
PHYSICAL REVIEW A 86, 042313 (2012)

Towards practical classical processing for the surface code: Timing analysis

Austin G. Fowler, Adam C. Whiteside, and Lloyd C. L. Hollenberg
Centre for Quantum Computation and Communication Technology, School of Physics, The University of Melbourne, Victoria 3010, Australia

(Received 24 February 2012; published 12 October 2012)

Topological quantum error-correction codes have high thresholds and are well suited to physical implementa-
tion. The minimum-weight perfect-matching algorithm can be used to efficiently handle errors in such codes. We
perform a timing analysis of our current implementation of the minimum-weight perfect-matching algorithm.
Our implementation performs the classical processing associated with an n × n lattice of qubits realizing a square
surface code storing a single logical qubit of information in a fault-tolerant manner. We empirically demonstrate
that our implementation requires only O(n2) average time per round of error correction for code distances ranging
from 4 to 512 and a range of depolarizing error rates. We also describe tests we have performed to verify that it
always obtains a true minimum-weight perfect matching.

DOI: 10.1103/PhysRevA.86.042313 PACS number(s): 03.67.Pp

I. INTRODUCTION

Quantum computers promise efficient factoring [1], effi-
cient simulation of quantum systems [2], and the efficient
solution of many other classically intractable problems [3].
The primary barrier to the realization of a quantum computer
is the physical realization of quantum gates with sufficiently
low error to enable quantum error correction to be used. Topo-
logical quantum error-correction (TQEC) codes can tolerate
error rates of order 1% [4,5] and require only two-dimensional
(2D) nearest-neighbor interactions, both physically reasonable
targets; however, the classical processing associated with the
error correction is highly nontrivial. Without significant future
effort, the classical processing will almost certainly limit
the speed of any quantum computer, particularly one with
intrinsically fast quantum gates.

In this work, we present a timing analysis of our software
performing the classical processing associated with TQEC.
This software is by orders of magnitude the fastest currently
available. We will review the necessary aspects of the surface
code [6,7], fault-tolerant schemes built on the surface code
[8–10], and our classical processing algorithm [5] as required.
Our goal is to analyze in detail the performance and correctness
of our implementation of this algorithm. This implementation
is contained in a library match.c and called by our tool
AUTOTUNE [11], which is designed to prepare a graph problem
tailored to arbitrary hardware running a surface-code-family
TQEC scheme.

The discussion is organized as follows. In Sec. II, the
basic structure and functionality of our software are described.
The library match.c, which performs minimum-weight perfect
matching [12,13] is described in more detail in Sec. III. Two
versions are discussed. An example of the faster version of the
algorithm in action is provided in Sec. IV. The probability of
logical errors in the surface code as a function of the physical
error rate p is discussed in Sec. V. Formatted timing data are
presented in Sec. VI. Complete raw timing data can be found
in the Supplemental Material. Section VII summarizes and
points to further work.

II. OVERVIEW

Our simulation suite of software is designed to handle
arbitrary hardware with arbitrary stochastic error models;

however, we shall focus on a simple 2D square lattice of qubits
and a standard depolarizing channel for each quantum gate for
the purposes of benchmarking and demonstrating correctness.
Specifically, we shall study the case of no initialization
surface-code error detection [4]. A small section of the 2D
array of data and syndrome qubits of the surface code and the
required cyclic sequence of controlled-NOT (CNOT) gates to
simultaneously measure all stabilizers [14] is shown in Fig. 1.
At the end of each cycle, all syndrome qubits are measured in
the X or Z basis according to whether they are being used to
measure X or Z stabilizers, respectively.

Random Pauli errors are generated and propagated using
a Pauli frame. When errors lead to syndrome measurement
value changes, graph vertices are generated at these space-time
locations. By preanalyzing all possible single-error processes
[4,11], an underlying lattice of dots and lines is also prepared
with dots at every location where a vertex could potentially
be generated and lines between every pair of locations that
could have vertices generated by a single error. The first-order
probability pline of each line is calculated and a weight w =
− ln(pline) stored in each line. This is done so that a large posi-
tive weight is associated with any line of low probability, ensur-
ing that an algorithm matching vertices in pairs using paths of
lines with minimum total weight will tend to avoid using low-
probability lines. Furthermore, a multiple-line path will have a
weight related to the product of probabilities of its constituent
lines. A lattice of dots and lines and stochastically generated
vertices (from surface-code simulation) is shown in Fig. 2.

In many ways, a lattice plus vertices can be considered
an implicit complete graph with an edge between any pair
of vertices having weight equal to a minimum-weight path
between those vertices. The task is to match all vertices in pairs
or to neighboring boundaries such that the total weight of all
matched paths is minimal. The basic algorithm that efficiently
solves this problem given a standard graph is the minimum-
weight perfect-matching algorithm [12,13]. We have extended
this algorithm to include the concept of boundaries and permit
new vertices to be dynamically added to the graph.

III. MATCHING

We have two operational versions of extended minimum-
weight perfect matching—complete match [4] which first

042313-11050-2947/2012/86(4)/042313(8) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.042313

FOWLER, WHITESIDE, AND HOLLENBERG PHYSICAL REVIEW A 86, 042313 (2012)

(a) (b)

1
2

4
3

3
2

4
3

1
2

4
3

2

4
3

1
2

4

1
2

3

1

3

1
2

4
3

1
2

3

1
2

4
3

1
2

Z

Z

ZZ
X

X

X
X

4

4

FIG. 1. (Color online) (a) 2D lattice of data qubits (circles) and
syndrome qubits (dots) and examples of the data qubit stabilizers.
(b) Sequence of CNOT gates permitting simultaneous measurement
of all stabilizers. Numbers indicate the relative timing of gates. The
highlighted gates can be tiled to fill the plane.

constructs explicit edges between all pairs of vertices no more
than approximately d rounds of error correction apart, and
edges on demand match [5] which constructs only a small
number of local edges and adds further edges to the problem
as required. The graphs and matchings generated by complete
match (cmatch) and edges on demand match (eodmatch) given
Fig. 2 as input are shown in Figs. 3 and 4, respectively. The
total weight of matched edges in both cases is identical and
in this case the matchings themselves are identical. We have
tested cmatch and eodmatch on millions of varied problems,
large and small, and always observed identical total weights,
strongly implying that both implementations are correct.

Cmatch obtains the true minimum-weight perfect matching
despite only including edges between vertices separated by a
finite number of rounds. Vertices separated by a very large
number of rounds are always cheaper to match to their nearest
boundaries than to one another. By using the weights of
the lines in the lattice, we calculate the minimum span of

FIG. 2. (Color online) Distance-4 example of a lattice of dots and
lines with stochastically generated vertices. The distance of a surface
code is the length in lines of the shortest topologically nontrivial
path, in this case any path connecting opposing boundaries. Dots
(small balls) correspond to space-time locations where the end points
of error chains could potentially be detected. Vertices (large balls)
correspond to space-time locations where error-chain end points have
been detected. Light cylinders link pairs of dots where a pair of
vertices could be generated by a single error. Dark cylinders link
spatial boundaries to a single dot where a single vertex could be
generated by a single error.

FIG. 3. (Color) Output of cmatch when given Fig. 2 as input.
The underlying lattice is used to construct a complete graph and then
discarded. Edges in the matching are shown in red.

rounds to connect with edges to guarantee a minimum weight
matching. Eodmatch also obtains a true minimum-weight
perfect matching as any required edge will eventually be
included during execution.

We now describe the eodmatch algorithm. Some definitions
are required. Let G be a graph with vertices {vi}, edges {eij },
and edge weights {wij }. The graphs we use in eodmatch are
implicitly complete, with the weight of an edge between
any given pair of vertices defined to be the weight of a
minimum-weight path between those vertices, and the weight
of any edge connecting a vertex to a nearby boundary defined
similarly. As such, we shall describe the algorithm as though
we have a complete graph. The process of dynamically adding
the required edges is just a technical detail.

Associate with each vertex vi a variable yi , which can be
thought of as the radius of a ball centered at vi . Odd sets
of vertices can also be made into blossoms Bk that have their
own variables Yk , which can be thought of as the width of shell
around every object in Bk . If a pair of blossoms intersect, then
one is contained in the other. Define an edge eij to be tight
if wij − yi − yj − ∑

Yk = 0, where the sum is over k such
that exclusively vi or vj is in Bk . This condition is pictorially
depicted in Fig. 5.

Define a node to be a vertex or blossom. Allow edges to
possess a label matched or unmatched. Define a blossom to
be unmatched if it contains a vertex not incident on a matched

FIG. 4. (Color) Output of eodmatch when given Fig. 2 as input.
Note that only one edge other than those ultimately included in the
matching has been created (just visible between the top right two
vertices).

042313-2

TOWARDS PRACTICAL CLASSICAL PROCESSING FOR . . . PHYSICAL REVIEW A 86, 042313 (2012)

v1
y1 v2

y2

v3
y3

v4
y4

v5
y5

v6
y6

Y1

Y2
B2

B1

FIG. 5. An example of a tight edge. Edge e12 has the property that
w12 − y1 − y2 − Y1 − Y2 = 0.

edge. An alternating tree is a tree of nodes rooted on an un-
matched node such that every path of edges from the root node
to a leaf node consists of alternating unmatched and matched
edges. Alternating trees can branch only from the root and
every second node from the root. Define branching nodes to be
outer. Define all other nodes in the alternating tree to be inner.
Figure 6 shows all necessary alternating tree manipulations.

Given a weighted graph G, the following algorithm finds a
minimum-weight perfect matching.

(1) If there are no unmatched vertices, return the list of
matched edges.

(2) Choose an unmatched vertex v to be the root of an
alternating tree.

(3) If no edges emanating from the outer nodes of the
alternating tree are tight, henceforth called O-tight edges,
increase the value of y or Y associated with each outer node

(c)

add

(a)

+y
root-Y

-y

+y

-y

+y

+y

(f)

root

unmatched

augment
path

(d) ignore
(e)

Y=0

create
blossom

(b)

expand
blossom

FIG. 6. (Color online) All required alternating tree manipula-
tions. (a) Increase outer-node and decrease inner-node y values (or
Y if the node is a blossom), which will maintain the tightness of all
tree edges and potentially create new tight edges connected to at least
one outer node. (b) Inner blossoms with Y = 0 can be expanded into
multiple inner and outer nodes and potentially some nodes that are no
longer part of the tree. (c) Outer-matched tight edges can be used to
grow the alternating tree. (d) Outer-inner tight edges can be ignored
as they never grow tighter. (e) Outer-outer tight edges make cycles
that can be used to form blossoms. (f) When another unmatched
vertex v is found, or an edge to a boundary b, the path from the
unmatched vertex within the root node through the alternating tree to
v or b is augmented, meaning matched edges become unmatched and
unmatched edges become matched. This strictly increases the total
number of matched vertices.

while simultaneously decreasing the value of y or Y associated
with each inner node until an edge becomes O tight, or an inner
blossom node Y variable becomes 0 [Fig. 6(a)].

(4) If an inner blossom node Y variable becomes 0 and there
are still no O-tight edges, expand that blossom and return to 3
[Fig. 6(b)].

(5) Choose an O-tight edge e.
(6) If e leads to a matched node not already in the alternating

tree, add the relevant unmatched and matched edges and
associated nodes to the alternating tree and return to step 3
[Fig. 6(c)].

(7) If e leads to an inner node, mark e so it is not considered
again during the growth of this alternating tree and return to
step 3 [Fig. 6(d)].

(8) If e leads to an outer node, add the unmatched edge to
the alternating tree. There will now be a cycle of odd length.
Collapse this cycle into a new blossom and associate a new
variable Y = 0 [Fig. 6(e)]. Return to step 3.

(9) If e leads to an unmatched vertex or boundary, add e

to the alternating tree and augment the path (unmatched ↔
matched) from the unmatched vertex within the root node to
the end of e [Fig. 6(f)]. Destroy the alternating tree, keeping
any newly formed blossoms. Return to step 1.

On average, the algorithm needs to consider only a small
local region around each vertex to find another unmatched
vertex to pair with. This is a property of the graphs associated
with topological QEC only, as the probability of needing to
consider an edge of length l decreases exponentially with l.
This ensures that the runtime is O(n2), and that the algorithm
can be parallelized to achieve O(1) processing per round.

IV. EODMATCH EXAMPLE

The rules of the previous section are far from intuitive. Let
us consider a simple 1D chain of qubits suffering errors and
generating vertices in space and time. Assume the underlying
lattice is square. Figure 7(a) shows a possible current state of
the matching algorithm, with matched vertices far in the past
and unmatched vertices in the present and recent past. The goal
is to match as many vertices as possible in the active region
(between the horizontal dashed lines) without using any data
that are too new. The window that defines the active region rolls
forward as additional vertices are generated by the quantum
computer. The first vertex chosen for matching is indicated
with an arrow. It does not matter which vertex is chosen in
the active region; however, our algorithm has a preference for
vertices further in the past.

Figure 7(b) shows a shaded exploratory region around the
chosen vertex. This is constructed by performing a breadth-
first search through the lattice local to the vertex. When any
other object is encountered, whether it be a boundary, another
exploratory region, or another vertex, expansion is halted. In
this case, two unmatched vertices and one exploratory region
simultaneously terminate expansion. One of these vertices is
chosen to be matched to as shown in Fig. 7(c). It does not matter
which vertex is chosen; both are valid choices that would lead
to a minimum weight perfect matching being obtained. The
next vertex is chosen.

In Fig. 7(d), when exploration around the chosen vertex
terminates, a matched vertex is encountered and no unmatched

042313-3

FOWLER, WHITESIDE, AND HOLLENBERG PHYSICAL REVIEW A 86, 042313 (2012)

bdy bdy

time

bdy bdy

time

bdy bdy

time

(a) (b)

(c)

bdy bdy

time

(d)

FIG. 7. (Color online) (a) Choose an unmatched vertex. (b) Expand exploratory region until other objects are encountered. (c) Unmatched
vertices are encountered; choose one to match to. Choose another unmatched vertex. (d) Expand exploratory region until other objects are
encountered. Build an alternating tree.

vertices. This necessitates the construction of an alternating
tree. An alternating tree is a tree with alternating unmatched
and matched edges. Alternating trees are allowed to branch
only at the root and every second node from the root. Branching
nodes are called outer nodes; nonbranching nodes are called
inner nodes. The alternating tree constructed in Fig. 7(d)
consists of three nodes, all of which are simple vertices. We
will encounter more complex alternating trees shortly.

Our algorithm attempts to expand the exploratory regions
around each outer node and contract the exploratory regions
around each inner node. This is impossible in this case as the
two outer nodes are touching. Instead, a cycle is formed as
shown in Fig. 8(a). This cycle is collapsed to form a blossom,
leaving an alternating tree with a single outer node that is a
blossom containing three vertices.

The exploratory region around the sole outer node in the
alternating tree is expanded until other objects are encoun-
tered [Fig. 8(b)]. An unmatched vertex and a boundary are
encountered. Two options are available. We could match
the edge from the original root vertex to the vertex below
it, unmatch the existing matched edge, and then match
the resultant unmatched vertex to the nearby boundary.
Alternatively, we can match the original root vertex to the
newly encountered unmatched vertex. Since this is simpler,
we choose this option, the execution of which is shown in
Fig. 8(c). The next unmatched vertex chosen is indicated
by an arrow. In this case, no expansion of the exploratory
region around the vertex is possible. One must instead im-
mediately form an alternating tree consisting of three vertices
[Fig. 8(d)].

042313-4

TOWARDS PRACTICAL CLASSICAL PROCESSING FOR . . . PHYSICAL REVIEW A 86, 042313 (2012)

bdy bdy

time

bdy bdy

time

(a) (b)

bdy bdy

time

(c)

bdy bdy

time

(d)

FIG. 8. (Color online) (a) Form blossom. (b) Expand exploratory region around blossom until other objects are encountered. (c) Match to
unmatched vertex. Choose another unmatched vertex. (d) Form alternating tree.

The outer-node exploratory regions are expanded while the
inner-node exploratory region is contracted [Fig. 9(a)]. This
results in the outer-node exploratory regions touching, forming
a cycle and thus a blossom [Fig. 9(b)]. This collapses the
alternating tree to a single outer node consisting of a blossom
containing three vertices.

The exploratory region around the single blossom outer
node cannot be expanded, necessitating the creation of another
alternating tree consisting of a blossom outer node, then a
blossom inner node, then a vertex outer node [Fig. 9(c)].
The two outer exploratory regions can be expanded while the
blossom inner-node exploratory region is contracted; however,
this leads to exploration outside the active region [Fig. 9(d)].
When this happens, we run our algorithm backwards to the
beginning of the current matching attempt, which in this case
is Fig. 8(c).

This example hopefully gives a flavor of the algorithm.
The salient features we wish to convey to the reader are the
algorithm’s space-time locality and continuous-processing

nature. These features enable one to understand the paral-
lelization of the algorithm. We shall explain this by analogy.

Imagine a box being filled with sand using a 2D array of
tubes. Each tube represents a processor. Imagine that the rate
of sand coming out of each tube represents the difficulty of
the matching problem locally. A slower rate of flow implies
higher local difficulty. The sand itself represents vertices that
have been matched. The rate of flow of all tubes is set below the
maximum possible—pauses are inserted in the algorithm such
that it is possible for a tube to be run at greater than the standard
rate should it be required. When the problem is locally hard,
the rate of flow decreases and a hollow forms locally. When the
difficulty of the problem returns to normal, which it must do on
average, the rate of flow is increased above the standard rate to
fill in this hollow. When the hollow is filled, the rate of flow is
brought below the maximum possible again. Local difficulty
does not result in global slowdown. Furthermore, surrounding
tubes can assist in filling in the hollow. This simple picture
explains how one can obtain a globally optimal solution of

042313-5

FOWLER, WHITESIDE, AND HOLLENBERG PHYSICAL REVIEW A 86, 042313 (2012)

bdy bdy

time

bdy bdy

time

bdy bdy

time

bdy bdy

time

(a) (b)

(c) (d)

FIG. 9. (Color online) (a) Expand outer-node exploratory regions; contract inner-node exploratory region. (b) Form blossom. (c) Form
alternating tree. (d) Expand outer-node exploratory regions; contract inner-node exploratory region. When forbidden region is entered, reverse
algorithm execution back to Fig. 8(c). Wait for additional data.

an infinite-size problem in constant average time per round of
processing, which is optimal.

Two other techniques for correcting errors in surface
codes are being investigated, renormalization [15] and the
Metropolis technique [16]. However, neither approach has
been successfully applied to a realistic fault-tolerant case.
Indeed, in the latest work of the authors of the renormalization
approach, minimum weight perfect matching has been used
to handle the fault-tolerant case [17]. We are not hopeful that
any technique other than matching can be comparably fast and
effective in the fault-tolerant case.

V. LOGICAL ERRORS

Strong evidence of the correctness of eodmatch comes from
studying the probability of logical error per round of error
correction (pL) at depolarizing probabilities p well below
threshold. We calculate pL by simulating tcheck rounds of

faulty quantum computer operation, then turning off errors,
capping the matching problem with a perfect round of error
correction, applying corrections, checking whether we have an
odd or even number of errors along one of the boundaries, and
recording whether this is different from the previous time we
checked. The perfect round of error correction is then undone
and another tcheck faulty rounds simulated and the process
repeated.

It may seem that the ideal value of tcheck is 1 to ensure
that no logical errors are missed; however, this is not the
case. We have observed that many combinations of errors
lead to the observation of a logical error if a perfect round
of error correction is inserted halfway through it, but no
logical error if the perfect round of correction is sufficiently
distant. With frequent checking this can mean that a benign
pattern of errors is counted as several logical errors. Instead,
we typically use a value of tcheck such that a change in the
parity of the number of errors observed along a boundary

042313-6

TOWARDS PRACTICAL CLASSICAL PROCESSING FOR . . . PHYSICAL REVIEW A 86, 042313 (2012)

10-6

10-5

10-4

10-3

10-2

10-1

1 × 10-4 1 × 10-3 1 × 10-2

Lo
gi

ca
l Z

 e
rr

or
 r

at
e

 p
L

Depolarizing probability p

d3
d5
d7
d9

d11
d13
d15
d17
d19
d21
d25
d35
d45
d55

FIG. 10. (Color online) Logical Z error rate per round of error
correction for surface-code distances d and depolarizing noise
probabilities p. Dashed lines indicate expected low-p asymptotic
curves for d = 3, 5, 7, and 9.

occurs approximately 10% of the time. We have empirically
found that this leads to a logical-error-rate estimate robust to
wide variations of tcheck about this value. The probability of a
change per check is equal to the probability of an odd number
of logical errors in tcheck rounds, enabling pL to be easily
calculated.

A distance-d code can reliably correct �(d − 1)/2� errors.
At low error rates p, clusters of errors are rare and well
separated. The probability of suffering a logical error inducing
a cluster of nd = �(d + 1)/2� errors should therefore be
O(pnd) if the full distance of the code is being realized.
Figures 10 and 11 show the complete set of data we have
collected for the square-surface code. Polynomials Adp

nd are
drawn through the lowest data point we were able to obtain for
distances 3, 5, 7, and 9.

It is computationally expensive to obtain statistics at very
low error rates and high distances as very few logical state
changes are observed. It is also computationally expensive

10-6

10-5

10-4

10-3

10-2

10-1

1 × 10-4 1 × 10-3 1 × 10-2

Lo
gi

ca
l X

 e
rr

or
 r

at
e

 p
L

Depolarizing probability p

d3
d5
d7
d9

d11
d13
d15
d17
d19
d21
d25
d35
d45
d55

FIG. 11. (Color online) Logical X error rate per round of error
correction for surface-code distances d and depolarizing noise
probabilities p. Dashed lines indicate expected low-p asymptotic
curves for d = 3, 5, 7, and 9.

to obtain data at high error rates and high distances as the
minimum-weight perfect-matching problem becomes more
difficult around and above the threshold error rate (0.9% [5]).
The raw data used to generate Figs. 10 and 11, including timing
information, can be found in the Supplemental Material [18].

The distance-3 and -5 dashed asymptotic curves in Figs. 10
and 11 agree very well with the data. For higher distances, it is
not currently possible to simulate a sufficiently large number
of rounds of error correction to obtain sufficient information at
low enough probabilities to achieve such tight agreement. Note
that the high-distance-data curves approach the asymptotic
curves with a steeper gradient, implying that the surface code
is capable of regularly correcting temporal clusters of errors
containing more errors than the maximum guaranteed to be
correctable. This is a generic feature of topological quantum
error correction, as a large cluster of errors widely scattered
across the code is not dangerous provided the cluster poorly
resembles a topologically nontrivial chain of errors connecting
distinct boundaries.

VI. TIMING

The timing information in the Supplemental Material [18]
includes everything—initial booting up of the simulation,
the simulation of the underlying quantum computer, problem
generation, matching, perfect rounds of error correction to
enable logical-state-change detection, and maintenance of an
appropriate Pauli frame. Figure 12 shows the amount of time
devoted to each round of matching alone at three different
error rates for distances d = 4, 8, 16, . . ., 512. The quadratic
scaling of required time with distance is well demonstrated.
At small d nearby boundaries prevent the growth of large
blossoms, leading to increased performance. At very high d

memory access effects lead to a slight slowdown. Note that
real computer systems are too complex to provide perfectly
smooth graphs of time scaling even with long time-averaging,
as the interplay of different levels of cache and random-access
memory leads to measurable deviations from the ideal scaling.

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

 4 8 16 32 64 128 256 512

A
ve

ra
ge

 W
al

l T
im

e
to

 p
er

fo
rm

 M
at

ch
in

g

Distance

p = 0.001
p = 0.003
p = 0.005

FIG. 12. (Color online) Amount of time in seconds devoted to
each round of matching when simulating a distance-d single-logical-
qubit square-surface code for depolarizing error rates p. Quadratic
curves have been included for reference.

042313-7

FOWLER, WHITESIDE, AND HOLLENBERG PHYSICAL REVIEW A 86, 042313 (2012)

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

103 104 105 106 107 108 109 1010

T
im

e
to

 p
er

fo
rm

 1
011

 s
w

ap
s

Memory Used (Units of Bytes)

memtest

FIG. 13. (Color online) Average time in seconds required to
perform 1011 swaps of randomly chosen pairs of integers in arrays of
increasing size.

To illustrate the complexity of modern computer memory
systems, we have generated increasingly large arrays of
random integers and calculated the time required to swap a
constant large number (1011) of randomly chosen pairs of
integers. The results are shown in Fig. 13. Ideally, a swap
operation should be O(1) independent of the array size. In
practice, it can be seen that larger data sets lead to lower
performance as the CPU cache is exceeded. The data in Fig. 13

were generated by 16 core Intel Xeon 3.33 GHz CPUs with
12 Mbytes of cache. Our matching code is more complex than
this simple swap demonstration, with gradual delocalization
of data as the data set increases in size. This leads to a gradual
reduction of the probability of a single memory page load
containing additional useful data.

VII. CONCLUSION

After accounting for low-distance nearby boundaries which
limit the complexity of matching (making matching sig-
nificantly faster) and high-distance slower memory access
(leading to a slight reduction in performance), Fig. 12 provides
strong evidence supporting the claimed O(d2) runtime of our
implementation of the algorithm described in Ref. [5]. A major
future goal is to parallelize the algorithm and demonstrate
an average processing time per round of error correction
independent of the code size, using constant computing
resources per unit area.

ACKNOWLEDGMENTS

We acknowledge support from the Australian Research
Council Centre of Excellence for Quantum Computation and
Communication Technology (Project No. CE110001027), the
US National Security Agency (NSA), and the Army Research
Office (ARO) under Contract No. W911NF-08-1-0527.

[1] P. W. Shor, in Proceedings of the 35th Annual Symposium
on Foundations of Computer Science (IEEE Computer Society
Press, Los Alamitos, CA, 1994), pp. 124–134; SIAM J. Sci. Stat.
Comput. 26, 1484 (1997).

[2] S. Lloyd, Science 273, 1073 (1996).
[3] S. Jordan, http://math.nist.gov/quantum/zoo/.
[4] D. S. Wang, A. G. Fowler, and L. C. L. Hollenberg, Phys. Rev.

A 83, 020302(R) (2011).
[5] A. G. Fowler, A. C. Whiteside, and L. C. L. Hollenberg, Phys.

Rev. Lett. 108, 180501 (2012).
[6] S. B. Bravyi and A. Y. Kitaev, arXiv:quant-ph/9811052.
[7] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J. Math. Phys.

43, 4452 (2002).
[8] R. Raussendorf and J. Harrington, Phys. Rev. Lett. 98, 190504

(2007).
[9] R. Raussendorf, J. Harrington, and K. Goyal, New J. Phys. 9,

199 (2007).

[10] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland,
Phys. Rev. A 86, 032324 (2012).

[11] A. G. Fowler, A. C. Whiteside, A. L. McInnes, and A. Rabbani,
arXiv:1202.6111 [Phys. Rev. X (to be published)].

[12] J. Edmonds, Can. J. Math. 17, 449 (1965).
[13] J. Edmonds, J. Res. Natl. Bur. Stand. B 69, 125 (1965).
[14] D. Gottesman, Ph.D. thesis, Caltech, 1997, arXiv:

quant-ph/9705052.
[15] G. Duclos-Cianci and D. Poulin, Phys. Rev. Lett. 104, 050504

(2010).
[16] J. R. Wootton and D. Loss, arXiv:1202.4316 [Phys. Rev. Lett.

(to be published)].
[17] S. Bravyi, G. Duclos-Cianci, D. Poulin, and M. Suchara,

arXiv:1207.1443.
[18] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevA.86.042313 for the raw data used to generate
Figs. 10 and 11.

042313-8

http://dx.doi.org/10.1126/science.273.5278.1073
http://math.nist.gov/quantum/zoo/
http://dx.doi.org/10.1103/PhysRevA.83.020302
http://dx.doi.org/10.1103/PhysRevA.83.020302
http://dx.doi.org/10.1103/PhysRevLett.108.180501
http://dx.doi.org/10.1103/PhysRevLett.108.180501
http://arXiv.org/abs/arXiv:quant-ph/9811052
http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1103/PhysRevLett.98.190504
http://dx.doi.org/10.1103/PhysRevLett.98.190504
http://dx.doi.org/10.1088/1367-2630/9/6/199
http://dx.doi.org/10.1088/1367-2630/9/6/199
http://dx.doi.org/10.1103/PhysRevA.86.032324
http://arXiv.org/abs/arXiv:1202.6111
http://dx.doi.org/10.4153/CJM-1965-045-4
http://arXiv.org/abs/quant-ph/9705052
http://dx.doi.org/10.1103/PhysRevLett.104.050504
http://dx.doi.org/10.1103/PhysRevLett.104.050504
http://arXiv.org/abs/arXiv:1202.4316
http://arXiv.org/abs/arXiv:1207.1443
http://link.aps.org/supplemental/10.1103/PhysRevA.86.042313
http://link.aps.org/supplemental/10.1103/PhysRevA.86.042313

