modulator typically introduces a loss in
one of the arms of the interferometer, producing pulses with
different amplitudes. We model the lossy phase modulator by a
perfect (lossless) phase modulator followed by a beamsplitter
with transmissivity κ � 1 that simulates the loss.

B. Polarizing beam splitter (PBS) protocol

As a slight variation of the protocol, consider Alice
encoding her outgoing pulses in different polarization and Bob
replacing his first beamsplitter by a polarizing beamsplitter
(see Fig. 2). This causes the two pulses to arrive simultaneously
at Bob’s second (interfering) beamsplitter. If he also rotates
the polarization of the signal in one arm, all signals will
interfere. We analyze the security proof of this protocol as
well. Throughout the paper we will call this protocol the PBS
protocol.

C. Proof techniques

Typically, we assume that the eavesdropper (Eve) intercepts
the quantum channel between Alice and Bob with the goal to
learn about the key. Eve can tamper with the signals at will, but
her interaction will introduce some disturbance to the signals,
which can be detected by Alice and Bob.

HWP

ϕB

κ

PBS

FIG. 2. (Color online) A variation of the protocol with the
pulses encoded in different polarization. Bob places a polarizing
beamsplitter (PBS) at the entrance of his interferometer and rotates
the polarization in one arm of the interferometer, for example by
using a half wave plate (HWP) to cause the desired interference.

It is generally difficult to provide a security proof for a
scenario with a lossy measurement. Therefore, we construct
a picture where a lossy beamsplitter with transmissivity 1

2ξ
is

placed into the quantum channel followed by a lossless inter-
ferometer with an uneven first beamsplitter with transmissivity

ξ = 1

1 + κ
. (1)

This “lossless interferometer” picture is equivalent to the
original picture with the lossy phase modulator in the long
arm of the interferometer, as it yields the same measurement
outcomes. The two pictures are shown in Fig. 3. However, in
the lossless interferometer picture we can deal with the loss
(that has now been outsourced to the channel) by giving Eve
control over it and treat it like regular channel loss in the
security proof.

In the case of the PBS protocol, we allot the control over
the polarizing beamsplitter and the lossy beamsplitter with
transmissivity κ in the long arm to Eve, leaving Bob with a
lossless detector.

II. HARDWARE FIX

One simple way to recover the original BB84 scenario
is by manually introducing a beamsplitter with the same
transmissivity κ in the shorter arm of the interferometers
to compensate for the loss due to the phase modulator.

Bob

ξ1/(2ξ)

Bob

κ

(a) (b)

FIG. 3. (Color online) (a) Original picture of the unbalanced
phase-encoded protocol with the loss in Bob’s interferometer. (b)
Equivalent lossless interferometer picture with a loss 1/(2ξ ) in
the channel followed by lossless interferometer with an uneven
beamsplitter with transmissivity ξ .
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FIG. 4. (Color online) (a) Hardware fix with the same amount of
loss introduced in the short arm of the interferometer to compensate
for the loss due to the phase modulator. (b) Equivalent lossless
interferometer picture.

Alternatively, one can replace the first beamsplitter in the
interferometer by a biased beamsplitter with transmissivity
1 − ξ . A schematic of these alternatives is shown in Figs. 4
and 5.

The BB84 signal states and measurements are recovered
in the equivalent lossless interferometer pictures, which are
shown in Figs. 4 and 5 for the two hardware fix possibilities.
Under the assumption that the loss in Bob’s detector is
attributed to Eve, the security proof reduces to the known
BB84 security proof.

The loss in Alice’s device, however, is not attributed to Eve,
because the intensity of the outgoing signal is calibrated at the
output of Alice’s laboratory. In contrast, in the crude approach
in Ref. [8], the loss in Alice’s device must be attributed to
Eve, leading to a bigger reduction of the key rate than in our
hardware fix scenario.

III. SINGLE-PHOTON CONTRIBUTION

In the following, we study the case where Alice sends
a single photon and Bob obtains a single photon (qubit-
to-qubit scenario). We analyze the signal structure and the
measurements of the unbalanced phase-encoded protocol and
the PBS protocol and provide a security proof (qubit security
proof). Later, in Sec. X, we embed the qubit security proof
into the more realistic scenario with optical modes in infinite
dimensional Hilbert spaces using decoy states [12], tagging
[9,10], and squashing [14–16].

(a) (b)

Uneven beam splitter

κ

Equivalent picture

2(1 − ξ)1 − ξ

FIG. 5. (Color online) Hardware fix with a biased beamsplitter
in the interferometer to compensate for the loss due to the phase
modulator. (b) Equivalent lossless interferometer picture.
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FIG. 6. (Color online) Comparison of the qubit signal states on
the Bloch sphere. (a) The signal states of the BB84 protocol. (b) The
signal states of the protocol with a lossy phase modulator.

A. Alice’s signal states

If a single photon is distributed over the two time modes
(pulses) emerging from Alice, the resulting Hilbert space of
the signal states (HS) is a qubit space. We denote the creation
operators of the two time modes by a

†
0 and a

†
1 and define the

two canonical basis vectors |0〉 = a
†
0|vac〉 and |1〉 = a

†
1|vac〉

of HS . After Alice imprinted her phase choice onto the pulses,
the signal leaving her apparatus is in one of the four possible
states:

|ϕx〉 =
√

ξ |0〉 +
√

1 − ξeiπx/2|1〉 (2)

for x ∈ {0,1,2,3}. The relationship between ξ and κ was
already defined in Eq. (1). In Fig. 6 we show a representation
of the signal state on the Bloch sphere in comparison to the
signal states of the BB84 protocol.

Alice then sends the signal states with equal probability
through a quantum channel to Bob. This scheme is called the
prepare-and-measure scheme. Alternatively, the distribution of
the signal states is captured in the source-replacement scheme:
Alice constructs a (hypothetical) entangled state |�〉 ∈ HAS

in her laboratory and sends the second system (S) to Bob.
By means of a positive operator valued measure (POVM)
Alice performs a measurement on the system A, which
effectively prepares the signal states on the system S for Bob.
Furthermore, the reduced density matrix ρA = trS(|�〉〈�|)
is fixed in the source-replacement scheme. In our case, the
entangled source state is |�〉AS = √

ξ |00〉 + √
1 − ξ |11〉 with

a reduced density matrix

ρA = ξ |0〉〈0| + (1 − ξ )|1〉〈1|. (3)

Alice’s POVM elements on HA are then essentially BB84
measurements:

Ax = 1

2
P

[ |0〉 + e−iπx/2|1〉√
2

]
(4)

for x ∈ {0,1,2,3}. We denote by P
[|α〉] = |α〉〈α| a projector.

B. Bob’s detection in the unbalanced phase-encoded protocol

The modes a
†
0 and a

†
1 arrive at Bob’s detector after Eve

interacted with the signals. The output of Bob’s detectors
carries six modes in total, two in each of the three time slots.
We denote the modes of the top (bottom) detector by c

†
i (d†

i ) for
i = 1,2,3, respectively. For a fixed phase ϕB ∈ {0,π/2}, the

042327-3
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transformation of the a
†
i to the modes in the top and bottom

detectors yields (up to global phases)

c
†
1 = 1√

2

√
ξa

†
0,

c
†
2 = 1√

2
(
√

1 − ξa
†
0 + eiϕB

√
ξa

†
1),

c
†
3 = 1√

2

√
1 − ξa

†
1,

d
†
1 = 1√

2

√
ξa

†
0,

d
†
2 = 1√

2
(
√

1 − ξa
†
0 − eiϕB

√
ξa

†
1),

d
†
3 = 1√

2

√
1 − ξa

†
1.

We choose to combine several outputs into one POVM element
of Bob’s measurement (coarse-graining). In terms of the
incoming modes |0〉 and |1〉, Bob’s POVM elements are

By = 1
4P [

√
1 − ξ |0〉 +

√
ξeiπy/2|1〉],

(5)
Bout = ξ |0〉〈0| + (1 − ξ )|1〉〈1|,

where y runs over {0,1,2,3}. The four POVM elements By

correspond to inside clicks (time slot 2) in the two bases,
while Bout denotes the POVM element of the outside clicks
(time slots 1 and 3).

C. Bob’s detection in the PBS protocol

In a similar manner, the modes in the output ports of Bob’s
interferometer in the PBS protocol are found to be

c† = 1√
2

(e−iϕB a
†
0 − ia

†
1),

d† = 1√
2

(−ie−iϕB a
†
0 + a

†
1).

There are only two output modes, since there are no outside
clicks in this protocol. Bob’s corresponding POVM on the
input system has four elements for y ∈ {0,1,2,3}:

B ′
y = 1

2
P

[
(|0〉 + eiπy/2|1〉√

2

]
, (6)

which is essentially a BB84 measurement.
Note that, indeed, in the PBS scenario, both Alice’s and

Bob’s measurements are BB84 measurements. However, the
difference between the PBS protocol and the BB84 protocol
is found in the reduced density matrix ρA in Eq. (3), which
contains the information about the modified signal structure.

IV. DESCRIPTION OF THE OPTIMAL ATTACK

Eve’s interaction with the signals typically introduces some
disturbance to the source state |�〉. The actual state that Alice
and Bob share after Eve’s interaction is a general unknown
(mixed) state ρAB . The only knowledge Alice and Bob hold
about ρAB is concentrated in the probability distribution

p(x,y) = tr{Ax ⊗ By ρAB} (7)

of their measurement outcomes with respect to the POVMs
MA = {Ax} and MB = {By}. These probabilities are deter-
mined during the step of parameter estimation. Additionally,
they also know that Alice’s reduced density matrix ρA =
trB(ρAB) is fixed, because it never entered Eve’s domain.
Consequently, they hold a parametrization of the set of all
possible density operators ρAB that are compatible with p(x,y)
and ρA, which we define in the following by 	:

Definition 1. The set 	 contains all bipartite states ρAB that
have a given reduced state ρA and are compatible with the
measurement outcomes p(x,y).

In the source-replacement scheme Eve’s attack is describe
by the purification |
〉ABE of ρAB . The purification lives on
a dilated space HABE , where the dimension of the purifying
system E is the same as the dimension of AB. Giving Eve full
control over |
〉ABE , allows her to exploit everything allowed
by quantum mechanics for her attack.

V. KEY RATE FORMALISM

Along the lines of Ref. [17], we derive the key rate that Alice
and Bob can extract from a state |
〉 using postselection, such
as basis sifting. Our analysis is based on the security proof
presented in Refs. [3,4].

A. Key rate formula

In this subsection we review the security proof in
Refs. [3,4], which is valid for collective attacks as well as
for coherent attacks by extension through Refs. [5,6].

Given Alice, Bob and Eve share the state |
〉. After
the measurement with respect to the POVMs MA = {Ax}
and MB = {By}, the three parties share a classical-classical-
quantum (ccq) state [3]:

ρXYE =
∑

x,y∈M

p(x,y)|x,y〉〈x,y| ⊗ ρ
xy

E . (8)

The probability p(x,y) was already defined in Eq. (7), whereas
Eve’s conditional states are given by ρ

xy

E = trAB{Ax ⊗ By ⊗
1E |
〉〈
|}/p(x,y). According to Refs. [3,4], the rate at which
a key can be extracted from such a state is

r(ρXYE) = I (X : Y ) − χ (X : E), (9)

where I (X : Y ) = H (X) + H (Y ) − H (X,Y ) is the classical
mutual information between Alice and Bob’s data p(x,y), and
χ (X : E) = H (X) + S(E) − S(X,E) is the Holevo quantity
between Alice and Eve. H and S denote the Shannon entropy
and the von Neumann entropy, respectively. If ρAB is known,
the Holevo quantity can be expressed in terms of Eve’s states
ρx

E conditioned on Alice’s value x and her reduced state ρE =∑
x p(x)ρx

E :

χ (X : E) = S(ρE) −
∑

x

p(x)S
(
ρx

E

)
. (10)

An explicit reference in the Holevo quantity to the system
E can be eliminated and replaced by quantities that depend
on the systems AB only: since the state |
〉 is pure, it
holds that S(ρE) = S(ρAB) due to the Schmidt decomposition.
Furthermore, if Alice’s POVM elements are rank-one, the
conditional states after her measurement, ρx

BE = trA{Ax ⊗
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1BE|
〉〈
|}/p(x), are pure. Therefore, using the Schmidt
decomposition once again, S(ρx

E) = S(ρx
B), and furthermore,

χ (X : E) = S(ρAB) −
∑

x

p(x)S
(
ρx

B

)
. (11)

B. Key rate formula with postselection

First we introduce the same notation as in Ref. [17] with
emphasis on the dependence of the key rate on ρAB and the
corresponding measurement, rather than the explicit ccq state
ρXYE . In the new notation we denote the Holevo quantity by

χ (ρAB,MA) := χ (X : E). (12)

In the classical description of the postselection, Alice and
Bob make an announcement to each measurement outcome to
filter out uncorrelated data. Alice announces the basis of her
outcome (“even” or “odd”), and Bob announces the basis of
his outcome (“even” or “odd”) if it was an inside click. If it was
an outside click, he announces “out”. These announcements
do not reveal the bit values. Based on the announcements,
they keep the events where both announced “even” or both
announced “odd” and discard the rest. We denote the events
where they had the same announcement by u = “even” or
u = “odd”. The identification of the announcements effec-
tively defines the subsets meven

A = {A0,A2}, modd
A = {A1,A3},

meven
B = {B0,B2}, and modd

B = {B1,B3} of the POVMs MA and
MB , which contain the POVM elements corresponding to the
announcement u = “even” or u = “odd”.

The quantum version of the postselection is described by
a two-step process on ρAB : first, a trace-preserving quantum
map E is applied to ρAB that takes care of the announcement
and discarding. The Kraus operators of the map are given
by Fu

A ⊗ Fu
B corresponding to the coinciding announcements

u. The filters are explicitly given by Fu
A =

√∑
mu

A
Ax and

Fu
B =

√∑
mu

B
By .

This map creates an ensemble {Fu[ρAB],p(u)} of normal-
ized states

Fu[ρAB] = Fu
A ⊗ Fu

BρAB

(
Fu

A ⊗ Fu
B

)†
/p̃(u), (13)

p̃(u) = tr
{
Fu

A ⊗ Fu
BρAB

(
Fu

A ⊗ Fu
B

)†}
, (14)

each with probability p(u) = p̃(u)
pkept

. The probability that ρAB is

kept in this process is pkept = ∑
u p̃(u).

In the second step, the states Fu[ρAB] are measured with
respect to new measurements Mu

A ⊗ Mu
B conditioned on u. The

new POVMs Mu
A and Mu

B are found by renormalizing the sets
mu

A and mu
B by the pseudo-inverses of the filters defined on the

nonzero subspace of Fu
A ⊗ Fu

B . This ensures that measuring
Fu[ρAB] with respect to Mu

A ⊗ Mu
B yields the same outcomes

as measuring ρAB with respect to MA ⊗ MB :

Mu
A = {(

Fu
A

)−1
Ax

(
F

u†
A

)−1
: Ax ∈ mu

A

}
,

(15)
Mu

B = {(
Fu

B

)−1
By

(
F

u†
B

)−1
: By ∈ mu

B

}
.

In Ref. [17], the key rate after postselection (r̄) extracted
from each coinciding announcement u independently is given
by

r̄(E(ρAB)) = Īobs − χ̄ (E(ρAB)), (16)

with the following definition of the overall Holevo quantity:

χ̄ (E(ρAB)) :=
∑

u

p(u)χ
(
Fu[ρAB],Mu

A

)
. (17)

The overall mutual information Īobs is the mutual information
of Alice and Bob’s data after postselection. It is fixed by the
measurement outcomes p(x,y).

C. Description of Eve’s optimal attack

Typically, the state |
〉 is not completely know to Alice and
Bob. They might hold only partial information about |
〉 via
the characterization of the set 	 in the parameter estimation
step. If this is the case, Alice and Bob must assume that Eve
chose the most powerful attack (optimal attack) compatible
with 	, which is the attack that yields the lowest key rate:

rmin = min
ρAB∈	

r̄(E(ρAB))

= Īobs − max
ρAB∈	

χ̄(E(ρAB)). (18)

While the first term (Īobs) is fixed by Alice and Bob’s mea-
surement outcomes p(x,y), the second term (χ̄) is obtained
through optimization over all possible attacks.

VI. SYMMETRIES IN PROTOCOLS

In this section we describe a scenario in which we can show
that the optimal attack carries a certain symmetry without loss
of generality. Under the assumption that Alice and Bob use
a coarse-grained version of the exact probability distribution
p(x,y) for the parameter estimation, and if the overall Holevo
quantity χ̄ satisfies certain symmetry properties, it can be
shown that the optimal attack lies within a symmetric set.
The symmetry property of the optimal attack is useful in the
optimization of the key rate in Eq. (18). For a detailed analysis
see Ref. [17].

First, let us define the symmetries of the POVMs MA and
MB . Let G be a symmetry group with group elements g and
a unitary representation Ug on the Hilbert space HS . A set
S containing operators on HS is called G-invariant, if for all
elements sx ∈ S and all Ug ∈ G it holds that UgsxU

†
g := sg(x) ∈

S.
Suppose our protocol is equipped with POVMs MA and

MB that exhibit the following G-invariance:

U ∗
g AxU

T
g =: Ag(x) ∈ MA, (19)

UgByU
†
g =: Bg(y) ∈ MB. (20)

Consider now a state

Ug[ρAB] = U ∗
g ⊗ UgρABUT

g ⊗ U †
g , (21)

which is unitarily equivalent under the symmetry group to
ρAB . If we measure Ug[ρAB] with respect to MA ⊗ MB , the
resulting probability distribution, pg(x,y), of the measurement
outcomes is, by virtue of the G-invariance, a permuted version
of p(x,y). Furthermore, if ρA = U ∗

g ρAUg , the reduced density
matrix of Ug[ρAB] is unchanged.

In the parameter estimation Alice and Bob are free to use a
coarse-grained version Q[{p(x,y)}] of the detailed probability
distribution p(x,y). In fact, in many cases, only averaged
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observations, like the average quantum bit error rate, are used
for this task. The averaged observations that we choose to use
in our protocol are invariant under permutation of the p(x,y),
in the sense that

Q[{p(x,y)}] = Q[{pg(x,y)}]. (22)

In this scenario, all states Ug[ρAB] are compatible with Q,
whenever ρAB was compatible with Q. If Q is also linear in
p(x,y), we can also include the convex combination

ρ̄AB = 1

|G|
∑
g∈G

Ug[ρAB] (23)

to the set of compatible states. Here, |G| is the cardinality
of the group G. Consequently, we define the new set 	ave,
containing all density operators which are compatible with Q

and ρA. The new set 	ave is a superset of the original set 	.
As shown in Ref. [17], if the Holevo quantity is concave

in ρAB and satisfies the equivalence property, χ̄ (E(ρAB)) =
χ̄(E(Ug[ρAB])), the quantity χ̄(E(ρ̄AB)) calculated from the
symmetrized state ρ̄AB always upper bounds the quantity
χ̄(E(ρAB)) calculated from ρAB ∈ 	ave. Therefore, without
loss of generality, the optimal attack is found in a set 	̄ defined
as follows:

Definition 2. The set 	̄ contains all bipartite symmetrized
states ρ̄AB that are compatible with Q and that have a given
reduced state ρA.

We then obtain the key rate:

rmin = Īobs − maxρ̄AB∈	̄ χ̄ (E(ρ̄AB)). (24)

VII. CONCAVITY AND EQUIVALENCE PROPERTY OF χ̄

IN THE EXAMPLE OF THE UNBALANCED
PHASE-ENCODED PROTOCOL

In this section we show the concavity and equivalence
property of χ̄ in the case of the unbalanced phase-encoded
protocol. We then compute the key rate in the scenario with
the coarse-grained parameter estimation.

A. Postselection

In the sifting process Alice and Bob postselect on events
in the same basis (“odd” or “even”) in the middle time slot.
We first calculate Alice’s filters for this postselection from the
“odd” and “even” POVM elements in Eq. (4):

FA := F odd
A = F even

A = 1/
√

2. (25)

The new renormalized POMV measurements Mu
A conditioned

on u are related to the original POVM elements in mu
A simply

by a factor of 2:

Meven
A = {2A0,2A2},

(26)
Modd

A = {2A1,2A3}.
We also calculate Bob’s filters from the “odd” and “even”
POVM elements in Eq. (5). There is a dependence on ξ in
Bob’s filter, but again the filters are equal for “even” and “odd”
bases:

FB := F even
B = F odd

B = 1√
2

(√
1 − ξ 0
0

√
ξ

)
. (27)

Here the filters are presented in the basis {|0〉,|1〉}. It is
straightforward to find Bob’s postselected POVMs

Meven
B = {2B ′

0,2B ′
2},

(28)
Modd

B = {2B ′
1,2B ′

3},
expressed in terms of the BB84-type measurements B ′

y in
Eq. (6).

B. Symmetries

The symmetry group G governing the POVMs Ax and
By is the cyclic group C4 with four elements. A reducible
representation of C4 in the canonical basis of the signal states
is given by

Ug =
(

1 0
0 eigπ/2

)
g ∈ {0,1,2,3}. (29)

Alice and Bob’s POVMs satisfy the symmetry relation
U ∗

g AxU
T
g = Ax+g and UgByU

†
g = By+g where addition is

taken modulo 4, while the outside element Bout and the
reduced density matrix ρA in Eq. (3) remain invariant under
the action of Ug . Note that complex conjugation and Hermitian
conjugation are equivalent operations for all unitaries Ug ,
because they are simultaneously diagonal.

Not only are the POVMs MA and MB C4-invariant, but also
the postselected POVMs satisfy a certain symmetry relation
with respect to C4. Let us define the action of a unitary U on
a POVM M = {Kx} by

UMU † := {UKxU
†}. (30)

The C4-invariance of the sets of POVMs Mu
A and Mu

B is given
by

U ∗
g Mu

AUT
g = Mg(u)

A ,
(31)

UgMu
BU †

g = Mg(u)
B .

For this particular example, g(u) = u ⊕ parity(g) with
parity(g) ∈ {even,odd}. The addition is defined by the rules:
even ⊕ even = odd ⊕ odd = even and odd ⊕ even = even ⊕
odd = odd.

C. Concavity and equivalence property of χ̄

From the property that the filters are equal for “even” and
“odd” announcements in Eqs. (25) and (27), we can derive
the relationship between “even” and “odd” normalization
p̃(odd) = p̃(even) =: p̃ and the postselected density matrices:

F[ρAB] := F even[ρAB] = Fodd[ρAB]. (32)

While p̃(u) depends on the density matrix ρAB , the normalized
probability distribution p(u) does not: p(odd) = p(even) = 1

2 .
Furthermore, the filters commute with all unitaries Ug for Alice
and Bob:

[FK,Ug] = 0 ∀g ∈ G, K ∈ {A,B}. (33)

Consequently, F in Eq. (32) commutes with the symmetry
group

F[Ug[ρAB]] = Ug[F[ρAB]]. (34)
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Moreover, F acts linearly on any convex combination of states
of the form Ug[ρAB], for example on the symmetrized state
ρ̄AB :

F[ρ̄AB] = 1

|G|
∑

g

F[Ug[ρAB]]. (35)

We have now all ingredients to show the concavity and the
equivalence property of χ̄ . Consider three density matrices
ρAB , σAB , and the convex combination ρ̄AB = λρAB + (1 −
λ)σAB with λ ∈ [0,1]. In Ref. [17] it is shown that the quantity
χ (ρAB,MA) is concave with respect to ρAB , namely,

χ (ρ̄AB,MA) � λχ (ρAB,MA) + (1 − λ)χ (σAB,MA). (36)

Using Eqs. (35) and (36), the concavity of χ̄ follows:

χ̄ (E(ρ̄AB)) = 1

2

∑
u

χ
(
F[ρ̄AB],Mu

A

)

� 1

2

∑
u

1

|G|
∑

g

χ
(
F[Ug[ρAB]],Mu

A

)

= 1

|G|
∑

g

χ̄ (E(Ug[ρAB]). (37)

For the equivalence property we resort to lemma 1 in
Ref. [17] that describes the invariance property of the Holevo
quantity under unitary transformation:

χ (Ug[ρAB],MA) = χ
(
ρAB,UT

g MAU ∗
g

)
. (38)

This property also holds for the postselected states due to the
commutation rule in Eq. (34) and the G-invariance of the Mu

A

in Eq. (31):

χ
(
F[Ug[ρAB]],Mg(u)

A

) = χ
(
F[ρAB],Mu

A

)
. (39)

The equivalence transfers to χ̄ by means of Eqs. (39) and (32):

χ̄(E(ρAB)) = 1

2

∑
u

χ
(
F[ρAB],Mu

A

)

= 1

2

∑
u

χ
(
F[Ug[ρAB]],Mg(u)

A

)

= 1

2

∑
g(u)

χ
(
F[Ug[ρAB]],Mu

A

) = χ̄ (E(Ug[ρAB])).

(40)

Having showed concavity and equivalence, we can assume
without loss of generality that the optimal attack is chosen from
the set 	̄. The main properties used to prove the equivalence
and concavity were essentially Eqs. (25), (27), and (33).

VIII. KEY RATES IN THE QUBIT-TO-QUBIT SCENARIO

We now calculate the key rate of the unbalanced phase-
encoded protocol in the qubit-to-qubit scenario. We assume
that Alice and Bob perform the parameter estimation based on
the average error rate

Q = p(0,2) + p(2,0) + p(1,3) + p(3,1)

2p̃
, (41)

which is calculated from the detailed probability distribution
p(x,y) and the normalization p̃ in Eq. (14). The average error

rate satisfies the property in Eq. (22), which follows from the
G-invariance of Mu

A and Mu
B in Eq. (31).

The symmetric state ρ̄AB with respect to the C4 symmetry
group is generally described by the density matrix

ρ̄AB =

⎛
⎜⎝

a f ∗
b

c

f d

⎞
⎟⎠ (42)

with open parameters a, b, c, d, and f that satisfy the trace
conditions tr ρ̄AB = 1. The matrix representation of ρ̄AB is
with respect to the canonical basis {|00〉,|01〉,|10〉,|11〉}. The
reduced density matrix

trB(ρ̄AB) =
(

a + b

c + d

)
(43)

is fixed by ρA [see Eq. (3)], which leads to the additional
constraint a + b = ξ on the parameters. Furthermore, the error
rate constraint

Q = p̃ − 1
2 Re[f ]

√
ξ (1 − ξ )

2p̃
(44)

eliminates another parameter. The normalization p̃ is given by
p̃ = 1

4 [(1 − ξ )(a + c) + ξ (b + d)] and Re[f ] denotes the real
part of f .

We calculate the Holevo quantity χ̄ and use MATLAB, calling
the optimization function fmincon to perform a numerical
optimization over the states ρ̄AB ∈ 	̄. To simulate the classical
data used for the calculation of the mutual information, we
assume a typical scenario with symmetric observations. The
mutual information is then a function of the average error rate
Īobs = 1 − h(Q), with h denoting the binary entropy.

In Fig. 7 we show a plot of the key rates renormalized on
matching bases and clicks in the middle time slot for different
values of κ in the case of a lossless channel. In particular,
observe that as κ increases the key rate increases as well.
This behavior originates from the signal state structure: as
the signals become more multiorthogonal with increasing κ ,
the eavesdropper has more difficulty distinguishing them. This
advantage disappears quickly, though, once loss is added to the

Error rate
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FIG. 7. (Color online) Key rates per postselected signal in
the middle time slot for unbalanced phase-encoded protocol in
dependence on the error rate Q for different values of κ in the phase
modulator.
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FERENCZI, NARASIMHACHAR, AND LÜTKENHAUS PHYSICAL REVIEW A 86, 042327 (2012)

channel. For a fair comparison of the protocol performances,
however, we must analyze the protocols under a realistic
channel model.

IX. CONCAVITY AND EQUIVALENCE IN THE CASE OF
THE PBS PROTOCOL

The PBS protocol differs from the unbalanced phase-
encoded protocol only in the measurements on Bob’s side.
Bob’s filters for the PBS protocol,

FB ′ := F even
B ′ = F odd

B ′ = 1/
√

2, (45)

also satisfy the properties in Eqs. (25), (27), and (33). As these
were the properties needed to show concavity and equivalence
of χ̄ , we can again assume a symmetric optimal attack of the
form of Eq. (42).

X. KEY RATES FOR REALISTIC DEVICES

The security proof in Sec. VIII is tailored to the situ-
ation where Alice and Bob use perfect qubits (e.g., single
photons). The actual experimental implementations, however,
are performed with optical modes in an infinite-dimensional
Hilbert space. In particular, Alice’s device can send vacuum
and multi-photon states into the channel, and Bob’s detector
can receive vacuum and multi-photon states from the channel.
In order to achieve a complete security proof, we need to
include the deviation from the ideal qubit-to-qubit scenario.

Recently, several powerful tools [9,10,12,14–16] have been
developed to bridge the gap between theory and experiment,
with the aim to extend the validity of qubit-based security
proofs to the more realistic scenario of optical modes. On
Alice’s side, the multi-photon components are taken care of
by using decoy states [12], supported by tagging [9,10]. This
essentially permits us to estimate the fraction of the single-
photon contributions in the data. On the other hand, the multi-
photon states entering Bob’s detector are taken care of by the
squashing method in Refs. [14–16]. If a squashing map exists
for a certain measurement setup, then the detection pattern
resulting from an arbitrary input state into Bob’s detector can
be interpreted as if it were coming from a single photon or a
vacuum input.

Note that this approach gives a provable secure key rate;
however, higher key rates may be achievable with a refined
analysis. The starting point for the refined analysis is the
observation that a photon number splinting attack on multi-
photon signals does not leak the signal content with certainty
to Eve, even after the basis announcement. However, such
an analysis will be rather involved. It is expected that for
strong asymmetries in the balancing the refined analysis would
improve the results significantly, as the scheme then takes a
similar form as the strong reference pulse schemes analyzed
in Refs. [18,19].

A. Key rate for unbalanced phase-encoded protocol
with realistic devices

For the unbalanced phase-encoded detector setup, a valid
squashing map has been proven to exist in Ref. [16]. A
schematic of the squashing idea is shown in Fig. 8. In the
proof it is assumed that Bob’s detectors can resolve the three

Basic 
POVM

Post-
processing

Effective POVM

Target 
POVM

Squashing
+

⇔

FIG. 8. The basic POVM combined with classical postprocessing
forming the effective POVM, which is mapped to the target (qubit)
POVM by the squashing map.

different time slots. Therefore, a general incoming optical
mode can trigger any possible click pattern in the six detection
slots. A POVM is associated to this measurement, called the
basic POVM. Through classical postprocessing, described in
more detail below, several basic POVM elements are combined
to form the effective (single-click) POVM elements. The
effective POVM has five elements {Beff

0 ,Beff
1 ,Beff

2 ,Beff
3 ,Beff

out},
which reflect the single-click structure of the target qubit
POVMs given in Eq. (5). The squashing map in Ref. [16]
then maps the effective POVM to the target POVM.

The postprocessing in Ref. [16] that maps the basic POVM
to the effective POVM is shown in Table I. In order to maintain
the statistics for an incoming single photon, any single-
click basic POVM element is mapped to the corresponding
effective POVM element. Furthermore, the basic multi-click
POVM elements are processed as follows: double-click POVM
elements in the “even” (“odd”) basis in the middle time slot are
mapped with equal probability to Beff

0 or Beff
2 (Beff

1 or Beff
3 );

outside multi-click POVM elements are always mapped to
the outside POVM element Beff

out; cross-click POVM elements
(simultaneous middle and outside clicks) are probabilistically
mapped with probability 0.5 to Beff

out and with probability 0.125
to each of the four Beff

y , y ∈ {0,1,2,3}. This postprocessing
essentially maps double clicks to errors in the data.

Due to the existence of the squashing map, we can assume
that all detection events on Bob’s side are single-photon events,
whereas Alice’s source can either send a vacuum signal (v), a
single-photon signal (s), or multi-photon signal (m).

TABLE I. Mapping of the basic POVM to the effective POVM
via probabilistic classical postprocessing.

Basic Effective Probability
POVM POVM

Single-click Single-click 1

Double-click (middle) “even”
Beff

0 0.5

Beff
2 0.5

Double-click (middle) “odd”
Beff

1 0.5

Beff
3 0.5

Multi-click (outside only) Beff
out 1

Beff
0 0.125

Beff
1 0.125

Cross-click Beff
2 0.125

Beff
3 0.125

Beff
out 0.5
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In the error correction step, Alice and Bob must correct
all errors in their data. Therefore, the error correction term,
which is the mutual information, depends on the total observed
error rate Qtot: Īobs = 1 − h(Qtot). Due to the decoy states
and the tagging method, however, the privacy amplification
term, which is the Holevo quantity, splits into the individual
contributions from vacuum, single-photon, or multi-photon
signals (χ̄v , χ̄s , and χ̄m). Let us define by pmid(a) the
probability that the signal a ∈ {v,s,m} sent by Alice produced
a click in a middle time slot in Bob’s detector, and the total
probability of a middle click by pmid = ∑

a∈{v,s,m} pmid(a).
Then the total key rate is given by

R = 1

2

⎛
⎝pmidĪobs −

∑
a∈{v,s,m}

pmid(a) χ̄a

⎞
⎠ . (46)

A factor 1/2 was introduced for the sifting.
Typically, we assume that Eve has full knowledge about

the vacuum and the multi-photon signals (tagging), therefore
χ̄v = χ̄m = 1. Only the term χ̄s enters the optimization. Due
to the decoy and tagging methods, Alice and Bob have an
estimate of the error rate within the single-photon events (q).
The error rate q is the quantity appearing in the optimization
and is generally different from Qtot.

When we are no longer dealing with the strict qubit-to-qubit
scenario, we must make some modifications to the constraint
on ρA in order to adapt to the realistic scenario. We can no
longer use the full information ρA in Eq. (3) to constrain
the reduced density matrix trB(ρ̄AB) in Eq. (43). Recall that
the fixed reduced density matrix ρA describes the reduced
density matrix of all single-photon states exiting the source.
These photons are lost in the channel with probability plost

and arrive in Bob’s detector with probability 1 − plost. The
reduced density matrix ρA of the total photons is conserved in
this process:

ρA = (1 − plost) trB(ρ̄AB) + plostρ
lost
A , (47)

where ρ lost
A is an unknown density matrix corresponding to the

lost photons. We use this weaker version to constrain trB(ρ̄AB)
in the optimization of the Holevo quantity χ̄s .

We optimize the Holevo quantity χ̄s over the set of
symmetric states ρ̄AB [Eq. (42)] with the error rate constraint
q and the relaxed constraint in Eq. (47) on the reduced density
matrix. The dependence of the optimized Holevo quantity on
q, plost, and κ is denoted in square brackets χ̄max

s [q,plost,κ].
The total optimized key rate for the unbalanced phase-encoded
protocol is then given by

R = 1
2

( − pmidh(Qtot) + pmid(s)
(
1 − χ̄max

s [q,plost,κ]
))

.

(48)

In Figs. 9 and 10 we plot the key rates of the unbalanced
phase-encoded protocol and the hardware fixes for different
values of κ . We simulate a channel using the experimental
values in Ref. [20] for channel loss, dark counts, detector
efficiency, and error correction efficiency. We assume that the
detector efficiency is symmetric in the two detectors, so that
we can equivalently treat this efficiency as an overall loss in the
channel. Furthermore, we assume that no double clicks were
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FIG. 9. (Color online) Plot of the key rates in the realistic
scenario. (a) Key rate of the PBS protocol with no loss (dashed
blue line). (b) Key rate of the PBS protocol with κ = 0.5 (dashed
red line). (c) Key rate of the unbalanced phase-encoded protocol
with no loss (κ = 1) (solid blue line). (d) Key rate of the unbalanced
phase-encoded protocol with κ = 0.5 (solid red line) coinciding with
the key rate of the hardware fix with an uneven beamsplitter (black
circles). (e) Key rate of the hardware fix with additional loss in the
short arm (black line).

observed. We also optimize over the mean photon number of
the signal pulses leaving Alice.

Generally, the loss in the phase modulator decreases the
key rate of the protocols. The performance of the unbalanced
phase-encoded protocol coincides exactly with the perfor-
mance of the hardware fix with an uneven beamsplitter,
providing a choice between the hardware fix (requiring a
special unsymmetrical beamsplitter), and the improved theory
solution presented here. Both of these scenarios, however,
outperform the second hardware fix with an additional loss
in the short arm.
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FIG. 10. (Color online) Plot of the key rates of the unbalanced
phase-encoded protocol for different values of κ .
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B. Key rate for PBS protocol with realistic devices

For the PBS protocol detector setup the squashing map
is shown to exist in Refs. [14,15]. Since all pulses interfere,
we can drop the specification on middle clicks in the key
rate. We call the probability that Alice sent a single photon
and Bob detected it pdet(s) and the total detection probability
pdet = ∑

a∈{v,s,m} pdet(a). The key rate in the PBS scenario is
then

R = 1
2

( − pdeth(Qtot) + pdet(s)
(
1 − χ̄max

s [q,plost,κ]
))

. (49)

We plot the key rates of the PBS protocol in Fig. 9 for
different values of κ . The key rates of the PBS protocol are
higher than the key rates of the unbalanced phase-encoded key
for equal loss in the phase modulator, because no signal is
lost due to outside clicks. Nevertheless, the loss in the phase
modulator decreases the key rates of the PBS protocol.

XI. CONCLUSION

We analyze the security of the phase-encoded BB84
protocol with a lossy phase modulator in one arm of the
Mach-Zehnder interferometer. We consider two protocols, the
unbalanced phase-encoded and the PBS protocol. We provide
a qubit-based security proof, which we embed in the more

general framework of optical modes using the decoy states
method, tagging, and squashing.

In general, it turns out that the proven secure key rates
are lowered by the unbalanced loss in the Mach-Zehnder
interferometer, so that a performance evaluation based on the
security analysis of the standard BB84 protocol with laser
pulses should not be used. The implementation with additional
polarization encoding of the pulses (PBS protocol) performs
better than the one with no additional polarization encoding
(unbalanced phase-encoded protocol), because all signals
forcedly interfere in Bob’s interferometer. A comparison of
the key rates of the unbalanced phase-encoded protocol to the
key rates of the two suggested hardware fixes shows that an
experimental remedy is not necessary and does not contribute
to an improvement of the key rate.
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