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Device-independent dimension witnesses provide a lower bound on the dimensionality of classical and quantum
systems in a “black box”scenario where only correlations between preparations, measurements, and outcomes
are considered. We address the problem of the robustness of dimension witnesses, namely that to witness the
dimension of a system or to discriminate between its quantum or classical nature, even in the presence of loss.
We consider the case when shared randomness is allowed between preparations and measurements and provide
a threshold in the detection efficiency such that dimension witnessing can still be performed.
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I. INTRODUCTION

For several experimental setups, a description that com-
pletely specifies the nature of each device is unsatisfactory.
For example, in a realistic scenario the assumption that the
provider of the devices is fully reliable is often overopti-
mistic: imperfections unavoidably affect the implementation,
thus turning it away from its ideal description. A device-
independent description of an experimental setup does not
make any assumption on the involved devices, which are
regarded as “black boxes,”while only the knowledge of
the correlations between preparations, measurements, and
outcomes is considered. In this scenario, a natural question
is whether it is possible to derive some properties of the
noncharacterized devices instead of assuming them, building
only upon the knowledge of these correlations. In general
one could be interested in bounding the dimension of the
systems prepared by a noncharacterized device; one could
also ask whether a source is intrinsically quantum or can be
described classically. The framework of device-independent
dimension witnesses (DIDWs) provides an effective answer
to these questions, suitable for experimental implementation
and for application in different contexts, such as quantum
key distribution (QKD) or quantum random access codes
(QRACs).

DIDWs were first introduced in [1] in the context of
nonlocal correlations for multipartite systems. Subsequently,
the problem of DIDWs was related to that of QRACs in [2],
and in [3] it was reformulated from a dynamical viewpoint
allowing one to obtain lower bounds on the dimensionality
of the system from the evolution of expectation values. A
general formalism for tackling the problem of DIDWs in
a prepare and measure scenario was recently developed in
[4]. The derived formalism allows one to establish lower
bounds on the classical and quantum dimension necessary
to reproduce the observed correlations. Shortly after, the
photon experimental implementations followed, making use
of polarization and orbital angular momentum degrees of
freedom [5] or polarization and spatial modes [6] to generate
ensembles of classical and quantum states, and certifying their
dimensionality as well as their quantum nature.

DIDWs also allow reformulating several applications in
a device-independent framework. For example, dimension
witnesses can be used to share a secret key between two

honest parties. In [7], the authors present a QKD protocol
whose security against individual attacks in a semi-device-
independent scenario is based on DIDWs. The scenario is
called semi-device-independent because no assumption is
made on the devices used by the honest parties, except that they
prepare and measure systems of a given dimension. Another
application is given by QRACs, that make it possible to encode
a sequence of qubits in a shorter one in such a way that the
receiver of the message can guess any of the original qubits
with maximum probability of success. In [8,9] QRACs were
considered in the semi-device-independent scenario, with a
view to their application in randomness expansion protocols.

Clearly any experimental implementation of DIDWs is
unavoidably affected by losses—that can be modeled as a
constraint on the measurements—and can reduce the value of
the dimension witness, thus making it impossible to witness
the dimension of a system. Based on these considerations, it is
relevant to understand whether it is possible to perform reliable
dimension witnessing in realistic scenarios and, in particular,
with nonoptimal detection efficiency. We refer to this problem
as the robustness of device-independent dimension witnesses.
Despite its relevance for experimental implementations and
practical applications, this problem has not been addressed
in previous literature. The aim of this work is to fill this
gap. We consider the case where shared randomness between
preparations and measurements is allowed. Our main result is
to provide the threshold in the detection efficiency that can be
tolerated in dimension witnessing, in the case where one is
interested in the dimension of the system as well as in the case
where one’s concern is to discriminate between its quantum or
classical nature.

The paper is structured as follows. In Sec. II we introduce
the sets of quantum and classical correlations and the concept
of dimension witness as a tool to discriminate whether a
given correlation matrix belongs to these sets. Section III
discusses some properties of the sets of classical and quantum
correlations. In Sec. IV we provide a threshold in the detection
efficiency that is allowed in witnessing the dimensionality
of a system or in discriminating between its classical or
quantum nature, as a function of the dimension of the
system. We summarize our results and discuss some further
developments—such as dimension witnessing in the absence
of correlations between preparations and measurements or
entangled assisted dimension witnessing—in Sec. V.
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FIG. 1. (Color online) Setup for witnessing the dimension of a
quantum or classical system. In the most general scenario considered
here, Alice and Bob share a hidden random variable λ. Alice (on
the left-hand side) owns a preparing device which sends the state
ρi,λ to Bob whenever Alice presses button i ∈ [1,M]. Bob owns a
measuring device that performs measurement �k,λ on the received
state whenever Bob presses button k ∈ [1,K], giving the outcome
j ∈ [1,N ].

II. DEVICE-INDEPENDENT DIMENSION WITNESSES

Let us first fix the notation [10]. Given a Hilbert spaceH, we
denote with LinH the space of linear operators X : H → H. A
quantum state in H is represented by a density matrix, namely
a positive semidefinite matrix ρ ∈ LinH such that Tr[ρ] = 1.
Given a pure state |ψ〉 ∈ H, we denote with ψ := |ψ〉〈ψ |
the corresponding projector. A set R = {ρi} of states is said
to be classical when the states commute pairwise, namely
[ρi,ρk] = 0 for any i,k. Here, the notion of classicality has
to be understood in an operational sense: in our scenario, the
observed correlations can be reproduced by a classical variable
taking d possible values if, and only if, they can be reproduced
by measurements on pairwise commuting states acting on
a Hilbert space of dimension d (this will become clearer
after Lemma 1 below). A general quantum measurement is
represented by a positive operator-valued measure (POVM),
namely a set of positive semidefinite Hermitian matrices �j

such that
∑

j �j = I . A POVM � = {�j } is said to be
classical when [�j,�l] = 0 for any j,l. The joint probability
of outcome j given input state ρi is given by the Born rule,
namely pj |i = Tr[ρi�

j ].
The general setup introduced in Ref. [4] for performing

device-independent dimension witnessing is given by a prepar-
ing device (let us say on Alice’s side) and a measuring device
(on Bob’s side) as in Fig. 1. In the most general scenario, the
devices may share a priori correlated information, classical
and quantum. However, in many realistic situations, one
can assume that the preparing and measuring devices are
uncorrelated and that all the correlations observed between
the preparation and the measurement are due to the mediating
particle connecting the two devices. An intermediate and also
valid possibility is to assume that the devices only share
classical correlations. In this case, the value of a random
variable λ distributed according to qλ is accessible to preparing
and measuring devices. In this work we focus on this last
possibility. Alice chooses the value of index i ∈ [1,M] and
sends a fixed state ρi,λ ∈ LinH to Bob. Bob chooses the value
of index k ∈ [1,K] and performs a fixed POVM �k,λ on the
received state, obtaining outcome j ∈ [1,N ]. After repeating
the experiment several times (we consider here the asymptotic
case), they collect the statistics about indexes i,j,k obtaining
the conditional probabilities pj |i,k . Note that we also implicitly

assume that we are dealing with independent and identically
distributed events.

We now introduce the set Q (the set C) of correlations
achievable with quantum (classical) preparations.

Definition 1 (Set of quantum correlations). For any
M,K,N,d ∈ N we define the set of quantum correlations
Q(M,K,N,d) as the set of correlations pj |i,k with i ∈ [1,M],
k ∈ [1,K] and j ∈ [1,N ] such that there exist a Hilbert space
H with dimH = d, a quantum set R = {ρi ∈ LinH}M1 of
states, and a set P = {�k}K1 of POVMs �k = {�j

k ∈ LinH}N1
for which pj |i,k = Tr[ρi�

j

k ], namely

Q := {
p | ∃ d-dimensional Hilbert space H,

∃ quantum set {ρi ∈ LinH}M1 of states,

∃ set {�k}K1 of POVMs �k = {
�

j

k ∈ LinH
}N

1

such that pj |i,k = Tr
[
ρi�

j

k

]}
.

Definition 2 (Set of classical correlations). For any
M,K,N,d ∈ N we define the set of classical correlations
C(M,K,N,d) as the set of correlations pj |i,k with i ∈ [1,M],
k ∈ [1,K] and j ∈ [1,N ] such that there exist a Hilbert space
H with dimH = d, a classical set R = {ρi ∈ LinH}M1 of
states, and a set P = {�k}K1 of POVMs �k = {�j

k ∈ LinH}N1
for which pj |i,k = Tr[ρi�

j

k ], namely

C := {
p | ∃ d-dimensional Hilbert space H,

∃ classical set {ρi ∈ LinH}M1 of states,

∃ set {�k}K1 of POVMs �k = {
�

j

k ∈ LinH
}N

1

such that pj |i,k = Tr
[
ρi�

j

k

]}
.

We write Q and C omitting the parameters M,K,N,d

whenever they are clear from the context.
Remark 1. We notice that, when shared randomness is

allowed between quantum (classical) preparations and mea-
surements, the set of achievable correlations is given by
ConvQ (Conv C), where for any set X we denote with ConvX
the convex hull of X .

The following Lemma shows that it is not restrictive
to consider only classical POVMs, that is, measurements
consisting of commuting operators, in the definitions of
classical correlations.

Lemma 1. For any correlation p = {pj |i,k} ∈ C there exist a
classical set R = {ρi} of states and a set Q = {�k} of classical
POVMs �k = {�j

k} such that pj |i,k = Tr[ρi�
j

k ].
Proof. By hypothesis there exist a classical set R = {ρi} of

states and a set P = {�k} of POVMs �k = {�j

k} such that
pj |i,k = Tr[ρi�

j

k ] for any i,j,k. Take �
j

k = ∑
i〈i|�j

k |i〉|i〉〈i|
where {|i〉} is an orthonormal basis with respect to which the
ρi’s are diagonal (it is straightforward to verify that �j

k � 0 for
any k,j and

∑
j �

j

k = I for any k). We have pj |i,k = Tr[ρi�
j

k ]
for any i,j,k, which proves the statement. �

Lemma 1 thus proves that every set of probabilities obtained
with commuting states can be performed with classical states
and classical POVMs. This clearly implies that commuting
states may be equally regarded as classical variables, and
commuting-element measurements as readout of classical
variables.
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We can now introduce DIDWs. Building only on the
knowledge of pj |i,k , our task is to provide a lower bound on
the dimension d of H.

Definition 3. For any set of correlations X between
M preparations and K measurements with N outcomes, a
device-independent dimension witness WX (p) is a function
of the conditional probability distribution p = {pj |i,k} with
i ∈ [1,M], k ∈ [1,K], and j ∈ [1,N ] such that

WX (p) > L ⇒ p �∈ X , (1)

for some L which depends on WX .
Interestingly, in many situations the value of the bound L

in the definition of a dimension witness varies depending on
whether one is interested in classical or quantum ensembles
of states. This gives a second application for dimension wit-
nesses, namely quantum certification: if the system dimension
is assumed, dimension witnesses allow certifying its quantum
nature. It is precisely this quantum certification that makes
dimension witnesses useful for quantum information protocols
[7,8].

Motivated by Remark 1, for any M,N,K,d ∈ N when
X = Conv C(M,N,K,d) [whenX = ConvQ(M,N,K,d)] we
say that WX (p) is a classical (quantum) dimension witness for
dimension d in the presence of shared randomness. Given
a set R = {ρi,λ} of states and a set P = {�k,λ} of POVMs
�k,λ = {�j

k,λ}, we define WConv C(R,P ) := WConv C(p) with

p = {pj |i,k} and pj |i,k = ∑
λ qλTr[ρi,λ�

j

k,λ], and analogously
for WConvQ.

In this work we will consider only linear DIDWs, namely
inequalities of the form of Eq. (1) such that

W (p) := 	c · 	p =
∑
i,j,k

ci,j,kpj |i,k, (2)

where 	c is a constant vector.
Notice that for any function W (p) and constant L, the

witness W (p) > L is only a representative of a class of
equivalent witnesses such that if W ′(p) > L′ is a member
of the class, then W (p) > L if and only if W ′(p) > L′ for any
conditional distribution p. The following Lemma provides a
transformation that preserves this equivalence.

Lemma 2. Given a function W (p) = ∑
i,j,k ci,j,kpj |i,k and

a constant L, take W ′(p) = ∑
i,j,k c′

i,j,kpj |i,k with c′
i,j,k =

ci,j,k + αi,k and L′ = L + ∑
i,k αi,k for any αi,k that does not

depend on outcome j . Then one has W (p) > L if and only if
W ′(p) > L′ for any p.

Proof. It follows immediately by direct computation. �
In the following our task will be to find a set R of quantum

states and a set P of POVMs such that a linear witness
W (R,P ) maximally violates inequality (1). The following
Lemma allows us to simplify the optimization problem.

Lemma 3. The maximum of any linear dimension witness
W (R,P ) is achieved by an ensemble R of pure states and
without shared randomness.

Proof. The thesis follows immediately from linearity. �
Due to Lemma 3 the maximization of Eq. (2) is equivalent

to the maximization of

W (R,P ) =
∑
i,j,k

ci,j,k〈ψi |�j

k |ψi〉,

over the sets R = {ψi} of pure states and the sets P = {�k} of
POVMs �k = {�j

k}.

III. PROPERTIES OF THE SETS OF QUANTUM
AND CLASSICAL CORRELATIONS

Before moving to the main results in this article, we discuss
in this section several properties of the sets of classical and
quantum correlations. In particular, we study whether the sets
are convex and prove some inclusions among them. These
results allow for gaining a better understanding of the geometry
of these sets of correlations.

Since classical correlations can always be reproduced by
quantum ones, we immediately have C ⊆ Q and Conv C ⊆
ConvQ. Moreover, by definition we have C ⊆ Conv C and
Q ⊆ ConvQ. Here we show an example where C is nonconvex
(namely C ⊂ Conv C) and C ⊂ Q. Take M = 3, K = 2,
N = 2, and d = 2 in the setup of Fig. 1. Consider the following
conditional probability distribution pj |i,k of obtaining outcome
j on Bob’s device given input i on Alice’s and k on
Bob’s,

pj |i,1 =

⎛
⎜⎝

1 0
1
2

1
2

0 1

⎞
⎟⎠ , pj |i,2 =

⎛
⎜⎝

1
2

1
2

1 0
1
2

1
2

⎞
⎟⎠ , (3)

where rows and columns are labeled by i and j , respectively.
First we show that p ∈ Conv C. Indeed p can be obtained

when Alice and Bob share classical correlations represented
by a uniformly distributed random variable λ taking values
1,2 making use of the classical set R = {ρi,λ} of states and
of the set P = {�k,λ} of classical POVMs �k,λ = {�j

k,λ},
with

ρ1,1 = |0〉〈0|, ρ2,1 = |0〉〈0|, ρ3,1 = |1〉〈1|,
ρ1,2 = |0〉〈0|, ρ2,2 = |1〉〈1|, ρ3,2 = |1〉〈1|,

and

�1
1,1 = |0〉〈0|, �1

2,1 = |0〉〈0|,
�1

1,2 = |0〉〈0|, �1
2,2 = |1〉〈1|,

which proves that p = {pj |i,k = ∑
λ qλTr[ρi,λ�

j

k,λ]} ∈
Conv C.

Now we show that p ∈ Q. Indeed p can be obtained by
Alice and Bob making use of the quantum set R = {ρi} of
states and of the set P = {�k} of quantum POVMs �k =
{�j

k}, with

ρ1 = |0〉〈0|, ρ2 = |+〉〈+|, ρ3 = |1〉〈1|,
and

�1
1 = |0〉〈0|, �1

2 = |+〉〈+|,
which proves that p ∈ Q.

Finally, we verify that if Alice and Bob make use of
classical sets of states and POVMS and do not have access to
shared randomness there is no way to achieve the probability
distribution p given by Eq. (3). Indeed, to have perfect
discrimination between ρ1 and ρ3 with POVM �1 [see Eq. (3)],
one must take ρ1 and ρ3 orthogonal—let us say without loss
of generality ρ1 = |0〉〈0| and ρ3 = |1〉〈1|, and �1

1 = |0〉〈0|
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FIG. 2. (Color online) Schematic representation of the sets of
classical and quantum correlations between preparations, measure-
ments, and outcomes. Dashed line represents the (nonconvex) set C
of classical correlations without shared randomness; the rectangle
represents the set Conv C of classical correlations with shared
randomness; the ellipsoid represents the set ConvQ of quantum
correlations with shared randomness.

and �2
1 = |1〉〈1|. Due to the hypothesis of classicality of the

sets of states, ρ2 must be a convex combination of ρ1 and
ρ3. Then, in order to have pj |2,1 as in Eq. (3), one has to
choose ρ2 = (ρ1 + ρ3)/2 = I/2. Finally, the only possible
choice for �2 is �1

2 = I and �1
2 = 0, which is incompatible

with the remaining entries of pj |i,2 in Eq. (3). This proves that
p �∈ C.

The relations between the sets of quantum and classical
correlations are schematically depicted in Fig. 2.

IV. ROBUSTNESS OF DIMENSION WITNESSES

In practical applications, losses (due to imperfections in
the experimental implementations or artificially introduced by
a malicious provider) can noticeably affect the effectiveness
of dimension witnessing. The main result of this section is
to provide a threshold value for the detection efficiency that
allows one to witness the dimension of the systems prepared
by a source or to discriminate between its quantum or classical
nature.

The task is to determine whether a given conditional
probability distribution belongs to a particular convex set,
namely Conv C or ConvQ (see Remark 1). The situation
is illustrated in Fig. 3. The experimental implementation is
constrained to be lossy, namely it can be modeled considering
an ideal preparing device followed by a measurement device
with nonideal detection efficiency. This means that any POVM
�k,λ on Bob’s side is replaced by a POVM �

(η)
k,λ with detection

efficiency η, namely

�
(η)
k,λ := {η�k,λ,(1 − η)I }. (4)

We notice that each lossy POVM has one outcome more
than the ideal one, corresponding to the no-click event. In a
general model, the detection efficiency η may be different for
any POVM �k,λ. Nevertheless, in the following we assume
that they have the same detection efficiency, which is a
reasonable assumption if the detectors have the same physical
implementation [11]. Analogously given a set P = {�k,λ} of
POVMs we will denote with P (η) = {�(η)

k,λ} the corresponding

set of lossy POVMs. Upon defining p(η) := {p(η)
j |i,k} with

FIG. 3. (Color online) Problem of the robustness of device-
independent dimension witness. The convex hulls ConvQ and Conv C
of the sets of quantum and classical correlations are represented as
in Fig. 2. In the presence of loss, only a subset of the possible cor-
relations is attainable. The subset, surrounded by bold line in the
figure, is parametrized by detection efficiency η. The task is to find the
threshold value in η such that dimension witnessing is still possible.
For example, when the task is to discriminate between the quantum or
classical nature of a source, one is interested in achieving correlations
in the dark area of the figure, and our goal is to determine the values
of η such that this area is not null.

p
(η)
j |i,k = ∑

λ qλTr[ρi,λ�
j,(η)
k,λ ], one clearly has

p(η) = ηp(1) + (1 − η)p(0). (5)

To attain our task we maximize a given dimension witness
over the set of lossy POVMs as given by Eq. (4). Due to the
model of loss introduced in Eq. (4) and to the freedom in the
normalization of dimension witnesses given by Lemma 2, in
the following without loss of generality for any dimension
witness W as given in Eq. (2) it is convenient to take

ci,N,k = 0, ∀i,k. (6)

Then we have the following Lemma.
Lemma 4. Given a set R = {ρi,λ}Mi=1 of states and a set

P = {�k,λ}Kk=1 of POVMs �k,λ = {�j

k,λ}N−1
j=1 , for any linear

dimension witness W (p) = ∑
i,j,k ci,j,kpj |i,k with i ∈ [1,M],

j ∈ [1,N ], and k ∈ [1,K] normalized as in Eq. (6), one has

W (R,P (η)) = ηW (R,P (1)).

Proof. One has

W (R,P (η)) =
∑
i,j,k

ci,j,k

[
ηp

(1)
j |i,k + (1 − η)p(0)

j |i,k
]

= η W (R,P (1)),

where the first equality follows from Eq. (5) and the second
from the fact that W (p(0)) = 0 due to the normalization given
in Eq. (6). �

In particular from Lemma 4 it follows that for any linear
dimension witness W one has

max
R,P

W (R,P (η)) = η max
R,P

W (R,P (1)),

arg max
R,P

W (R,P (η)) = arg max
R,P

W (R,P (1)).

Due to Lemma 4, it is possible to recast the optimization of
dimension witnesses in the presence of loss to the optimization

042312-4
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in the ideal case. Then due to Lemma 3 it is not restrictive
to carry out the optimization with pure states and no shared
randomness. Consider the case where M = d + 1, K = d, and
N = 3. Using the technique discussed in Appendix B one can
verify that the witness given by Eq. (2) with the following
coefficients:

ci,j,k =
⎧⎨
⎩

−1 if i + k � M, j = 1,

+1 if i + k = M + 1, j = 1,

0 otherwise,
(7)

is the most robust to nonideal detection efficiency. This fact
should not be surprising, as we notice that this witness relies on
only two out of three outcomes. According to [4], we denote
it Id+1. In [4] (see also [13]) it was conjectured that for any
dimension d the dimension witness Id+1 is tight in the absence
of loss.

Now we provide upper and lower bounds for the maximal
value I ∗

d+1 := maxR,P Id+1 where the maximization is over
any set R = {ρi ∈ LinH} of states and any set P = {�k} of
POVMs �k = {�j

k ∈ LinH} with dimH = d.
Lemma 5. For any dimension d we have I ∗

d+1 � I ∗
d + 1.

Proof. The statement follows from the recursive expression
Id+1 = Id + C, where

C := −
d∑

i=1

〈ψi |�1
1|ψi〉 + 〈ψd+1|�1

1|ψd+1〉,

and noticing that Id and C can be optimized
independently. �

A tight upper bound for I3 was provided in [4]. In the
following Lemma we provide a constructive proof suitable for
generalization to higher dimensions.

Lemma 6. For dimension d = 2 we have I ∗
3 = √

2.
Proof. The statement follows from standard optimization

with the Lagrange multipliers method and from the straight-
forward observation that given two normalized pure states |v0〉
and |v1〉, if a pure state |u〉 can be decomposed as follows:

|u〉 = 〈v0|u〉|v0〉 + 〈v1|u〉|v1〉,
then |〈v0|u〉| = |〈v1|u〉|. �

Making use of Lemmas 5 and 6, we provide upper and
lower bounds on I ∗

d+1 as follows:

d − 2 +
√

2 � I ∗
d+1 � d, (8)

where the second inequality follows from the nondiscrim-
inability of d + 1 states in dimension d (see [4]).

We now make use of these facts to provide our main result,
namely a lower threshold for the detection efficiency required
to reliably dimension witnessing. We consider the problem
of lower bounding the dimension of a system prepared by
a noncharacterized source in Proposition 1, as well as the
problem of discriminating between the quantum or classical
nature of a source in Proposition 2.

Proposition 1. For any d there exists a dimension witnessing
setup such that it is possible to discriminate between the
quantum and classical nature of a d-dimensional system using
POVMs with detection efficiency η whenever

η � ηqc := (d − 1)/Id+1. (9)

0.8

0.9

1

2 8 14 20 26 32

η q
c

d

FIG. 4. (Color online) Threshold value (middle line) of the
detection efficiency ηqc as in Eq. (9) as a function of the dimension
d , obtained through numerical optimization of Id+1 with Algorithm
2. The lower bound (lower line) and upper bound (upper line) given
by Eq. (10) are also plotted. As expected, the upper bound is tight
for d = 2. The detection efficiency ηqc asymptotically goes to 1 as
d → ∞, since its upper and lower bound do the same.

Furthermore, one has

d − 1

d
� ηqc � d − 1

d − 2 + √
2
. (10)

Proof. We provide a constructive proof of the statement.
Take M = d + 1, K = d, and N = 3, and we show that Id+1

satisfies the thesis.
We notice that the maximum value of Id+1 attainable with

classical states is given by d − 1 [4]. Then ηqc is the minimum
value of the detection efficiency such that Id+1 can discriminate
a quantum system from a classical one.

Due to Lemma 4 we have Eq. (9). From Eq. (8) the lower
and upper bounds for ηqc given in Eq. (10) straightforwardly
follow. �

Notice that Id+1 in Eq. (9) can be numerically evaluated
with the techniques discussed in Appendix B. Figure 4 plots
the value of ηqc for different values of the dimension d of
the Hilbert space H. The threshold in the detection efficiency
when d = 2 is ηqc = 1/

√
2, going asymptotically to 1 with d

as ∼1 + 1/d.
Proposition 2. For any d there exists a dimension wit-

nessing setup such that it is possible to lower bound the
dimension of a (d + 1)-dimensional system using POVMs
with detection efficiency η whenever

η � ηdim := Id+1/d. (11)

Furthermore, one has

ηdim � 1 − 2 − √
2

d
. (12)

Proof. We provide a constructive proof of the statement.
Take M = d + 1, K = d, and N = 3, and we show that Id+1

satisfies the thesis.
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FIG. 5. (Color online) Threshold value (upper line) of the
detection efficiency ηdim as in Eq. (11) as a function of the dimension
d , obtained through numerical optimization of Id+1 with Algorithm 2.
The lower bound (lower line) given by Eq. (12) is also plotted. As
expected, the lower bound is tight for d = 2. The detection efficiency
ηdim asymptotically goes to 1 as d → ∞, since its lower bound does
the same (and ηdim � 1 is a trivial upper bound).

We notice that the maximum value of Id+1 attainable in any
dimension > d is given by d [4]. Then ηdim is the minimum
value of the detection efficiency such that Id+1 can lower bound
the dimension of a (d + 1)-dimensional system.

Due to Lemma 4 we have Eq. (11). From Eq. (8) the
lower bound to ηdim given by Eq. (12) straightforwardly
follows. �

Notice that Id+1 in Eq. (11) can be numerically evaluated
with the techniques discussed in Appendix B. Figure 5 plots
the value of ηdim for different values of the dimension d of
the Hilbert space H. The threshold in the detection efficiency
when d = 2 is ηqc = 1/

√
2, going asymptotically to 1 with d

as ∼1 + 1/d. We notice that ηdim grows faster than ηqc, thus
showing that, for fixed dimension, the discrimination between
the quantum or classical nature of the source is more robust
to loss than lower bounding the dimension of the prepared
states.

V. CONCLUSION

In this work we addressed the problem of whether a lossy
setup can provide a reliable lower bound on the dimension of a
classical or quantum system. First we provided some relevant
properties of the sets of classical and quantum correlations at-
tainable in a dimension witnessing setup. Then we introduced
analytical and numerical tools to address the problem of the
robustness of DIDWs, and we provided the amount of loss that
can be tolerated in dimension witnessing. The presented results
are of relevance for experimental implementations of DIDWs,
and can be naturally applied to semi-device-independent QKD
and QRACs.

We notice that, while we provided analytical proofs of our
main results, i.e., Propositions 1 and 2, their optimality as
a bound relies on numerical evidences. In particular, they are

optimal if the dimension witness Id+1 is indeed the most robust
to loss for any d, which is suggested by numerical evidence
obtained with the techniques of Appendix A and Appendix B.
Thus a legitimate question is whether the bounds provided
in Propositions 1 and 2 are indeed optimal. Moreover, it is
possible to consider models of loss more general than the
one considered here, e.g., one in which a different detection
efficiency is associated to any POVM.

A natural generalization of the problem of DIDWs, in the
ideal as well as in the lossy scenario, is that in the absence of
correlations between the preparations and the measurements.
In this case, as discussed in this work, the relevant sets of
correlations are Q and C, which are nonconvex as shown
in Sec. II. The nonconvexity of the relevant sets allows the
exploitation of nonlinear witnesses—as opposed to what we
did in the present work. An intriguing but still open question
is whether there are situations in which this exploitation
allows one to dimension witness for any non-null value of
the detection efficiency.

Another natural generalization of the problem of DIDWs is
that of entangled assisted DIDWs, namely when entanglement
is allowed to be shared between the preparing device on Alice’s
side and the measuring device on Bob’s side. This problem is
similar to that of superdense coding [14]. Consider again Fig. 1.
In the simplest superdense coding scenario, Alice presses
one button out of M = 4, while Bob always performs the
same POVM (K = 1) obtaining one out of N = 4 outcomes.
The dimension of the Hilbert space H is dim(H) = 2, but
a pair of maximally entangled qubits is shared between the
parties. In this case, the results of [14] imply that a classical
system of dimension 4 (quart) can be sent from Alice to Bob
by sending a qubit (corresponding to half of the entangled
pair).

Consider the general scenario where now the two parties are
allowed to share entangled particles. The superdense coding
protocol automatically ensures that by sending a qubit Alice
and Bob can always achieve the same value of any DIDW
as attained by a classical quart. Remarkably, the superdense
coding protocol turns out not to be optimal, as we identified
more complex protocols beating it. In particular, we found a
(M = 4,K = 2,N = 4) situation for which, upon performing
unitary operations on her part of the entangled pair and
subsequently sending it to Bob, Alice can achieve correlations
that cannot be reproduced upon sending a quart. This thus
proves the existence of communication contexts in which
sending half of a maximally entangled pair is a more powerful
resource than a classical quart. This observation is analogous
to that done in [9], where it was shown that entangled assisted
QRACs (where an entangled pair of qubits is shared between
the parties) outperform the best of known QRACs. For these
reasons we believe that the problem of entangled assisted
DIDWs deserves further investigation.
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APPENDIX A: NUMERICAL OPTIMIZATION
OF DIMENSION WITNESSES

Given a linear dimension witness W the following algo-
rithm converges to a local maximum of W (R,P ).

Algorithm 1. For any set R(0) = {ψ (0)
i } of pure states and

any set P (0) = {�(0)
k } of POVMs �

(0)
k = {�j,(0)

k },
(1) let |ψ̄ (n+1)

i 〉 = [(1 − ε)I + ε
∑

j,k ci,j,k�
j,(n)
k ]|ψ (n)

i 〉,
(2) let �̄

j,(n+1)
k = {[(1 − ε)I + ε

∑
i ci,j,kψ

(n)
i ]

√
�

j,(n)
k }2,

(3) normalize |ψ (n+1)
i 〉 = ‖ψ̄ (n+1)

i ‖−1/2|ψ̄ (n+1)
i 〉,

(4) normalize �
j,(n+1)
k = S

− 1
2

k �̄
j,(n+1)
k S

− 1
2

k with Sk =∑
j �̄

j,(n+1)
k .

As for all steepest-ascent algorithm, there is no protection
against the possibility of convergence toward a local, rather
than a global, maximum. Hence one should run the algorithm
for different initial ensembles in order to get some confidence
that the observed maximum is the global maximum (although
this can never be guaranteed with certainty). Any initial set of
states and any initial set of POVMs can be used as a starting
point, except for a subset corresponding to minima of W (R,P ).
These minima are unstable fix points of the iteration, so even
small perturbations let the iteration converge to some maxima.
The parameter ε controls the length of each iterative step, so
for ε too large, an overshooting can occur. This can be kept
under control by evaluating W (R,P ) at the end of each step: if
it decreases instead of increasing, we are warned that we have
taken ε too large.

Referring to Fig. 1, the simplest nontrivial scenario one
can consider is the one with M = 3 preparations and K = 2
POVMs each with N = 3 outcomes, one of which corresponds
to a no-click event. In this case one has several tight classical
DIDWs. Applying Algorithm 1 we verified that among them
the most robust to loss is given by Eq. (2) with coefficients
given by Eq. (7).

APPENDIX B: NUMERICAL OPTIMIZATION OF Id+1

The following Lemma proves that the POVMs maximizing
Id+1 for any dimension d are such that one of their elements is
a projector on a pure state, thus generalizing a result from [15].

Lemma 7. For any dimension d, the maximum of Id+1 is
achieved by a set P = {�k} of POVMs �k = {�j

k} with �1
k a

projector with rank �1
k = 1 for any k.

Proof. For any fixed set R = {ψi} of pure states define
Ak := −∑

i �=k ψi , B := ψk , and Xk := Ak + Bk . Then clearly
Ak � 0, Bk � 0, and rank Bk = 1 for any k. From Eq. (2)
it follows immediately that the optimal set P ∗ = {�∗

k} of
POVMs �∗

k = {�∗j

k } is such that �∗1
k = arg min�1

k
Tr[X�1

k].
The optimum of Id+1 is achieved when �1

k is the sum of the
eigenvectors of Xk corresponding to positive eigenvalues.

Upon denoting with λ1(Ak) � · · · � λn(Ak) the eigen-
values of Ak , the Weyl inequality (see for example [16])
λ1(Xk) � λ1(Ak) + λn(Bk) holds for any n. Since λ1(Ak) � 0
and λn(Bk) = 0 for any k and for any n �= 0, the thesis follows
immediately. �

Algorithm 1 can be simplified using Lemma 7. The
following algorithm converges to a local maximum of Id+1.

Algorithm 2. For any set R(0) = {ψ (0)
i } of pure states and

any set P (0) = {�(0)
k } of POVMs �

(0)
k = {�j,(0)

k },
(1) let |ψ̄ (n+1)

i 〉 = |ψ (n)
i 〉 + ε

∑
j,k ci,j,k〈π (n)

k |ψ (n)
i 〉|π (n)

k 〉,
(2) let |π̄ (n+1)

k 〉 = |π (n)
k 〉 + ε

∑
i,k ci,j,k〈ψ (n)

i |π (n)
k 〉|ψ (n)

i 〉,
(3) normalize |ψ (n+1)

i 〉 = ‖ψ̄ (n+1)
i ‖−1/2|ψ̄ (n+1)

i 〉,
(4) normalize |π (n+1)

k 〉 = ‖π̄ (n+1)
k ‖−1/2|π̄ (n+1)

k 〉.
The same remarks made about Algorithm 1 hold true

for Algorithm 2. Nevertheless, we verified that in practical
applications Algorithm 2 always seems to converge to a global,
not a local, maximum. This can be explained considering that
without loss of generality it optimizes over a smaller set of
POVMs when compared to Algorithm 1. Moreover, we noticed
that the optimal sets of states and POVMs are real, namely there
exists a basis with respect to which states and POVM elements
have all real matrix entries. A similar observation was done
in [17] in the context of Bell’s inequalities.
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