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Apart from their foundational significance, entropic uncertainty relations play a central role in proving the
security of quantum cryptographic protocols. Of particular interest are therefore relations in terms of the smooth
min-entropy for Bennett-Brassard 1984 (BB84) and six-state encodings. The smooth min-entropy Hε

min(X/B)
quantifies the negative logarithm of the probability for an attacker B to guess X, except with a small failure
probability ε. Previously, strong uncertainty relations were obtained which are valid in the limit of large block
lengths. Here, we prove an alternative uncertainty relation in terms of the smooth min-entropy that is only
marginally less strong but has the crucial property that it can be applied to rather small block lengths. This paves
the way for a practical implementation of many cryptographic protocols. As part of our proof we show tight
uncertainty relations for a family of Rényi entropies that may be of independent interest.

DOI: 10.1103/PhysRevA.86.042315 PACS number(s): 03.67.Dd, 03.67.Hk

I. INTRODUCTION

Entropic uncertainty relations form a modern way to
characterize the uncertainty inherent in several quantum
measurements. As opposed to more traditional methods of
capturing the notion of uncertainty, they have the advantage
that they are able to quantify uncertainty solely in terms of
the measurements we consider and are independent of the
state to be measured. To see this clearly, let us explain the
notion of entropic uncertainty in more detail (also, see [1]
for a survey). Suppose we are given a state ρ on which we
can make one of L possible measurements with outcomes
labeled x ∈ X . Let px|ρ,θ denote the probability of observing
outcome x when making the measurement labeled θ on the
state ρ. For each measurement, we can consider some form
of entropy of the outcome distribution such as the Shannon
entropy H (X|� = θ ) = −∑

x px|ρ,θ log2 px|ρ,θ . An entropic
uncertainty relation in terms of the Shannon entropy is then
determined by the average (pθ = 1/L) over the individual
entropies. More precisely, such a relation states that, for all
states ρ,

1

L

∑
θ

H (X|� = θ ) = H (X|�) � c, (1)

where c is a constant that depends solely on the measurements.
For example, if ρ is a single qubit state and we consider L = 2
measurements in the Pauli σX and σZ eigenbases, we have
c = 1

2 [2]. To see why (1) for c > 0 is indeed connected with
uncertainty, note that if the outcome is certain with respect
to some measurement θ on the state ρ [H (X|� = θ ) = 0],
then the outcome of at least one other measurement θ ′ �= θ is
uncertain [H (X|� = θ ′) > 0]. Similarly, the larger the value
of c is, the more uncertain these outcomes are. The value of c

thus give a natural measure of the incompatibility of different
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sets of measurements. Strong uncertainty relations have the
property that c is large.

From a cryptographic perspective, uncertainty relations in
terms of the minimum entropy (min-entropy) Hmin(X|� =
θ ) = − log2 maxx px|ρ,θ are of particular interest since the
min-entropy determines how many random bits (key) can
be extracted from X [3]. In a cryptographic setting, it is
thereby often interesting to consider a slight extension of
the notion of uncertainty relations above. Namely, instead of
measuring one state ρ, we imagine that an adversary prepares
with some probability pk a state ρk (labeled by some classical
label K = k) which we subsequently measure. Since entropic
uncertainty relations hold for any state, they do, in particular,
hold for any state ρk that the adversary may have prepared.
Yet the distribution {px|kθ } over measurement outcomes may,
of course, depend on k. Uncertainty relations with respect to
such classical side information K thus take the form

Hmin(X|�K) � c′ (2)

for some constant c′ depending on the measurements we
make. Averaging over bases � and classical information K,
the conditional min-entropy is given by (see the Appendix)

Hmin(X|�K) = − log
∑

θ

pθ

∑
k

pk|θ max
x

px|kθ . (3)

For example, imagine that ρ is an n-qubit state and we perform
one of the 2n possible measurements given by measuring each
qubit independently in one of the two Bennett-Brassard 1984
(BB84) bases [4], i.e., in the eigenbasis of Pauli σx or σz. It is
known that in this case c′ = −n log2[1/2 + 1/(2

√
2)] ≈ 0.22n

for any K . This is also optimal as there exists a state that attains
this lower bound.

Measurements in BB84 bases are indeed common in many
quantum cryptographic protocols. In particular, they are used
in two-party cryptographic protocols in the bounded [5,6] and
noisy-storage models [7–9]. These models allow for the secure
implementation of any two-party cryptographic primitive
under the assumption that the adversary’s quantum memory
device is bounded and imperfect. This includes interesting
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primitives such as oblivious transfer, bit commitment, and
even secure identification of, e.g., a user of an ATM machine.
The security of all protocols in this model crucially rests on
the existence of uncertainty relations in terms of min-entropy
[5–11]. Yet the value of c′ ≈ 0.22n for BB84 bases is usually
too low to be cryptographically useful. In particular, a low
value for c′ means that the adversary’s memory must be very
limited and/or noisy for security to be possible [5,6,9] at all.
Furthermore, a low value of c′ means that any experiment
implementing such protocols can tolerate only a small amount
of bit-flip errors and losses [8,12,13]. For instance, if perr

is the bit-flip error on the channel connecting Alice and
Bob, then security for the cryptographic primitive known
as oblivious transfer is possible if c′ − h(perr) > 0 [12,14],
where h(p) = −p log2 p − (1 − p) log2(1 − p) is the binary
Shannon entropy.

Motivated by this need to obtain a strong uncertainty
relation for BB84 bases, that is, a large c′, the authors of [6]
considered the so-called smooth min-entropy Hε

min(X|�K).
Intuitively, a lower bound c′ on this quantity tells us that we
do indeed have min-entropy at least c′, except for some small
error parameter ε > 0. Formally, this quantity is defined as
(see the Appendix)

Hε
min(X|�K)ρ = sup

ρ ′
Hmin(X|�K)ρ ′, (4)

where ρ ′ is ε close to ρ in terms of the purified distance [15].
It turns out that at the expense of such a small error ε, a

much stronger uncertainty relation can indeed be obtained. In
particular, it has been shown [6] that for measurements in the
BB84 bases and any δ ∈ (0, 1

2 ],

Hε
min(X|�K) � n

(
1
2 − δ

)
, (5)

where

ε = exp

[
− δ2n

128
(
2 + log2

2
δ

)2

]
. (6)

Using this relation in a cryptographic protocol only yields an
additional error ε in the overall security error, and it is widely
employed in the protocols of [6,9,10,12–14].

From a theoretical (asymptotic) viewpoint, this uncertainty
relation is certainly sufficient. Yet, when it comes to putting
any of such protocols into a practical experiment, it has a small
caveat: whereas ε decreases exponentially in the number of
qubits n, for a large amount of uncertainty, i.e., c′ = 1/2 −
δ ≈ 1/2, the convergence is extremely slow. For example,
for δ = 0.0106 [13] corresponding to c′ = 0.4894, we need
n � 2.39 × 108 to even have ε = 0.1. In an experiment using
weak coherent pulses, with a frequency of 1 GHz and Poisson
parameter μ = 1, it takes approximately 2.5 s to generate
such an n [13] if there are absolutely no losses of any kind.
However, compared to the generation time, a more significant
inconvenience is that the classical postprocessing of such large
block lengths is time-consuming.

II. RESULTS

To implement the aforementioned protocols, it would thus
be desirable to have a relation that is useful for significantly
smaller values of n. Here, we prove such a relation that makes a

statement for any desirable fixed error ε > 0. In particular, we
show that, for any n qubit quantum state ρ and measurements
in BB84 bases,

Hε
min(X|�K) � ncBB84, (7)

where

cBB84 := max
s∈(0,1]

1

s
[1 + s − log2(1 + 2s)] − 1

sn
log2

2

ε2
. (8)

At first glance, it may be hard to see that cBB84 is
indeed large. However, applying it to the example from [13]
(see above) by plugging in s = 0.1 demonstrates that for
the same ε = 0.1, cBB84 � 0.4894 whenever n � 2.36 × 104.
Comparing this with calculations in the previous section, the
required block length n is approximately 10−4 times smaller.
Figure 1 provides a comparison of these two bounds. We see
that even for large ε, the required bound on the block length n

given by (6) is large.
Our relation can readily be applied to any BB84-based

two-party protocols in the bounded (or noisy) storage model
and enables experiments for significantly smaller values of
n. For example, it enables the experimental implementation
of [16] with n = 2.5 × 105 instead of n > 109 for the same
error parameter ε.

Furthermore our relation can be extended to the case of
six-state protocols, i.e., measurements in Pauli σx , σz, and σy

eigenbases as suggested in [10,11,14]. For this case we obtain

Hε
min(X|�K) � nc6 , (9)

where

c6 := max
s∈(0,1]

−1

s
log2

[
1

3
(1 + 21−s)

]
− 1

sn
log2

2

ε2
. (10)

This yields a similar improvement over the relation analogous
to (5) proven in [6].

A crucial step in our proof is to show tight uncertainty
relations for conditional Rényi entropies of order α, denoted
by Hα(A|B). These may be of independent interest. Previously,

0.00 0.02 0.04 0.06 0.08 0.10
0

2

4

6

8

10

Lo
g 1

0
n

FIG. 1. (Color online) The minimal required block length n on a
logarithmic scale of base 10 in order to achieve an error parameter
ε. The dashed curves are plotted for the previous known bound (6),
while the solid lines are obtained from our present analysis (8). The
different colors represent the fixed values of the lower bound c′, with
values 0.45, 0.46, 0.47, 0.48, and 0.49, from bottom to top. As c′

increases, the plotted bounds get relatively higher.

042315-2



MIN-ENTROPY UNCERTAINTY RELATION FOR . . . PHYSICAL REVIEW A 86, 042315 (2012)

such relations were only known for single qudit measurements
for α → 1, α = 2, and α → ∞ (see, e.g., [1,17,18]). More
precisely, we show that for measurements on n-qubit states ρ

in BB84 bases, the minimum values of the conditional Rényi
entropies for any α ∈ (1,2] are

min
ρ

Hα(X|�)ρ|ρ = n
α − log2(1 + 2α−1)

α − 1
, (11)

where

Hα(A|B)ρ|ρ := 1

1 − α
log2 tr

[
ρα

AB(IA ⊗ ρB)1−α
]
. (12)

Similarly, for measurements in the six-state bases,

min
ρ

Hα(X|�)ρ|ρ = n
log2 3 − log2(1 + 22−α)

α − 1
. (13)

III. PROOF

Let us now explain the proof of our results. A technical
derivation including all details may be found in the Appendix.
For simplicity, we restrict ourselves to the case of BB84 mea-
surements. An extension for six-state protocols is analogous
and can be found in the Appendix. To obtain (8) we proceed in
four steps. First, we will prove a tight uncertainty relation
in terms of the α-Rényi entropy when ρ is just an n = 1
qubit state. Second, we show how to extend this result to
an uncertainty relation for n > 1 qubits, giving us (11). The
third step is to reintroduce K as outlined in the Introduction.
Finally, we relate the Rényi entropies of order α ∈ (1,2] to the
smooth min-entropy.

Step 1: A single qubit uncertainty relation. For the case
when A and B are classical the conditional α-Rényi entropy
reduces to the simple form

Hα(A|B)ρ|ρ = 1

1 − α
log2

∑
b

pB=b

∑
a

pα
A=a|B=b. (14)

The relevant α-Rényi entropy for a single qubit state ρk (where
k denotes some classical information associated with the state
ρk) is

Hα(X|�)ρk |ρk
= 1

1 − α
log2

∑
θ∈{0,1}

pθ

∑
x∈{0,1}

pα
x|kθ

= 1

1 − α
log2

⎡
⎣1

2

∑
θ∈{0,1},x∈{0,1}

pα
x|kθ

⎤
⎦ . (15)

Here px|kθ := tr(Mx|θρk), where Mx|θ denotes the measure-
ment operator

Mx|θ = Hθ |x〉〈x|Hθ , (16)

with H being the Hadamard matrix. To minimize the α-Rényi
entropy for values of α ∈ (1,2], it is sufficient to maximize the
summation term. Defining

P (X|�)ρk
= 1

2

∑
θ∈{0,1},x∈{0,1}

pα
x|kθ , (17)

we first rewrite px|kθ as functions of two variables: gx :=
tr(σxρk) and gz := tr(σzρk). The Bloch sphere condition for
a qubit gives g2

x + g2
y + g2

z � g2
x + g2

z � 1, which serves as

a constraint in maximizing (17). Switching to spherical
coordinates and evaluating the partial derivatives of (17)
according to multiple independent variables, we prove

Hα(X|�)ρk |ρk
� 1

1 − α
log2

[
1

21+α
(2α + 2)

]

= 1

α − 1
[α − log2(1 + 2α−1)]. (18)

Moreover, the minimal α-Rényi entropy is achieved on an
eigenstate of either measurement basis.

Step 2: A relation for n qubits. To extend the one qubit
uncertainty relation to multiple qubits, the central problem
is to prove that the lower bound on the conditional entropy
scales linearly with the block length n. This essentially implies
that for a system of n qubits, the entanglement across qubits
does not give rise to a lower minimal α-Rényi entropy. In
our analysis, we show this by first considering the last qubit
measured, conditioned on all the previous n − 1 measurement
bases and values. That is, we consider an n-qubit normalized
density operator ρABk , where B denotes the last qubit and A

is the remaining n − 1 qubits, and write

P (XB |�)ρABk
= 1

2

∑
θB ,xB∈{0,1}

pα
xB |θBxAθAk, (19)

where pxB |θBxAθAk = tr(MxB |θB
σB), with the corresponding

normalized density operator

σB = trA

[
MxA|θA

ρABkM
†
xA|θA

tr[MxA|θA
ρABkM

†
xA|θA

]

]
. (20)

Since the uncertainty relation for one qubit (18) holds for any
density operator, it holds in particular for σB . By induction, it
is then easily shown that the minimal entropy is additive.

Step 3: Classical side information K . After steps 1 and 2,
we established a tight uncertainty relation for a binary string
Xn conditioned on the basis string �n. Namely, we have

Hα(Xn|�n)ρk |ρk
� n

1

α − 1
[α − log2(1 + 2α−1)] (21)

for any n-qubit state ρk . In this step, we obtain the conditioning
with relation to classical side information K . In other words,
we need to evaluate Hα(X|�K)ρ|ρ with

ρ =
∑

θ∈{0,1}n
pθ |θ〉〈θ |

∑
k

pk|θρk

∑
x∈{0,1}n

px|θk|x〉〈x| . (22)

By observing the independence of � and K, we show that the
bounds of these values coincide, implying that

Hα(X|�K)ρ|ρ � n
1

α − 1
[α − log2(1 + 2α−1)]. (23)

Step 4: Relation to the min-entropy. As motivated previ-
ously, the final desired measure of entropy is the smooth
min-entropy Hε

min(X|�K)ρ . A recent work [19] has shown
that a lower bound can be obtained for this quantity. Namely,
we have for any state ρ and α ∈ (1,2]

Hε
min(X|�K)ρ � Hα(X|�K)ρ|ρ − 1

α − 1
log2

2

ε2
. (24)
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This combined with (23) implies the claim

Hε
min(X|�K)ρ � n max

s∈(0,1]

1

s
[1+s− log2(1+2s)]−1

s
log2

2

ε2
.

(25)

It is worth noting that as n → ∞, the maximum is obtained
for s → 0, implying that as the system size approaches infinity,
the optimal bound is still given by (5), that is, in terms of
a bound which comes from the Shannon entropy. However,
our analysis provides a better alternative to bound the smooth
min-entropy for finite system sizes and hence is more useful
for practical implementations.

IV. CONCLUSIONS

We have proven entropic uncertainty relations that pave
the way for a practical implementation of BB84 and six-state
protocols [5–10,12–14] at a small block length. Indeed, our
relation has already been employed in [16] for an experimental
implementation of bit commitment in the bounded and noisy-
storage models.

It is an interesting open question whether similarly strong
relations can also be obtained with respect to quantum side
information [11,20,21]. This would allow security statements
for such protocols in terms of the quantum capacity [11] of
the storage device, rather than the classical capacity [9] or the
entanglement cost [22]. For the six-state case this has been
done (implicitly) in [11] for the special case of a Rényi-type
entropy of order α = 2, yielding, however, a slightly weaker
uncertainty relation than what might be possible for other
values of α ∈ (1,2]. As the amount of uncertainty is the key
element in being able to tolerate experimental errors and losses
in said protocols, it would be nice to extend our result to this
setting.

APPENDIX

In this appendix, we provide the technical details that
lead to our claims. In Appendix 1, the complete proof
for the uncertainty relation for BB84 bases (measure-
ments in eigenstates of Pauli σx and σz) is presented. In
Appendix 2, similar methods are used to derive bounds for
six-state bases (measurements in eigenstates of Pauli σx , σy ,
and σz).

We first restate the definitions of the relevant entropic
quantities. Given any finite-dimensional Hilbert space H, let
S�(H) denote the set of subnormalized density operators on
H and S(H) denote the set of normalized density operators
on H. For HA and HB , the conditional min-entropy of
ρAB ∈ S(HA ⊗ HB) given σB ∈ S(HB) is defined as

Hmin(A|B)ρ|σ := sup{λ ∈ R : 2−λ × IA ⊗ σB � ρAB}, (A1)

and the conditional min-entropy of A given B is defined as

Hmin(A|B)ρ := sup
σB∈S(HB )

Hmin(A|B)ρ|σ . (A2)

The smooth conditional min-entropy of A given B and ε � 0
is defined as

Hε
min(A|B)ρ := sup

ρ ′∈Bε(ρ)
Hmin(A|B)ρ ′ , (A3)

where Bε(ρAB) := {ρ ′
AB ∈ S�(HA ⊗ HB)|P =√

1 − F 2(ρ,ρ ′) � ε} is an ε ball in terms of the purified
distance with

F (ρ,ρ ′) := ‖√ρ
√

ρ ′‖1 +
√

(1 − tr[ρ])(1 − tr[ρ ′]) (A4)

being the (generalized) fidelity [15].
The conditional α-Rényi entropies are defined as

Hα(A|B)ρ|ρ := 1

1 − α
log tr

[
ρα

AB(IA ⊗ ρB)1−α
]
, (A5)

where (possible) inverses are understood as generalized in-
verses. Note that there exist also slightly different definitions
of conditional α-Rényi entropies in the literature.

1. Uncertainty relation for BB84 measurements

a. Step 1: Single qubit relation

For any qubit state ρ ∈ S(C2) we have to examine the
quantities

Hα(X|�)ρ|ρ = 1

1 − α
log Pα(X|�),

Pα(X|�) = tr
[
ρα

X�(IX ⊗ ρ�)1−α
]
,

ρX� =
∑
θ,x

pθpx|θ |x〉〈x| ⊗ |θ〉〈θ |,

px|θ = tr(Mx|θρ), (A6)

with Mx|θ = Hθ |x〉〈x|Hθ and H = 1√
2
( 1 1

1 −1 ) being the
Hadamard matrix. Since the choice of measurements is
uniform, we get

Pα(X|�) = 1

2

∑
θ,x

pα
x|θ . (A7)

Theorem 1. Let ρ ∈ S(C2) and α = 1 + s with s ∈ (0,1].
Then we have for BB84 measurements as in (A6) that

Hα(X|�)ρ|ρ � 1

s
[1 + s − log(1 + 2s)]. (A8)

Proof. We evaluate the term

P1+s(X|�) = 1

2

∑
θ∈{0,1}

∑
x∈{0,1}

p1+s
x|θ

= 1

2
[tr(ρ|0〉〈0|)1+s + tr(ρ|1〉〈1|)1+s

+ tr(ρ|+〉〈+|)1+s + tr(ρ|−〉〈−|)1+s]

= 1

22+s
{[1 + tr(σzρ)]1+s + [1 − tr(σzρ)]1+s

+ [1 + tr(σxρ)]1+s + [1 − tr(σxρ)]1+s}
= 1

22+s
[(1 + z)1+s + (1 − z)1+s + (1 + x)1+s

+ (1 − x)1+s], (A9)

where x := tr(σxρ) and z := tr(σzρ). For any one qubit state
ρ, we have the Bloch sphere condition

tr(σxρ)2 + tr(σyρ)2 + tr(σzρ)2 � 1 (A10)

and can therefore parametrize x and z by polar coordinates,

x = r sin φ, z = r cos φ, (A11)
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where r ∈ [0,1] and φ ∈ [0, π
2 ]. Pα(X|�) can then be rewritten

as a function depending on the variables s, r , and φ:

Q(s,r,φ) = 1

22+s
[(1 + r cos φ)1+s + (1 − r cos φ)1+s

+ (1 + r sin φ)1+s + (1 − r sin φ)1+s]. (A12)

The partial differential of Q(s,r,φ) with respect to r

becomes

∂Q(s,r,φ)

∂r
= 1 + s

22 + s
[cos φ(1 + r cos φ)s − cos φ(1 − r cos φ)s

+ sin φ(1 + r sin φ)s − sin φ(1 − r sin φ)s].

(A13)

Since in the range of φ, sin φ and cos φ are positive, we obtain
∂Q(s,r,φ)

∂r
� 0, which implies that the maximum is attained

at r = 1. The partial differential of Q(s,r,φ) with respect to φ

at r = 1 becomes

∂Q(s,1,φ)

∂φ
= 1 + s

22+s
[− sin φ(1 + cos φ)s + sin φ(1 − cos φ)s

+ cos φ(1 + sin φ)s − cos φ(1 − sin φ)s]

= 1 + s

22+s
{sin φ[(1 − cos φ)s − (1 + cos φ)s]

+ cos φ[(1 + sin φ)s − (1 − sin φ)s]}. (A14)

For a stationary point of Q(s,1,φ), (A14) is zero, and the solu-
tion is obtained at three points: φ = 0, π

4 , π
2 . The characteristics

of the endpoints φ = 0, π
2 are the same; hence it suffices to

analyze either. It remains to analyze the characteristic of these
stationary points. To do so, we evaluate the second partial
derivative at these points as a function of s:

f1(s) = ∂2Q(s,1,φ)

∂φ2

∣∣∣∣
φ=0

= 1 + s

21+s
(s − 2s−1), s � 0,

(A15)

f2(s) = ∂2Q(s,1,φ)

∂φ2

∣∣∣∣
φ= π

4

= 1 + s

22+s

{
s

[(
1 − 1√

2

)s−1

+
(

1 + 1√
2

)s−1
]

−
√

2

[(
1 + 1√

2

)s

−
(

1 − 1√
2

)s]}
. (A16)

To determine if the stationary point is a local minima
or maxima, we show the positivity or negativity of these
functions over the interval s ∈ (0,1]. Note that f1(0) = − 1

4

and f1(1) = 0, while f1(s) is always increasing since ∂f1(s)
∂s

=
s

21+s [2 − (1 + s) ln 2] � 0. Hence f1(s) is negative, implying
the endpoints correspond to a local maxima. On the other hand,
note that the second term in (A16) is exactly of the form g(a,s)
as stated in Lemma 2 with a = 1√

2
. With this, we conclude that

the point φ = π
4 is a local minimum. This leaves the endpoints

as the only candidates for optimal parameters that achieve the
maxima of Q(s,1,φ). Evaluating Q(s,1,0) then provides us

the bound

P1+s(X|�) � Q(s,1,0) = 1

21+s
(2s + 1), (A17)

and plugging this back into (A6) gives (A8). �

b. Step 2: Relation for n qubits

The goal is to prove that, for any n-qubit state measured
independently on each qubit in BB84 bases, the minimal output
α-Rényi entropy is additive. First, let n = 2 with the first
system denoted by A and the second by B. We have

Pα(XAXB |�A�B) =
∑
θA,θB

pθA,θB

∑
xA,xB

pα
xA,xB |θA,θB

= 1

2

∑
xA,θA

pα
xA|θA

1

2

∑
xB,θB

pα
xB |xA,θA,θB

, (A18)

where p�B |�A
= p�B

and p�B=0 = p�b=1 = 1/2. Now, as-
sume that we have a one-qubit upper bound

1

2

∑
xA,θA

pα
xA|θA

� c (A19)

for Pα(X|�). Note that the second summation term in (A18)
corresponds to Pα(X|�) of the single-qubit density operator

σB = trA

[
MxA|θA

ρABM
†
xA|θA

tr
[
MxA|θA

ρABM
†
xA|θA

]
]

, (A20)

where MxA|θA
= HθA |xA〉〈xA|HθA ⊗ IB . Hence we have

Pα(XAXB |�A�B) � c

2

∑
xA,θA

pα
xA|θA

� c2. (A21)

The following lemma generalizes this argument to arbitrary n.
Lemma 1. For ρ ∈ S((C2)⊗n) measured independently on

each qubit in BB84 bases, the minimal conditional α-Rényi
entropy of Xn with respect to �n is additive.

Proof. Consider

Pα(Xn|�n)ρ|ρ =
∑

θn∈{0,1}n
pθn

∑
xn∈{0,1}n

pα
xn|θn

= 1

2n

∑
θn∈{0,1}n

∑
xn∈{0,1}n

(
n∏

i=1

pi|xi−1,θ i−1

)α

,

(A22)

where pi|xi−1,θ i−1 = pxi |Xi−1=xi−1,�i−1=θ i−1,K=k for i � 2 and
p1 = px1|θ1,K=k . Assuming the same upper bound as in (A19),
we get

Pα(Xn|�n)ρ|ρ

= 1

2n−1

∑
θn∈{0,1}n

∑
xn∈{0,1}n

(
n−1∏
i=1

pi|xi−1,θ i−1

)α

1

2
pα

n|xn−1,θn−1

� c
1

2n−1

∑
�n−1,Xn−1∈{0,1}n−1

(
n−1∏
i=1

pi

)α

� cn. (A23)

�
Combining this with the one-qubit uncertainty relation

derived before, we obtain the following.
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Corollary 1. For α = 1 + s with s ∈ (0,1] and ρ ∈
S((C2)⊗n) measured independently on each qubit in BB84
bases, we have

Hα(Xn|�n)ρ|ρ � n
1

s

[
1 + s − log(1 + 2s)

]
. (A24)

c. Step 3: Classical side information K

In Corollary 1 we have obtained an uncertainty relation
Hα(Xn|�n)ρ|ρ for any n-qubit states ρ. But, generally, we
want to consider n-qubit states ρk labeled with classical
information K , and we need to make a relation to the quantity
Hα(Xn|�nK)ρ|ρ for the state ρ = ∑

k pkρk . That is, the
α-Rényi entropy is also conditioned on classical information
K . This quantity is evaluated as

Hα(Xn|�nK)ρ|ρ

= 1

1 − α
log

∑
k

∑
θn∈{0,1}n

pk,θn

∑
xn∈{0,1}n

pα
xn|θn,k

= 1

1 − α
log

∑
k

pk

∑
θn∈{0,1}n

pθn|k
∑

xn∈{0,1}n
pα

xn|θn,k, (A25)

where the difference is that now p(�|K = k) is conditioned
on the classical information K = k. However, in our case �n

is chosen randomly regardless of what state is prepared. Thus
p(�n|K = k) = p(�n) = 2−n, and we get

Hα(Xn|�nK)ρ|ρ

= 1

1 − α
log

∑
k

pk

∑
θn∈{0,1}n

pθn

∑
xn∈{0,1}n

pα
xn|θn,k

� n
1

s
[1 + s − log(1 + 2s)]. (A26)

d. Step 4: Relation to the min-entropy

After obtaining a bound on Hα(Xn|�nK)ρ|ρ , we now link
this to a bound on Hε

min(Xn|�nK)ρ . It is shown in [18],
Theorem 7] that for ρAB ∈ S(HAB), ε � 0, and α ∈ (1,2],

Hε
min(A|B)ρ � Hα(A|B)ρ|ρ − 1

α − 1
log

2

ε2
. (A27)

Thus the smooth conditional min-entropy is lower bounded by
general conditional α-Rényi entropies, with a correction term
growing logarithmically in 1/ε2. For the Shannon entropy
(α → 1) this term diverges, but considering α ∈ (1,2],
the bound is very useful. Namely, the smooth conditional
min-entropy of Xn given �nK is bounded to

1

n
Hε

min(Xn|�nK)ρ

� 1

n
Hα(Xn|�nK)ρ|ρ

� max
s∈(0,1]

1

s
[1 + s − log(1 + 2s)] − 1

sn
log

2

ε2
. (A28)

Note that the maximum value of (A28) is obtained for
different values of s, as n and ε vary.

2. Uncertainty relation for six-state measurements

In this section, we make use of the same methods as in
Appendix 1. We derive an uncertainty relation for any n-qubit
state measured independently on each qubit in six-state bases.
For the single-qubit version, we have to consider

Hα(X|�)ρ|ρ = 1

1 − α
log Pα(X|�),

Pα(X|�) = tr
[
ρα

X�(IX ⊗ ρ�)1−α
]
,

ρX� = 1

3

∑
θ,x

px|θ |x〉〈x| ⊗ |θ〉〈θ |,

px|θ = tr(Nx|θρ), (A29)

with Nx|θ = Tθ |x〉〈x|Tθ and T = 1√
2
( 1 −i

1 i ) being the matrix
that cyclically permutes the eigenbases of Pauli σx , σy , and σz.

Theorem 2. Let ρ ∈ S(C2) and α = 1 + s, with s ∈ (0,1].
Then we have for six-state measurements as in (A29) that

Hα(X|�)ρ|ρ � −1

s
log

[
1

3
(1 + 21−s)

]
. (A30)

Proof. We evaluate the term

P1+s(X|�) = 1

3

∑
x∈{0,1}

∑
θ∈{0,1,2}

p1+s
x|θ

= 1

3

1

21+s

2∑
i=0

[(1 + xi)
1+s + (1 − xi)

1+s], (A31)

where {x0,x1,x2} := {x,y,z} and xi := tr(σxi
ρ). Parametrizing

this in terms of spherical coordinates, we write

x0 = r sin φ sin θ, x1 = r cos φ sin θ, x2 = r cos θ,

(A32)

where 0 � r � 1, 0 � φ, θ � π
2 . Expression (A31) can be

rewritten in terms of these new coordinates as

M(s,r,φ,θ ) := 1

3

1

21+s

⎧⎨
⎩

∑
p=0,1

[1 + (−1)pr sin φ sin θ ]1+s

+
∑

p=0,1

[1 + (−1)pr cos φ sin θ ]1+s

+
∑

p=0,1

[1 + (−1)p cos θ ]1+s

⎫⎬
⎭ . (A33)

Evaluating the partial differential of Q(s,r,φ) with respect
to r ,

∂M(s,r,φ,θ )

∂r

= 1 + s

3

1

21+s
sin θ{sin φ[(1 + r sin φ sin θ )s

− (1 − r sin φ sin θ )s] + cos φ[(1 + r cos φ sin θ )s

− (1 − r cos φ sin θ )s]}. (A34)

Again we see that since, in the range of φ, θ , all values
of sines and cosines are positive, we obtain ∂M(s,r,φ,θ)

∂r
� 0,
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which implies the maximum is attained at r = 1. Subsequently,
evaluating the partial derivative,

∂M(s,1,φ,θ )

∂φ

= 1 + s

3

1

21+s
sin θ{cos φ[(1 + sin φ sin θ )s

− (1 − sin φ sin θ )s] − sin φ[(1 + r cos φ sin θ )s

− (1 − r cos φ sin θ )s]}, (A35)

gives the points φ = 0, π
4 , π

2 as solutions. We continue by
evaluating the second partial derivative at these points:

∂2M(s,1,φ,θ )

∂φ2

∣∣∣∣
φ=0

= 1 + s

3

1

21+s
sin θ{2s sin θ

− [(1 + sin θ )s − (1 − sin θ )s]},
∂2M(s,1,φ,θ )

∂φ2

∣∣∣∣
φ= π

4

= 1 + s

3

1

2s
c2

{
s[(1 + c)s−1+ (1 − c)s−1]

− 1

c
[(1 + c)s − (1 − c)s]

}
, (A36)

where c = sin θ√
2

. By expanding in Taylor’s series, the first
equation is negative for s ∈ (0,1], whereas the second equation
is positive. Hence the maximum is obtained at φ = 0. The last
step is to evaluate

∂M(s,1,0,θ )

∂θ
= 1 + s

3

1

21+s
sin θ{cos φ[(1 + sin φ sin θ )s

− (1−sin φ sin θ )s]−sin φ[(1+r cos φ sin θ )s

− (1 − r cos φ sin θ )s]}. (A37)

But then this has a form similar to (A14), and thus the maxima
is obtained at θ = 0. Evaluating M(s,1,0,0) then results in the
claim

P1+s(X|θ ) � M(s,1,0,0) = 1
3 (1 + 21−s). (A38)

�
The additivity of minimal entropy holds by using the same

argument as in step 2 of Appendix 1. Namely, given a string
divided into parts A and B, where B denotes a single-qubit
system, the uncertainty relation for B holds for the state

σB = trA

[
NxA|θA

ρABN
†
xA|θA

tr
[
NxA|θA

ρABN
†
xA|θA

]
]

, (A39)

where NxA|θA
= TθA |xA〉〈xA|TθA ⊗ IB . By exactly the same

arguments as in steps 3 and 4 in Appendix 1, the smooth
conditional min-entropy of the string Xn ∈ {0,1}n conditioned
on the basis θn ∈ {0,2}n and the classical side information K

can then be bounded by

1

n
Hε

min(Xn|�nK)ρ � 1

n
Hα(Xn|�nK)ρ|ρ

� max
s∈(0,1]

−1

s
log

[
1

3
(1 + 21−s)

]

− 1

sn
log

2

ε2
. (A40)

3. Technical Lemmas

Lemma 2. Given the function g : R × R → R,

g(a,s) := s[(1 + a)s−1 + (1 − a)s−1]

− 1

a
[(1 + a)s − (1 − a)s]. (A41)

Then g(a,s) � 0 for a ∈ [0,1) and s ∈ (0,1].
Proof. Since a lies within the convergence radius of the

function (1 ± a)s , we expand the function in Taylor’s series:

s[(1 + a)s−1 + (1 − a)s−1] − 1

a
[(1 + a)s − (1 − a)s]

= 2s

[
1 +

∑
n=2,4,...

(s − 1)(s − 2) · · · (s − n)

n!
an

]

− 1

a

⎡
⎣2as + 2

∑
n=3,5,...

s(s − 1) · · · (s − n + 1)

n!
an

⎤
⎦

= 2s

[ ∑
n=2,4,...

(s − 1)(s − 2) · · · (s − n)

n!
an

−
∑

n=3,5,...

(s − 1)(s − 2) · · · (s − n + 1)

n!
an−1

⎤
⎦

= 2s

[ ∑
n=2,4,...

(s − 1)(s − 2) · · · (s − n)

n!
an

−
∑

j=2,4,...

(s − 1)(s − 2) · · · (s − j )

(j + 1)!
aj

⎤
⎦

= 2s
∑

n=2,4,...

(s − 1)(s − 2) · · · (s − n)
n

(n + 1)!
an

� 0. (A42)

The first equality holds by a straightforward expansion of
Taylor’s series, the second equality holds by extracting 2s and
absorbing 1

a
into the second summation term, the third equality

follows from redefining the summation variable j = n − 1,
and the last inequality follows because (s − 1) · · · (s − n) � 0
for s ∈ (0,1] and n being an even integer. �
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