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From both theoretical and experimental points of view symmetric states constitute an important class of
multipartite states. Still, entanglement properties of these states, in particular those with positive partial
transposition (PPT), lack a systematic study. Aiming at filling in this gap, we have recently affirmatively answered
the open question of existence of four-qubit entangled symmetric states with PPT and thoroughly characterized
entanglement properties of such states [J. Tura et al., Phys. Rev. A 85, 060302(R) (2012)]. With the present
contribution we continue on characterizing PPT entangled symmetric states. On the one hand, we present all
the results of our previous work in a detailed way. On the other hand, we generalize them to systems consisting
of an arbitrary number of qubits. In particular, we provide criteria for separability of such states formulated in
terms of their ranks. Interestingly, for most of the cases, the symmetric states are either separable or typically
separable. Then, edge states in these systems are studied, showing in particular that to characterize generic PPT
entangled states with four and five qubits, it is enough to study only those that assume few (respectively, two and
three) specific configurations of ranks. Finally, we numerically search for extremal PPT entangled states in such
systems consisting of up to 23 qubits. One can clearly notice regularity behind the ranks of such extremal states,
and, in particular, for systems composed of odd numbers of qubits we find a single configuration of ranks for
which there are extremal states.
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I. INTRODUCTION

Characterization of entanglement [1] in composite quantum
states with positive partial transposition (PPT states) remains
a difficult problem. One of the reasons for that is the lack
of a universal separability criterion making it possible to
distinguish unambiguously separable from PPT entangled
states (see, nevertheless, e.g., Ref. [2] for numerous neces-
sary separability conditions). There are, however, methods
providing some insight into the structure of PPT entangled
states. One of them exploits the fact that all states that remain
positive under partial transposition form a convex set, which
as a proper subset contains the PPT entangled states. To fully
characterize the latter, it is then enough to know all the extremal
points of this convex set. This approach has recently been
extensively studied (see Refs. [3–7]). In particular, it made it
possible to solve the open problem of existence of four-qubit
PPT entangled symmetric states [8], and also, although in an
indirect way, disprove the Peres conjecture in the multipartite
case [9].

The problem of characterization of PPT entangled states is
even more complicated in the multipartite case. Clearly, the set
of PPT states arises by intersecting sets of states that remain
positive under partial transpositions with respect to single
bipartitions; thus, its boundary becomes more complicated
with the increasing number of parties. Nevertheless, the
complexity can be reduced by imposing some symmetries.
For instance, demanding that the states under study commute
with multilateral action of unitary or orthogonal groups leads
to classes of multipartite states whose full characterization
with respect to entanglement becomes possible (see, e.g.,
Refs. [10]).

Another interesting example of a class of states obtained
by imposing some symmetry are those supported on the

symmetric subspace of a given multipartite Hilbert space. The
so-called symmetric states have recently been attracting much
attention [11–18]. In particular, the underlying symmetry
allowed for the use of the Majorana representation [19] for
an identification of SLOCC classes of multipartite symmetric
states [14] (see also Refs. [15]). The same symmetry provides
advantages in calculating certain entanglement measures [16].
Another motivation comes from the recent experimental
realizations of symmetric states of many qubits, as for instance,
the six-qubit Dicke states [20] or the eight-qubit GHZ states
[21] (see also Ref. [22] in this context).

However, more effort has been devoted to the pure sym-
metric states, leaving the characterization of entanglement
of mixed, in particular PPT, states as an open problem. It
is known so far that for N = 2,3 all PPT symmetric states are
separable [11]. Then, examples of 5- or 6-qubit PPT entangled
symmetric states were found in Refs. [17,18]. Recently, the
remaining case of N = 4 has been studied in Ref. [8], where
the open question as to whether partial transposition serves in
this case as a necessary and sufficient condition for separability
(as this is the case for N = 2,3) has been given a negative
answer. The main aim of the present paper is to continue
the characterization of PPT entanglement in symmetric states.
We discuss in detail methods used in Ref. [8] and then
generalize them to the case of arbitrary N . We derive
separability criteria for PPT symmetric states in terms of their
ranks and ranks of their partial transpositions. Then we exclude
configurations of ranks for which they are generically not edge.
Finally, we adapt to the multipartite case an algorithm making
it possible to search for extremal PPT entangled states [3]
(see also Ref. [7]). Exploiting it, we study ranks of the
extremal PPT entangled symmetric states consisting of up to
23 qubits. Interestingly, we show that there are at most three
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distinct configurations of ranks for which we find extremal
PPT entangled symmetric states, and, in particular, for odd N

there is only a single such configuration.
The paper is structured as follows. In the next section

(Sec. II) we recall all notions and facts necessary for further
considerations. In Sec. III we investigate the entanglement
properties of the PPT symmetric states. Then, in Sec. IV we
seek extremal entangled PPT symmetric states consisting of
even more than 20 qubits and classify them with respect to their
ranks. The results obtained for exemplary systems consisting
of four, five, and six qubits are collected in Sec. V. We conclude
in Sec. VI.

II. PRELIMINARIES

Let us start with a couple of definitions that we use
throughout the paper. Let

HN = Cd1 ⊗ · · · ⊗ CdN (1)

denote a multipartite product Hilbert space and D the convex
set of density operators acting on HN . By R(ρ), r(ρ), K(ρ),
and k(ρ) we denote, respectively, the range, rank, kernel,
and the dimension of the kernel of a given ρ ∈ D. Then,
A1, . . . ,AN stands for the subsystems of a given N -partite
ρ, and, in the case of low N , we also denote them by A,B, etc.

PPT and separable states. Let us now split the set I =
{A1, . . . ,AN } into two disjoint subsets S and S (S ∪ S = I )
and call it bipartition S|S. We say that a given state ρ acting on
HN is PPT with respect to this bipartition if and only if ρTS �
0. Clearly, states with this property make a convex set denoted
DS . An element of D whose partial transpositions with respect
to all bipartitions (notice that for a given bipartition S|S, partial
transpositions with respect to S and S are equivalent under the
full transposition) are positive are called fully PPT, and, since
in this paper we deal only with fully PPT states, we call them
simply PPT states. Clearly, such states make also a convex set
which is simply the intersection of DS for all S.

A particular example of a state that is PPT is the fully
separable state [23,24]:

ρ =
∑

i

piρ
i
A1

⊗ · · · ⊗ ρi
AN

, pi � 0,
∑

i

pi = 1, (2)

where ρi
Aj

denote density matrices representing all subsys-
tems. Clearly, in multipartite systems one may define various
types of separability (see, e.g., [24,25]). Nonetheless, as we
see later, in the symmetric case a given state ρ is either genuine
multipartite entangled, that is, cannot be written as a convex
combination of states which are separable with respect to, in
general, different bipartitions, or takes the form (2).

Edge states. An important class of entangled PPT states
are the so-called edge states [26–29]. We call ρ acting on HN

edge if and only if there does not exist a product vector |e1〉 ⊗
· · · ⊗ |eN 〉 with |ei〉 ∈ Cdi such that |e1〉 ⊗ · · · ⊗ |eN 〉 ∈ R(ρ)
and (|e1〉 ⊗ · · · ⊗ |eN 〉)CS ∈ R(ρTS ) for all S, where by CS we
denoted partial conjugation with respect to S. The importance
of edge states in the separability problem comes from the fact
that any PPT state can be decomposed as a mixture of a fully
separable and an edge state [26]. Alternatively speaking, these
are states from which no product vector can be subtracted
without losing the PPT or positivity property, meaning that

they lay on the boundary of the set of PPT states. However,
they do not have to be extremal, although any extremal state
is also edge.

Edge states have been studied in bipartite or tripartite
systems and many examples have been found [27,28,30].

Symmetric states. Let us now concentrate on the N -qubit
Hilbert space,

H2,N = (C2)⊗N, (3)

and consider its subspace SN spanned by the un-normalized
vectors ∣∣EN

i

〉 = |{0,i},{1,N − i}〉 (i = 0, . . . ,N), (4)

which are just symmetric sums of vectors being products of
i zeros and N − i ones. These vectors, when normalized,
are also known as Dicke states. For further benefits, let us
notice that the dimension of SN is N + 1, and therefore it is
isomorphic to CN+1, which we denote SN

∼= CN+1. Also, by
PN we denote the projector onto SN .

We call a state ρ acting on H2,N symmetric if and only if
it is supported on SN , or, in other words, R(ρ) ⊆ SN . In yet
other words, ρ is symmetric if and only if the equations

Vσ ρ = ρV
†
σ ′ = ρ (5)

are obeyed for any permutations σ,σ ′ ∈ �N , where �N is the
group of all permutations of an N -element set, while Vσ is an
operator defined as Vσ |ψ1〉 · · · |ψN 〉 = |ψσ (1)〉 · · · |ψσ (N)〉 for
any vectors |ψi〉 ∈ C2.

In the case of symmetric states the number of relevant
partial transpositions defining the set of PPT symmetric states
D

sym
PPT is significantly reduced. This is because positivity of

a partial transposition with respect to some subset S is
equivalent to positivity of all partial transpositions with respect
to subsystems of the same size |S|. Together with the fact
that for a given bipartition S|S, ρTS � 0 ⇔ ρTS � 0, one has

N/2� partial transpositions defining D

sym
PPT. We choose them

to be TA1 , TA1A2 , etc.; however, for simplicity we also denote
them as T1 ≡ TA1 , T2 ≡ TA1A2 , and so on. Alternatively, in
systems of small size, we use TA, TAB , TABC , etc., to denote
the relevant partial transpositions.

Let us now notice that since Si
∼= Ci+1, a N -qubit sym-

metric state ρ can be seen with respect to a bipartition S|S
as a bipartite state acting on C|S|+1 ⊗ CN−|S|+1. This gives us
nontrivial bounds on the ranks of partial transpositions with
respect to all S, namely,

r(ρTS ) � (|S| + 1)(N − |S| + 1) (6)

for |S| = 0, . . . ,
N/2�, which, in particular, means that
r(ρ) � N + 1. A very convenient way of classifying PPT
states is through their ranks and ranks of their partial
transpositions, that is, the 
N/2�-tuples

(r(ρ),r(ρTA1 ),r(ρTA1A2 ), . . . ,r(ρTA1 ,...,A
N/2� ))

≡ (r(ρ),r(ρT1 ),r(ρT2 ), . . . ,r(ρT
N/2�)). (7)

Finally, let us recall that ρ acting on some bipartite Hilbert
space H2 = Cd1 ⊗ Cd2 is said to be supported on H2 if
and only if R(ρA) = Cd1 and R(ρB) = Cd2 . Alternatively
speaking, ρ is not supported on H2 if either ρA or ρB has
a vector in the kernel.
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III. CHARACTERIZING PPT ENTANGLEMENT IN
N-QUBIT SYMMETRIC STATES

Here, exploiting the results of Refs. [31,32] we derive
separability criteria for the PPT symmetric states in terms
of the ranks (7). Recall that in these papers it was shown that
any PPT state ρ supported on a Hilbert space Cd1 ⊗ Cd2 is
separable if r(ρ) � max{d1,d2}.

Then, we study the edge symmetric states and, in particular,
we show that symmetric states assuming certain ranks cannot
be edge.

A. Separability

To begin with the separability properties let us recall that
if a pure N -partite symmetric state |ψ〉 is separable with
respect to some bipartition, then it must be fully separable
(2), that is, |ψ〉 = |e〉⊗N with |e〉 ∈ C2 (see Refs. [11,13]).
This straightforwardly implies that entangled symmetric pure
and thus mixed states have genuine multipartite entanglement
(see also Ref. [13]). Indeed, if a symmetric ρ can be written
as a convex combination of density matrices, each separable
across some, in general different, bipartition, then ρ has pure
separable vectors in its range. Since each such vector is
symmetric, it assumes the above form |e〉⊗N , meaning that
ρ is fully separable. Thus, throughout the paper, by saying
that a symmetric state ρ is separable we mean that it is fully
separable, that is, it takes the form (2).

Let us now establish some conditions for separability in
terms of ranks of ρ. We start with the following technical
lemma.

Lemma 1. Consider an N -qubit symmetric state and a
bipartition S|S (|S| � N − |S|). Then, let kS and kS (rS and rS)
denote the dimensions of the kernels (ranges) of subsystems
of ρ with respect to S|S. The following statements hold:

(i) if kS > 0, then r(ρ) � rS ;
(ii) if kS > 0, then r(ρ) � rS ;

(iii) if kS > 0, and kS > 0, then r(ρ) � min{rS,rS}.
Proof. Recall first that with respect to the bipartition S|S,

the N -qubit symmetric state ρ can be seen as a bipartite state
acting on C|S|+1 ⊗ C|S|+1 = C|S|+1 ⊗ CN−|S|+1.

We prove the first case and then the remaining two
follow. Assume then that kS > 0, meaning that ρS has kS

linearly independent vectors |φi〉(i = 1, . . . ,kS) in the kernel.
Consequently, for any |S|-qubit symmetric vector |ψ〉, the
projected vectors PN (|ψ〉|φi〉)(i = 1, . . . ,N − rS − |S| + 1)
belong to K(ρ). In what follows we show that by choosing
properly vectors |ψ〉, one is able to find N − rS + 1 linearly
independent vectors in K(ρ) of this form.

First, we prove that for any |ψ〉, N − rS − |S| + 1 pro-
jected vectors PN (|ψ〉|φi〉) ∈ K(ρ) are linearly independent.
Towards this end, let us assume, on the contrary, that there
exists a collection of nonzero numbers αi ∈ C such that∑

i αiPN (|ψ〉|φi〉) = 0. The latter is equivalent to saying that
the vector |ψ〉 ⊗ ∑

i αi |φi〉 sits in the kernel of PN . However,
since

∑
i αi |φi〉 is an |S|-qubit symmetric vector, this is

possible only if |φi〉 are linearly dependent, contradicting the
fact that they span the kernel of TrSρ.

Now, we consider particular vectors∣∣�j

i

〉 = PN

(∣∣E|S|
j

〉|φi〉
)
, (8)

with j = 0, . . . ,|S| and i = 1, . . . ,|S| − rS + 1. As already
proven, for any j , the vectors |�j

i 〉 make an (|S| − rS + 1)-
element linearly independent set. Let us now concentrate on
the vectors |�0

i 〉 and choose the one for which 〈EN

|S||�0
i 〉 is

nonzero, say |�0
l 〉. Notice that by the construction 〈EN

k |�0
i 〉 =

0 for k > |S|; to obtain |�0
i 〉 we symmetrize |φi〉 with |E|S|

0 〉 =
|0〉⊗|S|, meaning that |�0

i 〉 decomposes into the symmetric
vectors |EN

k 〉 with k � |S|. If, however, 〈EN

|S||�0
i 〉 = 0 for all

i, we choose the one for which 〈EN

|S|−1
|�0

i 〉 �= 0, etc. Clearly,
repeating this we must find the desired vector as otherwise
|�0

i 〉 = 0 for all i, contradicting the fact that the vectors |�0
i 〉

are linearly independent.
Let us then assume for simplicity that |�0

l 〉 is such that
〈EN

|S||�0
l 〉 �= 0, meaning that 〈φl|1〉⊗|S| �= 0 [cf. Eq. (8)].

Consequently, the vectors |�j

l 〉 (j = 1, . . . ,|S|), when de-
composed into the symmetric basis of SN , contain |EN

k 〉 with
k � |S| + 1 and therefore are linearly independent of the set
{|�0

i 〉}i . Moreover, by the very construction, they make an
|S|-element set of linearly independent vectors themselves,
meaning that the vectors |�0

i 〉(i = 1, . . . ,|S| − rS + 1) to-
gether with |�j

l 〉 (j = 1, . . . ,|S|) make the desired set of
N − rS + 1 linearly independent vectors in K(ρ).

Consequently, k(ρ) � N − rS + 1 which, taking into ac-
count the maximal possible rank of a symmetric state ρ,
gives the bound r(ρ) � N + 1 − N + rS − 1 = rS . In an
analogous way one proves the second case, that is, when
kS > 0. Precisely, following the above arguments, one sees
that kS linearly independent vectors in the kernel of ρS gives
at least N − rS + 1 linearly independent vectors in K(ρ),
imposing the bound r(ρ) � rS . To prove the third case, one
just chooses the tighter of both the above bounds, that is,
r(ρ) � min{rS,rS}. �

Essentially, this lemma says that if the symmetric state
ρ is not supported on C|S|+1 ⊗ CN−|S|+1 with respect to the
bipartition S|S, its rank is bounded from above by ranks of
its subsystems. In the particular case when the subsystem S

consists of a single party, it straightforwardly implies that if
r(ρ) � N then ρ has to be supported onC2 ⊗ CN with respect
to the bipartition one versus the rest (A1|A2, . . . ,AN ).

The following fact was already stated in Ref. [11]; however,
a detailed proof was not given. We exploit Lemma 1 to
demonstrate it rigorously.

Theorem 1. Let ρ be a N -qubit PPT symmetric state. If
it is entangled then r(ρ) = N + 1; that is, ρ is of maximal
rank.

Proof. An N -qubit symmetric state can be seen as a bipartite
state acting on C2 ⊗ CN with respect to the bipartition one
qubit versus the rest, as for instance A1|A2, . . . ,AN . Let us
denote by ρA1 and ρA1,...,AN

the subsystems of ρ with respect
to this bipartition. Assuming then that r(ρ) � N , the results
of Ref. [31] imply that ρ is separable provided it is supported
on C2 ⊗ CN . If, however, the latter does not hold, there are
vectors in the kernel of either ρA1 or ρA2,...,AN

. In the first case,
Lemma 1 implies that r(ρ) = 1 and ρ is a pure product vector,
while in the second case r(ρ) is upped bounded by the rank of
ρA2,...,AN

. Again, results of Ref. [31] apply here, meaning that
ρ is separable. �
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Alternatively speaking, this theorem means that there are no
PPT entangled N -qubit symmetric states of rank less than N +
1. On the other hand, it provides only a sufficient condition
for separability, as there are separable symmetric states of
rank N + 1. Another consequence of Theorem 1 is that for an
arbitrary bipartition S|S, a PPT entangled state ρ and its partial
transposition ρTS are supported on the corresponding Hilbert
space C|S|+1 ⊗ CN−|S|+1. Specifically, one has the following
lemma.

Lemma 2. Consider an N -qubit PPT symmetric state and
an arbitrary bipartition S|S. If ρ is entangled, then ρTS is
supported on the bipartite Hilbert space corresponding to the
bipartition S|S, that is, C|S|+1 ⊗ CN−|S|+1. In other words, if
for some bipartition S|S, ρTS is not supported on C|S|+1 ⊗
CN−|S|+1, then ρ is separable.

Proof. Assume that the PPT state ρ is entangled but
the partial transposition ρTS is not supported on the Hilbert
space corresponding to the bipartition S|S, that is, C|S|+1 ⊗
CN−|S|+1. This means that one of its subsystems, say the S

one, contains an |S|-qubit symmetric vector |φ〉 in the kernel.
Consequently, for any |S|-qubit vector |ψ〉, the implication

ρTS |ψ〉|φ〉 = 0 ⇒ ρ|ψ∗〉|φ〉 = 0 (9)

holds. Putting, for instance, |ψ〉 = |0〉⊗|S|, one sees that the
symmetrized vector PN (|0〉⊗|S| ⊗ |φ〉) belongs to K(ρ). As a
result r(ρ) � N and Theorem 1 implies that ρ is separable,
leading to the contradiction. �

Then, with the aid of Lemma 2, we can prove the analog of
Theorem 1 for the ranks of partial transpositions of ρ.

Theorem 2. Let us consider an N -qubit PPT symmetric
state ρ and a bipartition S|S with an arbitrary S (|S| � |S|). If
it is entangled, then r(ρTS ) > N − |S| + 1. In particular, if ρ

is entangled, then r(ρTA ) � N + 1.
Proof. Due to Lemma 2, we can assume that with respect to

the bipartition on S|S, ρ is supported on C|S|+1 ⊗ CN−|S|+1 as
otherwise it is separable. Then, if r(ρTS ) � N − |S| + 1, the
results of Ref. [32] imply that ρ is separable. Noting that this
reasoning is independent of the bipartition, we complete the
proof. �

In other words, any PPT symmetric states whose rank obeys
r(ρTS ) � N − |S| + 1 for some bipartition, is separable.

Still, by using more tricky bipartitions we can provide
further separability conditions for generic symmetric states
in terms of the ranks. In this direction we prove the following
theorem.

Theorem 3. Consider an N -qubit PPT symmetric state ρ

and a bipartition S|S. If r(ρTS ) � (|S| + 1)(N − |S|), then the
generic ρ is separable.

Proof. Consider an N -qubit state σ = ρTS which is PPT, but
no longer symmetric, and a party which does not belong to S,
say AN . With respect to the bipartition AN versus the rest, σ

can be seen as a bipartite state acting on C(|S|+1)(N−|S|) ⊗ C2.
Since ρ is fully PPT, it clearly follows that σTAN � 0.
This, together with the fact that r(ρTS ) � (|S| + 1)(N − |S|),
implies that σ has to be separable across the bipartition
A1, . . . ,AN−1|AN , that is,

σ = ρTS =
∑

i

|ψi〉〈ψi |A1,...,AN−1 ⊗ |ei〉〈ei |AN
, (10)

provided that it is supported on C(|S|+1)(N−|S|) ⊗ C2, which
generically is the case.

Now, let us notice that ρTS is still symmetric with respect
to subsystem S, that is, PSρ

TSPS = ρTS . Since then all
vectors |ψi〉|ei〉 appearing in the decomposition (10) belong
to R(ρTS ), they also enjoy the above symmetry, that is,
PS |ei〉AN

|ψi〉A1,...,AN−1 = |ei〉AN
|ψi〉A1,...,AN−1 for all i. This, as

it is shown below, implies that for any i, |ψi〉 = |ψ̃i〉|ei〉⊗|S|
with |ψ̃i〉 being from the Hilbert space corresponding to the
subsystem S. Putting these forms to Eq. (10), one arrives at

ρTS =
∑

i

|ψ̃i〉〈ψ̃i |S ⊗ |ei〉〈ei |⊗|S|. (11)

Now, one can move the partial transposition with respect to
S to the right-hand side of the above identity and use the fact
that ρ is symmetric, which leads us to the form (2).

To complete the proof let us show that ifPA∪S |e〉A|ψ〉S∪S =
|e〉A|ψ〉S∪S holds for some one-qubit and N -qubit vectors |e〉
and |ψ〉, then the latter assumes the form |ψ〉S∪S = |ψ̃〉S ⊗
|e〉⊗|S| with |ψ̃〉 belonging to the Hilbert space associated to
the subsystem S. Here by PA∪S we denote a projector onto the
symmetric subspace of the Hilbert space corresponding to the
qubits A and S.

To this end, let us decompose

|ψ〉 =
∑

i

|i〉S |φi〉S, (12)

where {|i〉} denotes any orthogonal basis in the
Hilbert space associated to the subsystem S. It is
clear that PA∪S |e〉A|ψ〉S∪S = |e〉A|ψ〉S∪S is equivalent to
PA∪S |e〉A|φi〉S = |e〉A|φi〉S for all i. By virtue of the results
of Refs. [11,13], the latter can hold only if |φi〉 = |e〉⊗|S|
for any i. For completeness, let us recall the proof of this
fact. For this purpose, assume that |e〉|φ〉 ∈ S|S|+1 for some
one-qubit and |S|-qubit vectors |e〉 and |φ〉, respectively. Then,
one immediately concludes that |φ〉 must be symmetric and
consequently can be written as

|φ〉 =
|S|+1∑
i=1

αi

∣∣E|S|
i

〉
, (13)

with αi ∈ C. Putting |e〉 = (a,b) and utilizing the fact that
P|S|+1|e〉|φ〉 = |e〉|φ〉, one has

|S|+1∑
i=1

αi

[ ( |S|
i−1

)(|S|+1
i−1

) ∣∣E|S|+1
i

〉 + ( |S|
i−1

)(|S|+1
i

) ∣∣E|S|+1
i+1

〉]

= (a|0〉 + b|1〉) ⊗
|S|+1∑
i=1

αi

∣∣E|S|
i

〉
. (14)

Projection of the above onto vectors |0〉⊗(|S|+1), |0, . . . ,01〉,
|0, . . . ,011〉, etc., leads to equations aαj = bαj−1 (j =
2, . . . ,|S| + 1), which, in turn, imply that αj = (b/a)j−1α1

(j = 2, . . . ,|S| + 1).
Putting now |φi〉 = |e〉⊗|S| for all i to Eq. (12), one gets

|ψ〉 =
∑

i

|i〉S |ψi〉S =
∑

i

|i〉S |e〉⊗|S| = |ψ̃〉S |e〉⊗|S|, (15)

which finishes the proof. �
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Notice that the above theorems imply that for most of
the possible ranks, the symmetric states are either separable
or generically separable. The maximal rank of a partial
transposition with respect to a given subsystem S is (|S| +
1)(N − |S| + 1). Taking into account the fact that we can put
r(ρ) = N + 1 (as otherwise the state is separable; cf. Theorem
1 ), we have in total


N/2�∏
|S|=1

(|S| + 1)(N − |S| + 1) = N !(N/2 + 1)2(
N/2�−N/2)+1

(16)

possible configurations of the relevant ranks (7) that can be
assumed by the symmetric states. With Theorems 2 and 3,
we see that for a transposition with respect to S, symmetric
states of the first (|S| + 1)(N − |S|) of the corresponding ranks
are either separable or generically separable. This leaves only
|S| + 1 of ranks with respect to this bipartition for which
they do not have to be generically separable. Taking into
account all the relevant partial transpositions, we have in total
(
N/2� + 1)! of the remaining cases where one can search
for PPT entangled symmetric states. This is clearly a small
portion (rapidly vanishing for large N ) of all the possible
ranks [cf. Eq. (16)]. For instance, for N = 4,5, this gives us 6
treatable configurations of ranks [of all, respectively, 72 and
120 obtained from Eq. (16)], while for N = 6,7 this number
amounts to 24 [Eq. (16) gives in these cases, respectively, 2880
and 5040 possible ranks]. As we see later, if additionally we
ask about possibility of being an edge state, these numbers
may be further reduced.

B. N-qubit symmetric edge states

Let us now single out the configurations of ranks where the
symmetric states can be edge. Clearly, Theorem 3 implies that
the ranks of ρTS for all S must be larger than (|S| + 1)(N − |S|)
as otherwise the generic symmetric states are separable. In
what follows we will provide a few results making it possible
to bound the ranks from above.

In general, as already discussed in Sec. II, to prove that a
given ρ is not edge one has to prove that there is |e〉 ∈ C2 such
that |e〉⊗N ∈ R(ρ) and [|e〉⊗N ]CS ∈ R(ρTS ) for all S. Assuming
that the rank of ρ is maximal, r(ρ) = N + 1, the above is
equivalent to solving of a system of

∑
N/2�
|S|=1 k(ρTS ) equations,

[〈e|⊗N ]CS
∣∣	S

i

〉 = 0, (17)

where |	S
i 〉 ∈ K(ρTS ) and S = A,AB, . . .. By putting |e〉 =

(1,α), one reduces Eqs. (17) to a system of polynomial
equations P (α,α∗) = 0 in α and α∗. This is clearly a hard
problem to solve (see, e.g., the discussion in Ref. [31]). Still,
under some assumptions and using a method of Ref. [33], it is
possible to find a solution to a single equation of that type.

Lemma 3. Consider an equation

k∑
i=0

(α∗)iQi(α) = 0 (α ∈ C), (18)

where Qi (i = 0, . . . ,k) are some polynomials. If
maxi{deg Qi} = deg Qk = n > k and deg Q0 = m > k, then
this equation has at least one solution.

Proof. Notice that, via the results of Ref. [31], Eq. (18) has
generically at most 2k−1[k + n(n − k + 1)] complex solutions.
To find one, in Eq. (18) we substitute α = rs and α∗ = r/s

with r ∈ R and s ∈ C, obtaining

k∑
i=0

sk−i r iQi(rs) = 0. (19)

Treating r as a parameter and s as a variable, our aim now is to
prove that for some r there is s such that |s| = 1 and Eqs. (18)
and (19) is obeyed. For this purpose, let us first put s = x/r

with x ∈ C, which gives us

k∑
i=0

xk−i r2iQi(x) = 0. (20)

In the limit r → ∞, the left-hand side of the above equation
approaches Qk(x), meaning that Eq. (19) has n solutions
s∞
i → 0 (i = 1, . . . ,n). Then, in the limit of r → 0, the

left-hand side of Eq. (20) goes to Q0(α), implying that Eq. (19)
has m solutions s0

i → ∞ (i = 1, . . . ,m).
Then, one sees that Eq. (19) has at most n + k solutions with

respect to s. Consequently, for r → ∞ and r → 0, Eq. (19)
has additional k roots s∞

i (i = n + 1, . . . ,n + k) and n + k −
m roots s0

i (i = m + 1, . . . ,n + k), respectively, which can
remain unspecified. As r varies continuously from zero to large
values, all roots s0

i must continuously tend to s∞
i . However,

since m > k, at least one of m roots s0
i → ∞ (i = 1, . . . ,m)

must tend to one of the n roots s∞
i (i = 1, . . . ,n) which are

close to zero. This means that there is at least one pair (r,s)
with |s| = 1 solving Eq. (19) and thus Eq. (18). �

With the aid of the above lemma we can prove the following
theorem.

Theorem 4. Let us consider N -qubit PPT symmetric state
and a subsystem S of size 1 � |S| � �N/2� − 1 and assume
that r(ρTX ) = (|X| + 1)(N − |X| + 1) (maximal) for all X

except for X = S, for which r(ρTS ) = (|S| + 1)(N − |S| +
1) − 1. Then, generically such states are not edge.

Proof. We prove that under the above assumptions it is
generically possible to find a product vector |e〉⊗N ∈ R(ρ)
such that (|e〉⊗N )CX ∈ R(ρTX ) for all subsystems X. Clearly,
all ranks of ρ are maximal except for the one corresponding to
the partial transposition with respect to the subsystem S, which
is r(ρTS ) = (|S| + 1)(N − |S| + 1) − 1 (maximal diminished
by one). Denoting by |	〉 the unique vector from the kernel
of ρTS , one then has to solve a single equation 〈	|(|e∗〉⊗|S| ⊗
|e〉⊗(N−|S|)) = 0. After putting |e〉 = (1,α) with α ∈ C, the
latter can be rewritten as

|S|∑
i=0

(α∗)iQi(α) = 0, (21)

where Qi(α) (i = 0, . . . ,|S|) are polynomials of degree at most
N − |S| and generically they are exactly of degree N − |S|.
Due to the assumption that N − |S| > |S|, Lemma 3 applies
here, implying that (21) has at least one solution and generic
symmetric ρ of the above ranks is not edge. �

The above theorem says that generic PPT symmetric
states having all ranks maximal except for a single one
corresponding to a partial transposition with respect to a
subsystem S such that |S| < N − |S|, for which the rank is
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1 but maximal, are not edge. This method, however, does
not work for even N and in the case when the chosen partial
transposition is taken with respect to the half of the whole
system; that is, |S| = |S| = N − |S|. This is because in this
case the resulting equation (20) is of the same orders in α and
α∗ and the above method does not apply.

Still, however, using a different approach, we can prove an
analogous fact for N = 4 and N = 6. Specifically, we show
that all symmetric states of all ranks are maximal except for the
last one, which is one less than maximal, are not edge. Towards
this end, let us start with some general considerations.

Let ρ be an N -qubit symmetric state with even N , and
let now S denote a particular bipartition consisting of first
N/2 qubits (half of the state). Assume then that all ranks of
ρ are maximal except for the one corresponding to the partial
transposition with respect to S, for which it is one but maximal;
that is, (N/2 + 1)2 − 1. Consequently, there is a single vector
|	〉 in the kernel of ρTS , meaning that ρ is not edge if and only
if a single equation [cf. Eqs. (17)],

〈e|⊗N/2〈e∗|⊗N/2|	〉 = 0, (22)

with |e〉 ∈ C2 has a solution. For this purpose, one notices that

VS,Sρ
TS V

†
S,S

= (ρ∗)TS , (23)

with VS,S denoting a unitary operator swapping the subsystems
S and S (notice that both are of the same size). Then, because
|	〉 is the unique vector in K(ρTS ), it has to enjoy the same
symmetry; that is, VS,S |	〉 = |	∗〉. Denoting now by M	

the matrix representing elements of |	〉 in the product basis
|EN/2

i 〉|EN/2
j 〉 of SN/2 ⊗ SN/2, the latter symmetry implies

that M	 = M
†
	 . Diagonalizing M	 , one sees that |	〉 can

be written in the form

|	〉 =
N/2+1∑

l=1

λl|ω∗
l 〉|ωl〉, (24)

with λl ∈ R and |ωl〉 ∈ SN/2 being eigenvalues and eigenvec-
tors of M	 , respectively.

The fact that |	〉 ∈ K(ρTS ) implies that for any pair
|x〉,|y〉 ∈ SN/2, one has

〈x∗,y|ρTS |	〉 =
∑

l

λl〈x∗,y|ρTS |ω∗
l ,ωl〉

=
∑

l

λl〈ωl,y|ρ|x,ωl〉

=
∑

l

λl〈ωl,y|ρ|ωl,x〉 = 0, (25)

where the third equality follows from the fact that VS,Sρ = ρ.
As a result,

Tr [(W ⊗ |x〉〈y|)ρ] = 0 (26)

holds for any pair of vectors |x〉,|y〉 ∈ SN/2, where W =∑
l λl|ωl〉〈ωl|.
On the other hand, with the aid of Eq. (24), one can rewrite

Eq. (22) as

〈e|⊗N/2W |e〉⊗N/2 = 0. (27)

Assume, on the contrary, that the above equation [equivalently
Eq. (22)] does not have any solution. Then, its left-hand

side must have the same sign for any |e〉 ∈ C2, say positive.
This means that there is a finite positive number C such that
the matrix W ′ = W + C(1 − PN ) is an entanglement witness
[34], which clearly satisfies Eq. (26). We already know that
there are no PPT entangled symmetric states of two and three
qubits, and hence for N = 4 and N = 6, this witness must be
decomposable. Precisely,

W ′ = P + QTA (28)

for N = 4, with P,Q being positive matrices acting on C2 ⊗
C2, while

W ′ = P̃ + Q̃TA + R̃TAB (29)

for N = 6 with P̃ ,Q̃,R̃ � 0 acting on C2 ⊗ C2 ⊗ C2. Putting
Eqs. (28) and (29) to Eq. (26), one in particular arrives at the
conditions

Tr[(P ⊗ |x〉〈x|) ρ] = Tr[(Q ⊗ |x〉〈x|)ρTA ] = 0 (30)

for N = 4 and

Tr[(P̃ ⊗ |x〉〈x|)ρ] = Tr[(Q̃ ⊗ |x〉〈x|)ρTA ]

= Tr[(R̃ ⊗ |x〉〈x|)ρTAB ] = 0 (31)

for N = 6 and for any |x〉 ∈ SN/2. These conditions imply that
either ρ or ρTA , or ρTAB is not of full rank, contradicting the
assumption. Therefore, Eq. (27) and thus Eq. (22) must have
a solution. In this way we have proven the following theorem.

Theorem 5. Four-qubit symmetric states of ranks (5,8,8)
and six-qubit symmetric states of ranks (7,12,15,15) are not
edge.

We already know that there exist PPT entangled symmetric
states consisting of more than three qubits [8,17,18] and
thus indecomposable entanglement witnesses detecting them.
Consequently, the above method does not apply, in general, for
even N � 8. Nevertheless, it provides a necessary condition
for being edge; that is, if a symmetric state of all ranks
maximal except for r(ρTN/2 ) which is one less than maximal is
edge, the operator W ′ = �lλl|ψl〉〈ψl | + C(1 − PN ) (or −W ′)
constructed from (24) is an indecomposable entanglement
witness for some C > 0.

Interestingly, for N = 4 we can prove an analogous theorem
in the case when the rank of r(ρTAB ) is two less than maximal.

Theorem 6. Generic four-qubit symmetric states of ranks
(5,8,7) are not edge.

Proof. By assumption, ρ and ρTA are of full rank, while
K(ρTAB ) contains two linearly independent vectors |	i〉 (i =
1,2). Consequently, to find a product vector |e〉⊗4 ∈ R(ρ) such
that |e∗〉⊗2|e〉⊗2 ∈ R(ρTAB ), one has to solve two equations:

〈e∗|⊗2〈e|⊗2|	i〉 = 0 (i = 1,2). (32)

Let us now briefly characterize the vectors |	i〉. With the aid
of the identity ρTAB = VAB,CD(ρ∗)TAB VAB,CD , where VAB,CD

is a unitary operator swapping AB and CD subsystems, one
may show that they can be written as

|	1〉 =
2∑

k=1

λk|ek〉|f ∗
k 〉, |	2〉 =

2∑
k=1

λk|fk〉|e∗
k 〉. (33)

Indeed, let us first notice that we can assume that one of
|	i〉 is of Schmidt rank 2. The largest subspace of C3 ⊗ C3

containing only vectors of Schmidt rank 3 is one-dimensional
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(see, e.g., Ref. [35]). On the other hand, if one of |	i〉(i = 1,2)
is of rank 1, that is, is a product with respect to the partition
AB|CD, 〈e,f ∗|ρTAB |e,f ∗〉 = 〈e∗,f ∗|ρ|e∗,f ∗〉 = 0, meaning
that ρ|e∗,f ∗〉 = 0. It is then clear that since |e〉,|f 〉 ∈ S2,
P4|e∗,f ∗〉 ∈ K(ρ), implying that r(ρ) = 4, which contradicts
the assumption.

Assuming then that |	1〉 is of rank 2, either VAB,CD|	∗
1 〉

is linearly independent of |	1〉, leading to Eq. (33), or
VAB,CD|	∗

1 〉 = ξ |	1〉 for some ξ ∈ C. In the latter case, short
algebra implies that |	i〉 (i = 1,2) are not linearly indepen-
dent, contradicting the fact that they span two-dimensional
kernel of ρTAB .

As a result, there is a vector |e〉 = (1,α) ∈ C2 such that
|e∗〉⊗2|e〉⊗2 ∈ R(ρTAB ) if and only if there is α ∈ C solving
the equation

P (α∗)Q(α) + P̃ (α∗)Q̃(α) = 0, (34)

where P,P̃ and Q,Q̃ are polynomials generically of degree
2. Such α exists if and only if there is z ∈ C fulfilling

P (α∗) = zP̃ (α∗) (35)

and

Q̃(α) = −zQ(α). (36)

With the aid of the first equation, we can determine α∗ as a
function of z. There are clearly at most two such solutions.
Putting them to Eq. (36) and getting rid of the square root, we
arrive at a single equation,

(z∗)2Q4(z) + z∗Q′
4(z) + Q′′

4(z) = 0, (37)

where Q4, Q′
4, and Q′′

4 stand for polynomials which are
generically of fourth degree. It has at least one solution
because the polynomial appearing on the left-hand side of
Eq. (37) has unequal degrees in z and z∗. This allows for the
application of Lemma 3, completing the proof. �

One notices that this method cannot be directly applied in
the case of larger even N . Already for N = 6, the left-hand side
of Eq. (34) contains three terms and therefore the factorization
(35) and (36) cannot be done. Let us notice, however, that
the numerical search for extremal states of even N done
below does not reveal examples of extremal PPT entangled
symmetric states of these ranks, suggesting the lack of edge
states in generic states of these ranks.

More generally, it should be noticed that the analysis of
edge states allows for further reduction of configurations of
ranks relevant for characterization of PPT entanglement in
symmetric states. This is because a PPT state that is not edge
can be written as a mixture of a pure product vector and another
PPT state of lower ranks (see also Sec. V).

C. On the Schmidt number of symmetric states

Let us finally comment on the Schmidt number of the
symmetric states. Clearly, a pure state |ψ〉 ∈ HN can be written
as a linear combination of fully product vectors from HN .
Following Ref. [36], the smallest number of terms in such
decompositions of |ψ〉 is called the Schmidt rank of |ψ〉 and
denoted r(|ψ〉). Then, analogously to Ref. [37], we can define
the Schmidt number of ρ to be min{|ψi 〉}{maxi r(|ψi〉)}, where

the minimum is taken over all decompositions {|ψi〉} of ρ, that
is, ρ = ∑

i |ψi〉〈ψi |.
Below we show that in small symmetric systems consisting

of four or five qubits, any entangled state has the Schmidt
number 2 or at most 3, respectively. We also comment on the
Schmidt number of larger systems.

Before that we need some preparation. Let us introduce
the following transformations: Fn : (C2)⊗n → C2 and Gn :
(C2)⊗(n+1) �→ (C2)⊗(2n+1) defined through

Fn(1,α)⊗n = (1,αn) (38)

and

Gn[(1,αn+1) ⊗ (1,α)⊗n] = (1,α)⊗(2n+1), (39)

respectively, for any α ∈ C and n = 1,2, . . .. Notice that both
maps are of full rank. Then, by F̂n and Ĝn we denote maps
that are defined through the adjoint actions of Fn and Gn, that
is, X̂(·) = X(·)X† (X = Fn,Gn).

Let us comment briefly on the properties of Fn and Gn. First,
consider an N -qubit symmetric vector |ψ〉. An application
of F�N/2� to chosen �N/2� qubits of |ψ〉, say the first ones,
brings it to an (
N/2� + 1)-qubit vector |ψ ′〉 ∈ C2 ⊗ S
N/2�.
A subsequent application of GN/2−1 to the first N/2 qubits of
|ψ ′〉 in case of even N and G�N/2�−1 to the whole |ψ ′〉 in the
case of odd N , returns |ψ〉.

Analogously, by applying F̂�N/2� to the first �N/2� qubits
of an N -qubit mixed symmetric state ρ, one brings it to an
(
N/2� + 1)-qubit state σ whose the last 
N/2� qubits are still
supported on the symmetric subspace S
N/2�. Let us denote the
parties of this state by B1, . . . ,B
N/2�+1. With respect to the
bipartition B1|B2, . . . ,B
N/2�+1, it can be seen as a bipartite
state acting on C2 ⊗ C
N/2�+1. Moreover, this “compressing”
operation preserves the rank of any symmetric state, that is,
r(σ ) = r(ρ). This is because R(ρ) is spanned by the symmetric
product vectors (1,α)⊗N for α ∈ C, which are then mapped by
F�N/2� to (1,α)⊗
N/2� ⊗ (1,α�N/2�). Since all powers of α from
the zeroth one to αN still appear in the projected vectors, the
whole information about ρ is encoded in σ . Precisely, by an ap-
plication of ĜN/2−1 to the first N/2 qubits of σ for even N and
Ĝ�N/2�−1 to all qubits for odd N of σ , one recovers ρ. With all
this we are now ready to state and prove the following theorem.

Theorem 7. Let ρ be an entangled N -qubit symmetric state.
If by an application of F̂�N/2� to the first �N/2� qubits of ρ one
gets an (
N/2� + 1)-qubit state σ (see above) that is separable
with respect to the bipartition B1|B2, . . . ,B
N/2�+1, then ρ can
be written as

ρ =
K∑

i=1

⎡⎣�N/2�∑
j=1

A
(i)
j

(
1,α

(i)
j

)⊗N

⎤⎦ , (40)

where Ai
j ,α

i
j ∈ C and [ψ] denotes a projector onto |ψ〉.

Proof. We can clearly assume that r(ρ) = N + 1. Let the
(
N/2� + 1)-qubit state σ , coming from the application of
F̂�N/2� to the first �N/2� qubits of ρ, be separable with respect
to the Hilbert space C2 ⊗ C
N/2�+1. It can then be written as

σ =
K∑

i=1

pi |ei〉〈ei | ⊗ |fi〉〈fi |, pi � 0,
∑

i

pi = 1, (41)

where |ei〉 ∈ C2 and |fi〉 ∈ C
N/2�+1 ∼= S
N/2�.
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As already said, the mapping F̂�N/2� preserves the rank, and
therefore r(σ ) = r(ρ) = N + 1. On the other hand, σ acts on
C2 ⊗ C
N/2�+1 and therefore its maximal rank is 2(
N/2� +
1), which means that for odd N , σ is of full rank, while for even
N it has a single vector |φ〉 = |10〉 − |0,N/2〉 in its kernel.

Let us now divide our considerations into the cases of odd
and even N . In the first case we put |ei〉 = (1,α

�N/2�
i ), and then

notice that the isomorphism C
N/2�+1 ∼= S
N/2� implies that
each |fi〉 ∈ C
N/2�+1 can be expanded in terms of 
N/2� + 1
product symmetric vectors from S
N/2� in the following way:

|fi〉 =

N/2�+1∑

j=1

A
(i)
j (1,eiϕj αi)

⊗
N/2�, (42)

with

ϕj = 2πj

�N/2� , (43)

and A
(i)
j ∈ C. Consequently,

G�N/2�−1|ei〉|fi〉 =

N/2�+1∑

j=1

A
(i)
j (1,eiϕj αi)

⊗N, (44)

which, when substituted to Eq. (41) leads directly to (40).
In the case of even N , σ has a single vector |φ〉 = |01〉 −

|N/2,0〉 in K(σ ). Putting again |ei〉 = (1,α
N/2
i ) with αi ∈ C,

it imposes a constraint on |fi〉, that is, 〈N/2|fi〉 = 〈0|fi〉αN/2
i ,

meaning that |fi〉 ∈ CN/2. Therefore, again exploiting the
isomorphism CN/2 ∼= SN/2−1, one sees that all |fi〉 can be
written as

|fi〉 =
N/2∑
j=1

A
(i)
j (1,eiϕj αi)

⊗N/2. (45)

By substituting this to Eq. (41) and applying ĜN/2−1 to σ , one
gets Eq. (40), completing the proof.

Let us finally comment on the choice of the product
symmetric vectors used to expand |fi〉’s. In both cases of
odd and even N they are chosen to be (1,eiϕj α)⊗
N/2�
(j = 0, . . . ,�N/2� − 1), where ϕj are chosen so that eiϕj are
�N/2�th roots of the unity. One checks by hand that such
vectors span a �N/2�-dimensional linear space. �

Theorem 7 implies that any PPT entangled symmetric state
consisting of four (five) qubits has Schmidt number 2 (at most
3). To be more precise, we prove the following corollaries.

Corollary 1. Any PPT entangled symmetric state ρ of four
qubits can be written as

ρ =
K∑

i=1

[
A

(i)
1 (1,αi)

⊗4 + A
(i)
2 (1, − αi)

⊗4], (46)

while any PPT entangled symmetric state of five qubits can be
written as

ρ =
K∑

i=1

[
A

(i)
1 (1,αi)

⊗5+A
(i)
2

(
1,ei 2π

3 αi

)⊗5+A
(i)
3

(
1,ei 4π

3 αi

)⊗5]
,

(47)

with K � 6 and A
(i)
j ,αi ∈ C.

Proof. By applying F̂2 (F̂3) to the first two (three) qubits
of ρ for N = 4 (N = 5) we get a state σ acting on C2 ⊗
C3. It is clearly PPT and due to Ref. [31] also separable.
Consequently, Theorem 7 implies that ρ can be written as in
Eq. (40), which in particular cases of N = 4 and N = 5 leads
to (46) and (47), respectively. The number of elements in both
the decompositions (46) and (47) follows from the fact that
any qubit-qutrit separable state can be written as a convex
combination of six product vectors [33]. �

It should be noticed that by using the approach developed in
Ref. [33], one can obtain decompositions of any PPT entangled
four-qubit symmetric state similar to (46), but in which vectors
(1, − αi)⊗4 are replaced by either (0,1)⊗4 or (1,0)⊗4.

Theorem 8. Let ρ be a PPT entangled symmetric four-qubit
state. Then it can be written as

ρ =
K∑

i=1

[Ai(1,αi)
⊗4 + Bi(0,1)⊗4], (48)

where K � 6, (1,αi) ∈ C2, and Ai,Bi are some complex
coefficients, and by [ψ] we denote a projector onto |ψ〉.

Proof. The proof exploits the method developed in Ref. [33].
First, one notices that any ρ can be written as a sum of rank 1
matrices,

ρ =
K∑

i=1

|	i〉〈	i |, (49)

where, in particular, |	i〉 can be (un-normalized) eigenvectors
of ρ, and K � 6 (see Corollary 1 ). On the other hand, ρ can
always be expressed in terms of the symmetric un-normalized
basis {|E4

μ〉}5
μ=1 spanning S4 as

ρ =
5∑

μ,ν=1

ρμν

∣∣E4
μ

〉 〈
E4

ν

∣∣. (50)

Both decompositions (49) and (50) are related via the so-called
Gram system of ρ, that is, a collection of K-dimensional
vectors |vμ〉 = (1/〈E4

μ|E4
μ〉)(〈	1|E4

μ〉, . . . ,〈	K |E4
μ〉)(μ =

1, . . . ,5), giving ρμν = 〈vμ|vν〉. Putting the latter to Eq. (50)
with explicit forms of the vectors |vμ〉, one recovers (49).

Now, by projecting the last party onto |0〉 we get a
three-qubit symmetric PPT state ρ̃, which, as already stated,
is separable. Then, according to Ref. [33], there exists
a diagonal matrix M = diag[α∗

1 , . . . ,α
∗
K ] such that |vμ〉 =

Mμ−1|v1〉 (μ = 1, . . . ,4). For convenience we can also put
|v5〉 = M4|v1〉 + |̃v〉 with |̃v〉 being some K-dimensional
complex vector. Then, putting |v1〉 = (A∗

1, . . . ,A
∗
K ) and |̃v〉 =

(B∗
1 , . . . ,B∗

K ), one sees that

|	i〉 =
5∑

μ=1

〈
E4

μ

∣∣	i

〉〈
E4

μ

∣∣E4
μ

〉 ∣∣E4
μ

〉
= Ai

4∑
μ=1

α
μ−1
i

∣∣E4
μ

〉 + Bi

∣∣E4
5

〉
= Ai(1,αi)

⊗4 + Bi

∣∣E4
5

〉
, (51)

where the second equation follows from the explicit form of
the vectors |vμ〉. Substituting vectors |	i〉 to Eq. (49), one gets
(48), which completes the proof. �
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In order to get the representation (48) with (0,1) replaced
with (1,0), one has to project the last party of ρ onto |1〉 instead
of |0〉.

IV. EXTREMAL PPT ENTANGLED SYMMETRIC STATES

We here seek extremal elements in the convex set of N -qubit
symmetric PPT states D

sym
PPT. We see that the number of distinct

configurations of ranks for which one finds such examples is
small and does not increase with N . In particular, if N is even
there is only a single such configuration.

Let us start by adapting to the multipartite case an algorithm
described in Ref. [3] (see also Ref. [7]) allowing to look for
extremal elements of DPPT.

A. An algorithm allowing to seek multipartite
extremal PPT states

Let us consider again a product Hilbert space HN = Cd1 ⊗
· · · ⊗ Cd1 and the set DPPT of fully PPT states acting on HN .
We call an element ρ of DPPT extremal if and only if it does
not allow for the decomposition

ρ = pρ1 + (1 − p)ρ2, (52)

with ρi ∈ DPPT such that ρ1 �= ρ2 and 0 < p < 1. Should
ρ be not extremal, Eq. (52) implies that R(ρ1) ⊆ R(ρ) and
R(ρ2) ⊆ R(ρ) and also R(ρTk

i ) ⊆ R(ρTk ) for all k. Alterna-
tively speaking, if ρ is not extremal one is able to find another
PPT state σ �= ρ such that

R(σ ) ⊆ R(ρ) (53)

and

R(σTk ) ⊆ R(ρTk ) (k = 1, . . . ,M), (54)

where by M we denote the smallest number of partial
transpositions necessary to define the set of PPT states.

On the other hand, if there is a PPT density matrix σ �= ρ

fulfilling the conditions (53) and (54), then one finds such
a number x > 0 that ρ(x) = (1 + x)ρ − xσ is again a PPT
state. Thus, ρ cannot be extremal because it admits the
decomposition (52), that is, ρ = [ρ(x) + xσ ]/(1 + x). In this
way, one arrives at a natural criterion for extremality saying
that ρ is extremal if and only if there is no state σ �= ρ such
that (53) and (54) hold.

Interestingly, one can even relax the assumption of σ being
a PPT state to being a Hermitian matrix satisfying a set of
equations following from Eqs. (53) and (54):

Pkh
TkPk = hTk (k = 0, . . . ,M), (55)

where T0 is an identity map. This is because if such h exists,
one considers a one-parameter class of matrices ρ(x) = (1 +
xTrh)ρ − xh (Trh is added in order to ensure that Tr[ρ(x)] = 1
for any x). It is straightforward to show that there exist x1 <

0 and x2 > 0 such that for any x ∈ [x1,x2], ρ(xi) (i = 1,2)
are PPT states. Consequently, ρ = [1/(|x1| + x2)][x2ρ(x1) +
x1ρ(x2)], meaning that it cannot be extremal.

Let us also notice that the system (55) is equivalent to a
single equation,

[P̂M ◦ · · · ◦ P̂1 ◦ P̂](h) = h, (56)

where the maps P̂k are defined through P̂k(·) = [Pk(·)TkPk]Tk

(k = 0, . . . ,M). Indeed, if h satisfies the system (55) then it
also obeys (56). On the other hand, if the condition (56) is
satisfied with some h, then it has to obey (55); if one of the
conditions (55) does not hold, a simple comparison of norms
of both sides of (56) shows that (55) neither can be satisfied.

As a result, we have just reached an operational criterion
for extremality of elements of DPPT [3] (see also Ref. [7]).

Theorem 9. A given PPT state ρ acting on HN is extremal
in DPPT if and only if there does not exists a Hermitian solution
to the system (55) which is linearly independent of ρ.

This also leads to a necessary condition for extremality that
can be formulated in terms of the ranks r(ρTk )(k = 1, . . . ,M).
Namely, each equation in (55) imposes [dimHN ]2 − [r(ρTk )]2

linear constraints on the matrix h. The maximal number of the
constraints imposed by the system is thus

∑M
k=0([dimHN ]2 −

[r(ρTk )]2). On the other hand, a Hermitian matrix acting on
HN is specified by [dimHN ]2 real parameters and therefore if∑

k

[r(ρTk )]2 � M[dimHN ]2 + 1, (57)

the system (55) has a solution and ρ is not extremal.
Importantly, the above considerations imply an algorithm

making it possible to seek extremal elements of DPPT [3].
Given a PPT state ρ and a solution h to the system (55), one
considers ρ(x) = (1 + xTrh)ρ − xh. It is fairly easy to see
that there is x = x∗ for which ρ1 ≡ ρ(x∗) ∈ DPPT but r(ρTk

1 ) =
r(ρTk ) − 1 for some k. In other words, we can choose x in
such a way that one of the ranks of the resulting state ρ1 is
diminished by one.

For the resulting state ρ1 we again look for solutions to
(55). If the only solution is ρ1 itself (up to normalization),
then it is already extremal. If not, one again considers ρ1(x) =
(1 + xTrh)ρ1 − xh and finds such x = x∗ that ρ2 ≡ ρ1(x∗) is a
PPT state with one of the ranks diminished by one. We proceed
in this way until we obtain an extremal state. If the latter has
rank 1 it is separable; otherwise it has to be entangled. Clearly,
since we deal with finite-dimensional Hilbert space, the final
state of this algorithm is reached in a finite number of steps.

In our implementation of this algorithm we obtain the
Hermitian matrix h by solving a slightly different system of
equations than (55) [or the single one (56)], that is,

hTk
∣∣	(k)

i

〉 = 0 (i = 1, . . . ,k(ρTk )) (58)

for all k = 0, . . . ,M , with |	(k)
i 〉 denoting vectors spanning

the kernel of ρTk . Clearly, both systems (55) and (58) are
equivalent.

A general Hermitian matrix acting on HN is fully charac-
terized by (dimHN )2 real parameters hi , which we consider
elements of a vector |h〉 ∈ C(dimHN )2

. Then, the set (58) can
be easily reformulated as a single matrix equation R|h〉 = 0,
where R is a [2 dimHN

∑M
l=0 k(ρTl )] × (dimHN )2 matrix

with real entries. The number of rows of R stems from the
fact that each group of equations in (58) corresponding to a
given k gives 2k(ρTk ) dimHN linear and real conditions for hi ,
which when summed over all partial transpositions (including
also T0) results in the aforementioned number of rows. Clearly,
this gives more conditions for hi than those following from
Eqs. (55), that is,

∑M
k=0[(dimH)2 − [r(ρT

k )]2] (some of them
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are clearly linearly dependent). Nevertheless, even if the
number of equations is larger in comparison to Eq. (56), our
approach does not require multiplying many matrices, which in
the case of many parties makes the implementation a bit faster.

B. Extremal PPT entangled symmetric states

Let us now apply the above considerations to the symmetric
states. First of all, one notices that the condition (57) has to
be slightly modified because different partial transpositions of
a symmetric state and the state itself act on Hilbert spaces of
different dimensions (see Ref. [7] for the case of four qubits).
Specifically, an equation in (55) corresponding to the partial
transposition with respect to S gives (|S| + 1)2(N − |S| +
1)2 − [r(ρTS )]2(|S| = 0, . . . ,
N/2�) linear equations. Then,
the condition (57) becomes


N/2�∑
|S|=0

[r(ρTS )]2

�

N/2�∑
|S|=0

(|S| + 1)2(N − |S| + 1)2 − (N + 1)2 + 1. (59)

Taking into account the fact that among symmetric states only
those of rank N + 1 can be entangled allows us to rewrite the
above inequality as


N/2�∑
|S|=1

[r(ρTS )]2

�

N/2�∑
|S|=1

(|S| + 1)2(N − |S| + 1)2 − (N + 1)2 + 1. (60)

In Table I we collect all the ranks, singled out with the aid
of inequality (60), for which there are no extremal PPT states
for exemplary cases of low number of qubits N = 4,5,6.

We have applied the above algorithm to the PPT symmetric
states with the number of qubits varying from N = 4 to
N = 23. As the initial state we took the projector onto the
symmetric space PN . Clearly, it has all the ranks maximal,
which is important from the point of view of the algorithm;
if the ranks of the initial state ρ are too low (cf. Theorems
2 and 3 ), the algorithm cannot produce an entangled PPT
state out of ρ by lowering its ranks. Then, we have searched
for random extremal states by choosing randomly at each
stage of the protocol the matrices h resulting from solving

TABLE I. Inequality (60) (second column) for exemplary cases
of N = 4,5,6 together with the ranks (third column) excluded with
its aid for which there are no extremal entangled symmetric states.
Notice that the fact that there are no extremal states of maximal ranks
can be inferred without restoring to inequality (60).

N Inequality (60) Ranks excluded with (60)

4 [r(ρT1 )]2 + [r(ρT2 )]2 � 121 (5,7,9),(5,8,8),(5,8,9)
5 [r(ρT1 )]2 + [r(ρT2 )]2 � 209 (6,9,12),(6,10,11),(6,10,12)
6 [r(ρT1 )]2 + [r(ρT2 )]2 (7,10,15,16),(7,11,15,16),

+[r(ρT3 )]2 � 577 (7,12,14,16),(7,12,15,15),
(7,12,15,16)

(55). On the other hand, to find other examples of ranks than
those obtained through a random search and not excluded
by the analysis above, we designed the matrices h in such
a way that they lower specific ranks. The obtained ranks
are collected in Table II. Interestingly, there are always at
most three different configurations of ranks assumed by the
found extremal PPT entangled symmetric states and it seems
that the number of configurations does not increase with
N . Moreover, in the case of odd N , there is only a single
such configuration (all ranks are maximal except for the last
one which is two less than maximal). It is an interesting
problem to confirm these findings analytically. If this is the
case, the problem of characterization of PPT entanglement in
symmetric states reduces significantly to the characterization
of extremal states assuming few different configurations of
ranks, in particular a single one for odd N . Notice that in the
case of symmetric qubits, there cannot be PPT entangled states
of lower ranks than those assumed by extremal one as this is the
case in higher-dimensional Hilbert spaces (cf. Ref. [4]). This
is because in order to construct such states one needs PPT
extremal entangled states supported on lower-dimensional
Hilbert spaces, and in our case such states are always separable.

Let us study in detail extremal entangled states in the
exemplary case of N = 4. From Theorems 2 and 3 it follows
that PPT states of ranks (5,r(ρTA ),r(ρTAB )) with r(ρTA ) � 6 or
r(ρTAB ) � 6 are either all separable or generically separable.
Then, Theorem 6 states that generic PPT states of ranks (5,8,7)
are not edge and thus not extremal. Finally, inequality (56)
implies that PPT states of ranks (5,7,9), (5,8,8), and (5,8,9)
cannot be extremal. As a result, the natural candidates for
extremal states that can be obtained with the aid of the above
algorithm have ranks (5,7,7) and (5,7,8).

We have run the algorithm 30 000 times and 19.2% of the
generated examples were extremal entangled states of ranks
(5,7,8). In the remaining 80.8% of cases we arrived at states
of ranks (5,7,7), all being separable. Also, when lowering
the ranks from the initial state of ranks (5,8,9), 99.4% of the
times we have obtained an intermediate (5,8,8) state, whereas
intermediate states of ranks (5,7,9) have appeared in 0.6%
of remaining cases. In conclusion, it should be noticed that
with the aid of the above algorithm we have generated PPT
entangled extremal states assuming only a single configuration
of ranks. All states of ranks (5,7,7) appeared to be separable
and there is an indication suggesting that generic four-qubit
PPT symmetric states of these ranks are separable (see the
Appendix).

Let us finally notice that to make the application of the
algorithm to systems consisting of even 23 qubits possible, one
has to take an advantage of the underlying symmetry and try to
avoid representing a symmetric ρ and its partial transpositions
in the full Hilbert space H2,N = (C2)⊗N (see also Ref. [12]).
Indeed, since SN

∼= CN+1, one can represent ρ or a general
Hermitian matrix supported on SN , as a (N + 1) × (N + 1)
matrix, which we further denote ρred. In order to move from
one representation to the other one we use a (N + 1) × 2N

matrix BN : SN �→ CN+1 given by

BN =
N∑

m=0

|m〉 〈
ẼN

m

∣∣, (61)
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TABLE II. The ranks of extremal states found by using the algorithm described in Sec. IV A. The first column contains the number of
qubits, while the next six columns the ranks of ρ and its partial transpositions r(ρTi ) (i = 1, . . . ,11). Notice that there are no PPT entangled
states with fewer than four qubits [11] (cf. Sec. III A). The negative numbers in parentheses denote the difference between the given rank and
its maximal value (the lack of parentheses means that the rank is maximal). For all N there are at most three possible configurations of ranks
with extremal states, and, interestingly, in the case of odd N there is always only one such configuration.

N r(ρ) r(ρ�1 ) r(ρ�2 ) r(ρ�3 ) r(ρ�4 ) r(ρ�5 ) r(ρ�6 ) r(ρ�7 ) r(ρ�8 ) r(ρ�9 ) r(ρ�10 ) r(ρ�11 )

4 5 7 (−1) 8 (−1)
5 6 10 10 (−2)
6 7 12 14 (−1) 14 (−2)

14 (−1) 13 (−3)
7 8 14 18 18 (−2)
8 9 16 21 23 (−1) 23 (−2)

23 (−1) 22 (−3)
9 10 18 24 28 28 (−2)
10 11 20 27 32 34 (−1) 33 (−3)

34 (−1) 34 (−2)
35 (+0) 32 (−4)

11 12 22 30 36 40 40 (−2)
12 13 24 33 40 45 47 (−1) 47 (−2)

47 (−1) 46 (−3)
48 (+0) 45 (−4)

13 14 26 36 44 50 54 54 (−2)
14 15 28 39 48 55 60 62 (−1) 62 (−2)

62 (−1) 61 (−3)
63 (+0) 60 (−4)

15 16 30 42 52 60 66 70 70 (−2)
16 17 32 45 56 65 72 77 79 (−1) 79 (−2)

79 (−1) 78 (−3)
80 (+0) 77 (−4)

17 18 34 48 60 70 78 84 88 88 (−2)
18 19 36 51 64 75 84 91 96 98 (−1) 98 (−2)

98 (−1) 97 (−3)
99 (+0) 96 (−4)

19 20 38 54 68 80 90 98 104 108 108 (−2)
20 21 40 57 72 85 96 105 112 117 119 (−1) 119 (−2)

119 (−1) 118 (−3)
120 (+0) 117 (−4)

21 22 42 60 76 90 102 112 120 126 130 130 (−2)
22 23 44 63 80 95 108 119 128 135 140 142 (−1) 142 (−2)

142 (−1) 141 (−3)
143 (+0) 140 (−4)

23 24 46 66 84 100 114 126 136 144 150 154 154 (−2)

which gives ρred = BNρBN . It is straightforward to check that
for any N , BT

NBN = PN and BNBT
N = 1N+1.

Then, accordingly, the partial transposition of ρ with
respect to Tk can be represented as a (k + 1)(N − k + 1) ×
(k + 1)(N − k + 1) matrix ρ

Tk

red acting on Ck+1 ⊗ CN−k+1. To
get the latter from ρred without restoring to the representation
of ρ in the full Hilbert space H2,N , one can utilize a
(k + 1)(N − k + 1) × (N + 1) matrix B̃k = (Bk ⊗ BN−k)BT

N ,
that is,

ρ
Tk

red = [
(Bk ⊗ BN−k)ρ

(
BT

k ⊗ BT
N−k

)]Tk

= [
(Bk ⊗ BN−k)BT

NρredBN

(
BT

k ⊗ BT
N−k

)]Tk

= (
B̃kρredB̃

T
k

)Tk
. (62)

Short algebra shows that the elements of B̃k(k =
1, . . . ,
N/2�) are given by

〈i,j |B̃k|n〉 =
√(

N

i

)(
N

j

)/(
N

n

)
δi+j=n. (63)

with i = 0, . . . ,k, j = 0, . . . ,N − k, and n = 0, . . . ,N .
Consequently, to get effectively a partial transposition of

ρ, one maps a (N + 1) × (N + 1) matrix ρred with B̃k , and
subsequently performs a simple partial transposition on the
resulting bipartite matrix [cf. Eq. (62)]. Accordingly, one
also transforms the Hermitian matrices h appearing in the
system (58). Notice that this approach allows us to reduce
the algorithm complexity from exponential to polynomial in
N both in time and memory. Precisely, the estimated time
complexity of our approach amounts to O(N6).
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V. SPECIAL CASES

Here we summarize the obtained results for particular
systems consisting of four, five, and six qubits.

N = 4. It follows from Theorem 2 that the four-qubit
symmetric states are separable if either r(ρ) � 4 or r(ρTA ) �
4, or r(ρTAB ) � 3. Then, Theorem 3 implies that if either
r(ρTA) � 6 or r(ρTAB ) � 6, generic symmetric ρ is separable.
This leaves only six configuration of ranks [of all possible
72 assuming that r(ρ) = 5] among which one may seek PPT
entangled symmetric states: (5,7,7), (5,7,8), (5,7,9), (5,8,7),
(5,8,8), and (5,8,9).

Passing to edgeness, it is known that states of ranks (5,8,9)
cannot be edge. Then, it follows from Theorem 5 that all
states of ranks (5,8,8) are not edge, while from Theorems
4 and 6 that generic states of ranks (5,7,9) and (5,8,7)
are not edge. These theorems also show that a typical PPT
entangled state assuming one of the above four configurations
of ranks can always be brought, by subtracting properly
chosen symmetric fully product vector, to a PPT entangled
state of ranks either (5,7,7) or (5,7,8). Interestingly, with the
half-analytical–half-numerical method presented in Ref. [8],
as well as the numerical algorithm described in Sec. IV B, we
found solely examples of PPT entangled states of ranks (5,7,8)
[due to inequality (60) PPT states of ranks (5,7,9), (5,8,8),
and clearly (5,8,9) cannot be extremal]. All the states of ranks
(5,7,7) found with the above algorithm were separable. This
together with the analytical considerations enclosed in the
Appendix ranks are generically separable. Provided this is the
case, the analysis of PPT entangled symmetric states of four
qubits could be reduced significantly to the characterization of
states with a single configuration of ranks (5,7,8).

N = 5. In this case Theorem 2 implies that five-qubit
PPT symmetric states are separable if either r(ρ) � 5 or
r(ρTA) � 5, or r(ρTAB ) � 4 are separable. Then, Theorem
3 says that if either r(ρTA ) � 8 or r(ρTAB ) � 9, they are
generically separable. Similarly to the case of N = 4, this
leaves 6 [of 120 possible under the assumption that r(ρ) = 6]
ranks for which typical PPT symmetric states need not be
separable: (6,9,10), (6,9,11), (6,9,12), (6,10,10), (6,10,11),
and (6,10,12).

With the aid of Theorem 4, one sees that five-qubit PPT
symmetric states of ranks (6,9,12), (6,10,11), and (6,10,12)
are generically not edge [notice that due to inequality (60)
for the same ranks PPT states cannot be extremal]. Hence,
analysis of PPT entanglement in in this case reduces to three
configurations of ranks (6,9,10), (6,10,10), and (6,9,11).
Interestingly, only in the second case we found examples
of extremal states with the above numerical algorithm (see
Table I).

N = 6. Let us finally consider the case of six qubits.
Theorem 2 states that such PPT states are separable pro-
vided that either r(ρ) � 6 or r(ρTA) � 6, or r(ρTAB ) � 5,
or r(ρTABC ) � 4. Moreover, Theorem 3 implies that they are
generically separable if either r(ρTA ) � 10 or r(ρTAB ) � 12,
or r(ρTABC ) � 12. The number of the remaining configurations
of ranks among which one may seek PPT entangled states is
then 24 [of all possible 2880 when assumed that r(ρ) = 7],
which is considerably larger than the corresponding numbers
for N = 4,5.

Then, from Theorem 5 it follows that six-qubit PPT states
of ranks (7,12,15,15) are not edge and Theorem 4 says that
generic PPT states of ranks (7,12,14,16) and (7,11,15,16)
are also not edge. This, together with the fact that states of
maximal ranks; that is, (7,12,15,16) are not edge, makes it
possible to reduce the problem of characterization of six-qubit
PPT states to still quite large number of 20 configurations.
There are, nevertheless, only two sets of ranks for which,
using the algorithm from Sec. IV A, we found extremal PPT
entangled states.

VI. CONCLUSION

Let us briefly summarize the obtained results. Our aim
was to characterize PPT entanglement in symmetric states.
We have made a significant step towards reaching this goal,
yet the complete characterization for the general case remains
open.

First, we have derived simple separability criteria for PPT
symmetric states in terms of their ranks, complementing the
criterion stated in Ref. [11]. Interestingly, these criteria imply
that for most of the possible configurations of ranks, PPT
symmetric states are generically separable, and PPT entangle-
ment may appear only in a small fraction of cases, vanishing
for large number of parties. Putting r(ρ) = N + 1, there
are precisely (
N/2� + 1)! such configurations of N !(N/2 +
1)2(
N/2�−N/2)+1 all possible ones. For the exemplary cases of
four and five qubits this gives 6 different sets (of, respectively,
72 and 120 all possible ones) of ranks for which typical PPT
states need not be separable.

Second, we have singled out some of the configurations
of ranks for which PPT symmetric states are generically not
edge, allowing for further reduction of relevant configurations
of ranks. This is because if a PPT entangled state is not
edge it can be decomposed as a convex combination of a
pure product vector and a PPT symmetric state of lower
ranks. From this point of view the relevant configurations of
ranks are those than cannot be further reduced by subtracting
a product vector from the state. Again, in the particular
case of small systems consisting of four and five qubits,
PPT states of higher ranks are generically not edge, lowering
the number of the configurations to treatable two and three,
respectively, for N = 4 and N = 5.

Finally, with the aid of the algorithm proposed in Ref. [3],
we have searched for extremal PPT symmetric states. We
have investigated systems consisting of 4 to 23 qubits and
encountered a clear pattern behind the configurations of ranks
for which we have found examples of extremal states. In
particular, for even N , except for the cases of N = 6 and
N = 8, there are always three configurations (following the
same pattern) of ranks. Interestingly, for odd N there is only a
single such configuration; that is, all ranks of the state and its
partial transpositions are maximal except for the last one (the
partial transposition with respect to half of the qubits), which
amounts to two less than maximal. This is somehow contrary
to the intuition that the number of different sets of ranks for
which one finds extremal states should grow. On the other
hand, it indicates that the problem of characterization of PPT
entanglement in symmetric states could further be reduced to
just few different types of states.
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APPENDIX: THE CASE OF (5,7,7)

We consider here four-qubit PPT symmetric states of ranks
(5,7,7) and provide a possible way of proving that generic
states of these ranks are separable. For this purpose we use the
approach developed in Ref. [33]. First, recall that any state ρ

acting on H can be written as a convex combination of rank 1
projectors

ρ =
l∑

k=1

|ψk〉〈ψk|, (A1)

where the un-normalized vectors |ψk〉 are, in general,
nonorthognal (a particular example of such decomposition is
the eigendecomposition of ρ).

Denoting by |ek〉 orthonormal vectors spanning H, we see
that any element of ρ in this basis can be written as

〈ei |ρ|ej 〉 =
l∑

k=1

〈ei |ψk〉〈	k|ej 〉 = 〈vi |vj 〉 (A2)

for any i,j = 1, . . . , dimH, where the l-dimensional vectors
|vi〉 are defined as

|vi〉 =

⎛⎜⎝ 〈ψ1|ei〉
...

〈ψl|ei〉

⎞⎟⎠ (i = 1, . . . , dimH). (A3)

Consequently, ρ is the so-called Gram matrix, that is, the
matrix of scalar products of a set of vectors {|vi〉} called further
the Gram system of ρ. A different decomposition in Eq. (A1)
leads to a different Gram system and all Gram systems of ρ

are related via unitary matrices (if extended to a properly large
Hilbert space).

Let us now consider a four-qubit PPT symmetric state
ρ of ranks (5,7,7) and find its Gram system together with
the Gram systems of ρTA , ρTB , and ρTAB , starting from ρTA .
Since, by assumption, the latter is positive and r(ρTA ) = 7,
it admits a decomposition as in Eq. (A1) (for instance, the
eigendecomposition) with seven rank 1 components, that is,

ρTA =
7∑

k=1

|	k〉〈	k|, (A4)

where the vectors |	k〉 are subnormalized.
Denoting by B the standard product basis {|i,j,k,l〉} of

(C2)⊗4 and utilizing the fact that every |	k〉 in (A1) belongs to
C2 ⊗ S3, one finds that the Gram system of ρTA with respect
to B consists of eight seven-dimensional vectors |a〉, . . . ,|d〉

and |̃a〉, . . . ,|d̃〉 whose elements are given by

ak = 〈	k|0000〉,
bk = 〈	k|0001〉 = 〈	k|0010〉 = 〈	k|0100〉,
ck = 〈	k|0011〉 = 〈	k|0101〉 = 〈	k|0110〉,
dk = 〈	k|0111〉,
ãk = 〈	k|1000〉,
b̃k = 〈	k|1001〉 = 〈	k|1010〉 = 〈	k|1100〉,
c̃k = 〈	k|1011〉 = 〈	k|1101〉 = 〈	k|1110〉,
d̃k = 〈	k|1111〉. (A5)

Let us then introduce the following 7 × 4 matrices A =
(|a〉,|b〉,|b〉,|c〉), B = (|b〉,|c〉,|c〉,|d〉), B̃ = (|̃a〉,|̃b〉,|̃b〉,|̃c〉),
and C̃ = (|̃b〉,|̃c〉,|̃c〉,|d̃〉), with columns given by the vectors
|a〉, . . . ,|d̃〉. Then ρTA can be written as

ρTA =

⎛⎜⎜⎝
A†A A†B A†B̃ A†C̃
B†A B†B B†B̃ B†C̃
B̃†A B̃†B B̃†B̃ B̃†C̃
C̃†A C̃†B C̃†B̃ C̃†C̃

⎞⎟⎟⎠

=

⎛⎜⎜⎝
A†

B†

B̃†

C̃†

⎞⎟⎟⎠ (A B B̃ C̃). (A6)

where X†Y (X,Y = A,B,Ã,B̃) denotes a 4 × 4 matrix con-
sisting of scalar products of vectors defining X and Y . We then
symbolically denote ρTA = (A B B̃ C̃).

In the same way we can represent ρ. Since it is symmetric
it admits the form ρ = (A′ B ′ B ′ C) with A′,B ′, and C

constructed in the same way as A, B, etc., from the Gram
system of ρ. Now, since both three-qubit matrices 〈0|ρ|0〉 and
〈0|ρTA |0〉 arising by projecting the first qubit of ρ and ρTA onto
|0〉, are equal, they have the same Gram systems and therefore
there is a unitary U such that A′ = UA and B ′ = UB. Then,
since by multiplying by a unitary operator all the vectors of
the Gram system of ρ one gets another Gram system, we can
always set A′ = A and B ′ = B.

Analogously, one sees that the matrices 〈1|ρ|1〉 =
〈1|ρTA |1〉 (arising by projecting the first qubit onto |1〉), and
therefore there is a unitary U such that B̃ = UB and C̃ = UC.
In conclusion, we see that ρ and ρTA can be represented as

ρ = (A B B C), ρTA = (A B UB UC). (A7)

By taking partial transposition of ρ with respect to A and
comparing it with the above representation of ρTA , one gets
some conditions for U :

A†UB = B†A, A†UC = B†B,

B†UB = C†A, B†UC = C†B.
(A8)

The same reasoning allows us to represent ρTB and ρTAB in
the following way:

ρTB = (A UB B UC),
(A9)

ρTAB = (A UB VB VUC),

with V being a unitary matrix and UB = V B. Again, com-
parison of ρTAB given by Eq. (A9) to the partial transposition
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of ρTB with respect to A, gives further conditions

A†V B = B†A, A†V UC = B†UB,

B†U †V B = C†U †A, B†U †V UC = C†B.
(A10)

Now, having Gram systems of ρ and its partial transposi-
tions, we introduce the matrix

Q =
7∑

k=1

[|0〉|	k〉 + |1〉|�k〉], (A11)

with |	k〉 and |�k〉 denoting decompositions of ρTB and ρTAB

[as in (A4)] corresponding to their Gram systems introduced
above, and [|ψ〉] standing for a projection onto |ψ〉. In terms
of the Gram systems (A9), Q assumes the form

Q = (A UB B UC A UB VB VUC). (A12)

By careful counting of the dimensions, one notices that Q is an
un-normalized density matrix acting on C7 ⊗ C3 with respect
to the bipartition aAB|CD, where a denotes the auxiliary
subsystem [cf. (A11)], while ABCD stand forthe subsystems
of ρ. Also, by definition Q is of rank 7, and hence according

to Ref. [32] Q is separable with respect to this bipartition
provided that it is supported on C7 ⊗ C3 and QTaAB � 0.
Although we cannot prove the former condition, it is clear
that generic Q is supported on C7 ⊗ C3. Then, after direct
algebra and with the aid of conditions (A8) and (A10), one
sees that the latter condition; that is, QTaAB � 0 holds if the
two equations

B†V UC = C†UB, C†U †V UC = C†UC (A13)

are obeyed. Still, exploiting the explicit forms of B and C, the
above conditions can be further simplified, leading to a set of
equations for scalar product of vectors composing the Gram
system of ρ. Some of them, by virtue of the Eqs. (A8) and
(A10) are immediately satisfied. Provided that the remaining
equations also hold, one has that indeed QTaAB � 0 and generic
Q is separable.

Then, it is clear that by projecting the auxiliary qubit
a of Q onto |0〉, one recovers ρ. So, if Q is separable
across aAB|CD, then ρ is separable across AB|CD, im-
plying that, due to the underlying symmetry, it is fully
separable.
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[17] G. Tóth and O. Gühne, Phys. Rev. Lett. 102, 170503
(2009).
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