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Nonthreshold quantum secret-sharing schemes in the graph-state formalism
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In a recent work, Markham and Sanders proposed a framework to study quantum secret-sharing (QSS) schemes
using graph states. This framework unified three classes of QSS protocols, namely, sharing classical secrets over
private and public channels, and sharing quantum secrets. However, previous work on graph-state secret sharing
mostly focused on threshold schemes. In this paper, we focus on general access structures. We show how to
realize a large class of arbitrary access structures using the graph-state formalism. We show an equivalence
between [[n,1]] binary quantum codes and graph-state secret-sharing schemes sharing one bit. We also establish
a similar (but restricted) equivalence between a class of [[n,1]] Calderbank-Shor-Steane codes and graph-state
QSS schemes sharing one qubit. With these results we are able to construct a large class of graph-state quantum
secret-sharing schemes with arbitrary access structures.

DOI: 10.1103/PhysRevA.86.042303 PACS number(s): 03.67.Dd, 03.67.Pp, 03.67.Ac

I. INTRODUCTION

Quantum secret sharing (QSS) [1,2] deals with the prob-
lem of sharing classical or quantum secrets using quantum
information. Further, secret-sharing protocols could be used
in the presence or absence of eavesdroppers. In Ref. [3], a
graph-state formalism was proposed with a view to unifying
all these variants under the same umbrella. This framework was
useful in ways other than unifying the various quantum secret-
sharing protocols. For instance, building upon this framework,
researchers have been able to propose new secret sharing
protocols [4] and make a connection with the measurement-
based quantum computation model [5]. More recently, it has
motivated research in graph-theoretic concepts such as weak
odd domination [6].

The graph-state framework does in principle include non-
threshold access structures for quantum secrets. However,
neither [3] nor subsequent works [4–7] provide any procedure
to explicitly construct schemes with arbitrary access structures
in the graph-state formalism. The graph-state framework
for quantum secret-sharing approaches it from a perspective
other than quantum error correction, in contrast to the theory
as developed in Refs. [1,8,9]. But since any secret-sharing
protocol is ultimately an error-correcting code, the graph-state
schemes must be equivalent to those based on quantum codes,
and the protocols in Ref. [3] must arise from codes. But no
results are known in this direction.

The main contribution of this paper is to fill these gaps.
We make transparent the connection between the graph-state
framework and the protocols presented using quantum codes.
We show an equivalence between [[n,1]] binary quantum
codes and graph-state protocols sharing one bit. We show a
restricted equivalence between a class of [[n,1]] Calderbank-
Shor-Steane (CSS) codes and graph-state secret-sharing pro-
tocols sharing one qubit. We also translate many of the
schemes developed using quantum codes into those based on
the graph-state formalism.

We emphasize that our results are constructive and provide
concrete details for the construction of the secret-sharing
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schemes as well as the associated details of recovery. We
restrict ourselves to the qubit case in this paper, although as
shown in Ref. [7] graph-state secret-sharing schemes can be
extended to other alphabets.

II. BACKGROUND

A. Quantum secret sharing

We briefly review the pertinent ideas of quantum secret
sharing. We assume that the reader is familiar with quantum
codes and the stabilizer formalism [10,11]. In a secret-sharing
scheme, a dealer distributes an encrypted secret to a collection
of players. Then certain subsets of players can collaboratively
reconstruct the secret. Those subsets which can recover the
secret are called authorized sets and those that cannot are said
to be unauthorized sets. The collection of authorized sets is
called the access structure of the scheme, which we denote as
�. For an access structure to be valid, it must be monotonic,
i.e., any set that contains an authorized set must also be an
authorized set. An authorized set is said to be minimal if any
proper subset of it is unauthorized. The collection of minimal
authorized sets is called the minimal access structure.

In a threshold scheme with threshold k, any subset consist-
ing of k or more players can access the secret while those with
fewer players cannot. We denote such a quantum threshold
scheme on n players by ((k,n)). In a general access structure,
the authorized sets can be of different sizes and all subsets of
that size need not be authorized. A collection of sets �gen is
said to generate the access structure �, if every authorized set
contains some element of �gen.

A secret-sharing scheme is said to be perfect if the
unauthorized sets cannot extract any information about the
secret. In this paper we are interested only in perfect secret-
sharing schemes.

When the secret to be shared is classical, the dealer
distributes a set of orthogonal quantum states that encode
the secret. The following result, due to Gottesman, states
the conditions that must be satisfied by authorized and
unauthorized sets for sharing classical secrets through a QSS
scheme.
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Proposition 1 (access conditions for classical secrets [8]).
Suppose we have a set of orthonormal states |ψi〉 encoding a
classical secret. Then a set T is an unauthorized set if and only
if

〈ψi |F |ψi〉 = c(F ) (1)

independent of i for all operators F on T . The set T is
authorized if and only if

〈ψi |E|ψj 〉 = 0 (i �= j ) (2)

for all operators E on the complement of T .
If we are to share a quantum secret, then the access

structure, in addition to being monotonic, must also satisfy the
no-cloning theorem [1]. This implies that no two authorized
sets are disjoint. In this case the access structure must satisfy
the conditions of Proposition 1 for any state in the space
spanned by the encoded states |ψi〉; see [8, Theorem 1].

B. Review of graph-state formalism for quantum secret sharing

In Ref. [3], the quantum secret-sharing protocols were
classified as follows:

(i) CC: This protocol deals with the sharing of classical
secrets, assuming secure channels between the dealer and
players.

(ii) CQ: In this protocol we share classical secrets where
we assume that the channels between the dealer and players
are susceptible to eavesdropping.

(iii) QQ: This protocol shares quantum secrets using
quantum channels which may be public or private.

In this paper we restrict our attention to CC and QQ
protocols.

Let G be a graph with vertex set V (G). We denote the
neighbors of a vertex v ∈ V (G) as Nv . We denote the graph
obtained by deleting the vertex v from G by G \ v. The graph
state defined on G is denoted |G〉. Recall that the graph state
is a stabilizer state and satisfies Kv|G〉 = |G〉, where

Kv = Xv

∏
u∈Nv

Zu for all v ∈ V (G). (3)

We use the notation KA = ∏
i∈A Ki . The stabilizer of |G〉 is

denoted as S(|G〉). The stabilizer matrix of |G〉 is of the form
[I |AG], where AG is the adjacency matrix of G.

In the CC quantum secret-sharing protocol, the secret bit s

is encoded as

E : s �→ Zs
A|G〉, (4)

where Zs
A = ∏

i∈A Zs
i . We denote a CC protocol using the

graph G and encoding using the set A by (G,A). An authorized
set ω can recover the secret either by performing a joint
measurement of an appropriate operator M ∈ S(|G〉) or by
local measurements and combining these results classically
(after classical communication), in other words through local
operations and classical communication (LOCC).

The QQ protocol can be viewed as an extension of the CC
protocol (G,A) where the dealer has the capability to encode a
quantum secret. In effect the dealer must realize the following
map:

E : a|0〉 + b|1〉 �→ a|G〉 + bZA|G〉. (5)

In the QQ protocol, the dealer adds an additional ancilla qubit
whose state is the secret to be shared. The dealer then encodes
this state by a procedure similar to teleportation. Following this
the dealer might have to perform some correction operations
on the encoded state to ensure that the secret has been properly
teleported. The dealer then distributes the qubits to the players.
In this setting, authorized subsets of players can reconstruct the
secret by means of suitable nonlocal operations. A QQ protocol
on an arbitrary graph does not lead to a perfect secret-sharing
scheme. In this paper we are concerned only with perfect QQ
protocols.

In Ref. [5], the graph-state secret-sharing schemes were
characterized in terms of graphical conditions. Define the odd
neighborhood of a set S ⊆ V (G) as

Odd(S) = {v ∈ V (G) such that |Nv ∩ S| = 1 mod 2}. (6)

Proposition 2 (Authorized sets for CC protocol [5]). For the
CC classical secret-sharing protocols (G,A) of [3], the secret
can be accessed by a set S if there exists D ⊆ S such that

D ∪ Odd(D) ⊆ S, (7)

|D ∩ A| = 1 mod 2. (8)

Proposition 3 (Unauthorized sets for CC protocol [5]). For
the CC classical secret-sharing protocols of [3] on G, the secret
cannot be accessed by a set S if there exists a K ∈ V (G) \ S

such that

Odd(K) ∩ S = A ∩ S. (9)

The authors of [5] proved that these two conditions were
sufficient and made the observation that it was an open
question which graphs satisfy them. That these conditions are
necessary and that any subset of V (G) satisfies exactly one of
Propositions 2 and 3 was shown in [4, Lemma 2].

The access conditions for QQ secret-sharing schemes are
the same as Propositions 2 and 3, except that they must hold
both for G and for the so-called conjugate graph obtained by
complementing G on the subgraph restricted to A.

III. GRAPH-STATE SCHEME FOR GENERAL
ACCESS STRUCTURES

A. Classical secrets

In this section we make a connection between the CC
protocol in the graph-state formalism and the standard error-
correction model. We establish a correspondence between
all graph-state schemes sharing one bit and [[n,1]] binary
quantum codes. This provides an alternative characterization
of the access structure of the CC secret-sharing protocols.
Further, Theorem 1 also generalizes the results of [12], which
uses CSS codes derived from self-dual codes.

Theorem 1. Let Q be an [[n,1]] quantum code with stabilizer
matrix

S =
[
Ir A1 A2 B 0 C

0 0 0 D In−r−1 E

]
= [SX|SZ], (10)
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where diag(B + CAt
2) = 0. Then Q leads to the CC protocol

(G,A), where the adjacency matrix of G is

AG =

⎡
⎢⎣

B + CAt
2 A1 A2

At
1 0 0

At
2 0 0

⎤
⎥⎦ , (11)

and the encoding set A = supp([ Ct Et 1 ]). A generating set
for the access structure of (G,A) is given by

�gen = {supp(g)|g is an encoded Z operator. } (12)

Proof. One choice of logical X and Z operators for Q is
given by [

X

Z

]
=

[
0 Et 1 Ct 0 0

0 0 0 At
2 0 1

]
. (13)

Note that the support of X is given by A = supp([ Ct Et 1 ]).
Let |0〉 be the state stabilized by S and Z. Let |1〉 = X|0〉.
Both |0〉 and |1〉 are not graph states. The stabilizer matrix of
I⊗rH⊗n−r |0〉 is

[
S

Z

]
=

⎡
⎣Ir 0 C B A1 A2

0 In−r−1 E D 0 0
0 0 1 At

2 0 0

⎤
⎦ ,

which through subsequent row transformations can be shown
to be equivalent to [I |AG]. Therefore, I⊗rH⊗n−r |0〉 = |G〉,
as it is stabilized by [I |AG]. Further, we have I⊗rH⊗n−r |1〉 =
I⊗rH⊗n−rX|0〉 = ZA|G〉. Therefore, up to local Clifford
gates, the basis states of the CC secret-sharing scheme induced
by (G,A) and the basis states of Q are equivalent.

Furthermore, the secret can be recovered if we can distin-
guish between the states |0〉 and |1〉. We next show that these
states can be distinguished. Let |ψs〉 = X

s |0〉, where s ∈ {0,1}.
Suppose that ω ⊆ {1, . . . ,n}. If ω contains the support of an

encoded Z operator, i.e., ω ⊇ supp(Z), then by measuring the
logical Z operator we can recover the secret because Z|ψs〉 =
ZX

s |0〉 = (−1)sX
s |0〉. Thus ω is an authorized set.

If ω does not contain the support of a logical Z operator,
then it is an unauthorized set. Let F be a (Pauli) operator
such that ω ⊇ supp(F ) �⊇ supp(ZM), for any M ∈ S. Let C(S)
be the centralizer of S. If F �∈ C(S), then F is detectable;
therefore 〈ψs |F |ψs〉 = 0. If F ∈ 〈i,S〉, then 〈ψs |F |ψs〉 = α

for some α ∈ {±i,±1}, independent of s. If F ∈ C(S) \ 〈i,S〉
and does not contain the support of an encoded Z operator, then
it must be an encoded X or Y operator. Since |ψs〉 = X

s |0〉,
we have 〈ψs |F |ψs〉 = 〈0|Xs

FX
s |0〉 = 0, where we used the

fact that F |0〉 = α|1〉 for some nonzero α ∈ C when F is
an encoded X or Y operator. Therefore, 〈ψs |F |ψs〉 = c(F )
independent of s for all operators in the support of ω; thus
by Proposition 1, ω is unauthorized. (We need to restrict our
attention only to Pauli operators [F in Eq. (1)] of Proposition
3) This shows that �gen generates the access structure for the
secret-sharing scheme.

Since the capacity to distinguish |0〉 and |1〉 enables the
recovery of s, the access structure generated by �gen must
coincide with the access structure as defined by Propositions 2
and 3. Thus the stabilizer code induces the graph-state secret-
sharing scheme (G,A). �

A few remarks are in order with respect to the above
theorem.

Remark 1. The requirements on diag(B + CAt
2) and the

form of the stabilizer matrix are not restrictions because any
stabilizer code can be transformed through local Clifford
unitaries to a code which satisfies these conditions. These two
codes will lead to the same access structure.

Remark 2. Since the standard form of the stabilizer matrix,
i.e., Eq. (10), is not unique, the graph-state scheme that can
be associated with the quantum code is not unique either.
Therefore the same [[n,1]] code can lead to different secret-
sharing schemes.

We also note that if B + CAt
2 = 0, then G is bipartite. This

is the case, for instance, for an [[n,1]] CSS code, for which
both B and C are all zero. If A1 is empty, i.e., r = n − 1 in
Eq. (10), then in effect we are covering all possible graphs. If
A2 = 0, then the access structure is trivial; the minimal access
structure contains a singleton set.

Theorem 1 gives a succinct characterization of the access
structure; we just need to specify the stabilizer generators and
the encoded Z operator. All the authorized sets can then be
enumerated. Note that our characterization does not give the
minimal access structure but rather a generating set for the
access structure. If we want to obtain the minimal access
structure, then we need to look only at those encoded Z

operators which are also minimal in the sense that they do
not properly contain any other encoded Z operator within their
support. We make the following observation regarding the size
of the authorized sets for secret-sharing schemes coming from
CSS codes.

Corollary 2. For the CC secret-sharing scheme in Theorem
1, if Q is a CSS code, then every set ω ⊆ {1, . . . ,n} of size
|ω| � r + 1, is an authorized set. If |ω| � r and n � 2r + 1,
then ω is authorized.

Proof. Let (a|b) = (a1, . . . ,an|b1, . . . ,bn) ∈ F2n
2 be an en-

coded operator of Q. Then it must satisfy SXbt + SZat = 0,
where SX and SZ are as defined in Eq. (10). If Q is a CSS
code, then B and C in Eq. (10) are both zero; further for the
encoded Z operator a = 0 and b is simply any combination
of linearly dependent columns of the matrix SX = [ Ir A1 A2

0 0 0 ].
Since the rank of SX is r , any collection of |ω| � r + 1
columns will be dependent and they must contain the support
of an encoded operator. If |ω| < r + 1, then |ω| � n − |ω| �
n − r � 2r + 1 − r � r + 1; thus ω must contain an encoded
Z operator and ω must be authorized. �

Theorem 1 shows that any [[n,1]] code can be used to realize
a graph-state quantum secret-sharing scheme. The converse,
namely, that every graph-state secret-sharing scheme leads
to an [[n,1]] code, is straightforward, but we include it for
completeness.

Corollary 3. Every (G,A) CC secret-sharing scheme corre-
sponds to a [[|V (G)|,1]] stabilizer code and vice versa. If G is
bipartite and A is a subset of one of the bipartitions, then (G,A)
corresponds to a [[|V (G)|,1]] CSS code up to local Clifford
gates.

Proof. We only sketch the proof. Suppose we have a (G,A)
graph-state secret-sharing scheme. Then the two states |G〉
and ZA|G〉 are both stabilized by a subgroup of S(|G〉). The
stabilizer of |G〉 is given in Eq. (3). Pick an arbitrary element
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a in A and form the following group:

S =
〈
K ′

v

∣∣∣∣K ′
v = Kv v ∈ A

K ′
v = KvKa v ∈ A

〉
.

As S is subgroup of S(|G〉), it obviously stabilizes |G〉. The
operator ZA anticommutes with Kv , if and only if v ∈ A.
Because {ZA,Ka} = 0, S also stabilizes ZA|G〉. Since S has
|V (G)| − 1 generators it defines a [[|V (G)|,1]] code. We can
choose ZA and Ka to be the logical X and Z operators for this
code, respectively.

(Although S is sufficient to characterize the code, we can
actually show that the authorized sets of (G,A) are also related
to the code. If B is an authorized set, then by Proposition 2,
B contains a set D satisfying Eqs. (7) and (8). It can be easily
verified that for such a set, {KD,ZA} = 0 and supp(KD) =
D ∪ Odd(D). Clearly, [Ka,KD] = 0; thus KD is an encoded
Z operator and every authorized set contains the support of an
encoded Z operator.) The preceding discussion together with
Theorem 1 proves the first part of the corollary.

For the second part let Vl ,Vr be the bipartition of V (G), with
A ⊆ Vr . Then observe that conjugation of S by I⊗|Vl |H⊗|Vr |
gives a stabilizer generated by X-only and Z-only generators,
i.e., a CSS code. �

A subtle point must be kept in mind when dealing with the
correspondence in Corollary 3, namely, it is not a one-to-one
correspondence between an [[n,1]] code and a CC secret-
sharing scheme. Many [[n,1]] codes could lead to the same CC
secret-sharing scheme. Further, given an [[n,1]] code, different
choices of the logical operators could also lead to different
secret-sharing schemes.

Recall that a pure-state scheme is one in which a pure state
is encoded into a pure state. In a mixed-state scheme a pure
state could be encoded into a mixed state. Such schemes could
be more efficient than the pure-state schemes. The framework
of quantum codes makes it possible to use mixed states for
sharing classical secrets with higher efficiency than a purely
classical scheme, [8, Theorem 11]. At the present it is not clear
how to include those schemes in the graph-state formalism.

B. Quantum secrets

Every graph leads to a CC secret-sharing scheme, but
it appears that every graph does not lead to a perfect QQ
secret-sharing scheme. In this section, we show that a large
class of bipartite graphs lead to QQ secret-sharing schemes
for nonthreshold access structures.

Recall that every QQ secret-sharing scheme includes a step
where the dealer encrypts the secret before distributing the
shares. In Refs. [3,7], this was broken down into the following
steps: (i) The dealer prepares a graph state over the dealer’s
qubit and the players’ qubits. (ii) An ancilla qubit prepared
in the secret state is entangled with the dealer’s qubit. (iii)
The ancilla and dealer’s qubits are measured in the Bell basis
leading to an encoded teleporation onto the players’ qubits.
In this paper we simplify these steps by involving only one
additional qubit, namely, the dealer’s qubit. We make use of
the teleportation scheme to encode into a quantum code using
graph states; see [13,14].

Before we give our construction (Theorem 4), we illustrate
it through an example. Consider the graph shown in Fig. 1.

3

2

1

0

7

6

5

4

FIG. 1. (Color online) A general QQ secret-sharing scheme from
a bipartite graph. All qubits except the dealer’s qubit are prepared in
the |+〉 state, while the dealer’s qubit (0) is prepared in the secret state.
Then we apply CZ gates along the edges of G. The dealer’s qubit is then
measured in the σx basis. A correction operator K ′

j = Xj

∏
k∈Nj \0 Zk ,

where j ∈ N0 is applied if we measure 1.

Pick any vertex of the graph; say we pick 0. The dealer
prepares this qubit in the secret state to be shared. Then this
qubit is entangled with the qubits in N0 using CONTROLLED-Z

gates. Then we measure the dealer’s qubit in the σx basis. If
we measure 0, then the secret has been encoded as desired,
otherwise, we need to apply a correction of the encoded Z on
the state. The qubits are then distributed to the players.

Consider the secret being encoded into Zs
A|G \ 0〉, where

A = {4,5,7}. Then it can be verified that all the minimal
authorized sets given in �0, min satisfy both Eqs. (7) and (8) for
both G \ 0 and the conjugate graph with respect to A (which
is obtained by taking the complement of G \ 0 on A):

�0, min =
{ {1,2,7}; {1,3,5}; {1,4,6}; {2,3,4};

{2,5,6}; {3,6,7}; {4,5,7}
}

. (14)

We now give the construction for QQ secret-sharing schemes
with arbitrary access structures.

Theorem 4. Let G be a bipartite graph whose adjacency
matrix AG is given by

AG =
[

0 P

P t 0

]
, where PP t = I. (15)

Then for every vertex i we can define a perfect QQ quantum
secret-sharing scheme from G. The encoding for the quantum
secret-sharing scheme is given by

E : a|0〉 + b|1〉 �→ a|G \ i〉 + bZNi
|G \ i〉. (16)

A generating set for the access structure �i is given by the
following:

�i,gen =
{
D ∪ Odd(D) \ i

∣∣∣∣ D ⊆ Vr

|D ∩ Ni | = 1 mod 2

}
, (17)
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|ψ H

|G \ i ZNi
Kj ψ

FIG. 2. Encrypting the secret state |ψ〉 for QQ secret sharing
using teleportation. The operator K ′

j = Xj

∏
k∈Nj \i Zk is such that

j ∈ Ni . It is applied only if the measurement outcome is 1.

where Vr is the bipartition of vertices of G that does not contain
i. The encryption and recovery of the secret are as shown in
Figs. 2 and 3, respectively.

Proof. We shall prove this theorem in parts. For conve-
nience, we shall ignore the normalization factors for quantum
states.

(i) Encryption of the secret: Assume that the secret
to be encoded is |ψ〉 = a|0〉 + b|1〉. Then it can be eas-
ily verified that in Fig. 2 the state |ψ〉|G \ i〉 is trans-
formed to the following state prior to measurement (up to
normalization):

|0〉(a|G \ i〉 + bZNi
|G \ i〉) + |1〉(a|G \ i〉 − bZNi

|G \ i〉).
If we measure zero, then we get the desired state but if we
measure 1, then we have to apply the correction operator

K ′
j = Xj

∏
k∈Nj \i

Zk (18)

for any j ∈ Ni . Observe that [Ki,Kj ] = [XiZNi
,ZiK

′
j ] = 0;

therefore, {ZNi
,K ′

j } = 0. Thus K ′
j anticommutes with the ZNi

.
It can also be verified that K ′

j stabilizes |G \ i〉; therefore it
acts as a correction operator to give the state in Eq. (16).

(ii) Recovery: Before we show that D ∪ Odd(D) \ i is
authorized, we need the following operators. Let KD =∏

j∈D Kj ; because G is bipartite, supp(KD) = D ∪ Odd(D).
By assumption |D ∩ Ni | = 1 mod 2; therefore, i ∈ Odd(D) ⊆
supp(KD). Define now K ′

D as

K ′
D = ZiKD =

∏
j∈D

Xj

∏
k∈Odd(D)\i

Zk. (19)

Note that K ′
D stabilizes |G \ i〉. Further, [Ki,KD] =

[XiZNi
,ZiK

′
D] = 0; therefore, {ZNi

,K ′
D} = 0.

Consider the operator KOdd(D). Define K ′
Odd(D)

K ′
Odd(D) = XiKOdd(D) =

∏
j∈Odd(D)\i

Xj

∏
k∈D

Zk. (20)

|+ H • |ψ

ψ KD
KOdd(D) |G \ i

FIG. 3. Reconstructing the secret state |ψ〉 for QQ secret
sharing given an authorized set D as in Eq. (17). The oper-
ator K ′

D = Zi

∏
j∈D Kj = ∏

j∈D Xj

∏
k∈Odd(D)\i Zk and K ′

Odd(D) =∏
j∈D Zj

∏
k∈Odd(D)\i Xk .

Because KOdd(D) is also in S(|G〉) we have

|G〉 = |0〉|G \ i〉 + |1〉ZNi
|G \ i〉,

= KOdd(D)|G〉 = XiK
′
Odd(D)|G〉,

= |1〉K ′
Odd(D)|G \ i〉 + |0〉K ′

Odd(D)ZNi
|G \ i〉.

Hence, K ′
Odd(D)ZNi

stabilizes |G \ i〉.
We now show that the set D ∪ Odd(D) \ i as in Eq. (17) is

authorized; note that it satisfies the requirements of Proposition
2 If we trace through the circuit given in Fig. 3, the state
transforms as follows:

|+〉|ψ〉 = (|0〉 + |1〉)(a|G \ i〉 + bZNi
|G \ i〉)

c−K ′
D−−−→ |0〉(a|G \ i〉 + bZNi

|G \ i〉)
+ |1〉(aK ′

D|G \ i〉 + bK ′
DZNi

|G \ i〉)
H−→ a|0〉|G \ i〉 + b|1〉ZNi

|G \ i〉
c−K ′

Odd(D)−−−−−→ a|0〉|G \ i〉 + b|1〉|G \ i〉
= (a|0〉 + b|1〉)|G \ i〉,

where we used the fact that K ′
Odd(D)ZNi

stabilizes |G \ i〉. Thus
D ∪ Odd(D) \ i is able to reconstruct the quantum secret |ψ〉.
The no-cloning theorem now implies that the complement of
this set is unauthorized.

(iii) Completeness of �i,gen: Now we show that the access
structure as defined in Eq. (17) is complete in the sense
that every authorized set contains some element of �i,gen.
Assume that there exists some set A which is authorized
but not generated by �i,gen. The encoding in Eq. (16) can
also be used to realize a CC secret-sharing scheme, namely,
(G \ i,Ni). For this CC protocol A is an authorized set. But
then by Proposition 2, A contains some set D such that
D ∪ Odd(D) ⊆ A and |D ∩ Ni | = 1 mod 2, where the odd
neighborhood of D is being considered with respect to G \ i.
Because G \ i is bipartite, this can happen only if D ⊆ Vr .
Because |D ∩ Ni | = 1 mod 2, Odd(D) must also contain i

with respect to G. But then D ∪ Odd(D) \ i is in �i,gen. This
shows that every authorized set is generated by �i,gen.

(iv) Perfectness of �i,gen: To show that the scheme is
perfect, we must show that every set is either authorized
or unauthorized. Alternatively, the complement of every
unauthorized set is authorized, [1, Corollary 8]. Assume that
the set B ⊆ V (G \ i) is unauthorized. Then for the CC protocol
(G \ i,Ni), B is either authorized or unauthorized by [4,
Lemma 2]. If it is authorized for (G \ i,Ni), then by proceeding
as in (iii), we can show that it can also recover the quantum
secret contradicting that B is unauthorized. Therefore, B

must be unauthorized for (G \ i,Ni). By Corollary 3, it is
equivalent to a [[|V (G)| − 1,1]] quantum code. In particular,
the stabilizer matrix of the associated quantum code, written
in standard form as in Eq. (10), has r = |V (G)|/2 − 1. By
Corollary 2, B can be unauthorized only if |B| � r . But
then |B| � |V (G)| − 1 − |V (G)|/2 + 1 � r + 1. Thus B is
authorized for (G \ i,Ni). Once again using arguments similar
to (iii), we conclude that B is authorized. This shows that the
proposed protocol is perfect.

This completes the proof that the proposed scheme realizes
a perfect QQ protocol. �
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The access structure realized by the scheme in Theorem 4
is the same as the access structure realized by the quantum
secret-sharing scheme using the approach of quantum error-
correcting codes as the following result shows.

Corollary 5. Let Q be an [[n,0]] CSS code, with the
stabilizer matrix

S =
[
I P 0 0

0 0 I P

]
, (21)

where PP t = I . Then the [[n − 1,1]] quantum code obtained
by puncturing the ith qubit realizes the QQ secret-sharing
protocol of Theorem 4.

Proof. It suffices to show that the quantum states in Eq. (16)
form a basis for the quantum code obtained by puncturing the
ith qubit. Without loss of generality we can assume that we
puncture the 0th qubit. Let P = [ g

Q ], where (0|g) ∈ Fn
2 and

supp(0|g) = Ni . Note that g �= 0 because of the requirement
PP t = I . Then puncturing the ith qubit results in an [[n −
1,1]] quantum code. The stabilizer matrix for this code is[

I Q 0 0

0 0 I Q

]
,

while the encoded operators are given by[
X

Z

]
=

[
0 g 0 0

0 0 0 g

]
.

Consider the state |0〉 stabilized by S and Z. Its stabilizer
matrix is ⎡

⎢⎣
I Q 0 0

0 0 0 g

0 0 I Q

⎤
⎥⎦ .

This matrix, using PP t = I , can be transformed to[
I Q 0 0

0 0 Qt I

]
.

This is precisely the stabilizer of the state
I⊗n/2−1H⊗n/2|G \ i〉. Thus I⊗n/2−1H⊗n/2|0〉 = |G \ i〉
and I⊗n/2−1H⊗n/2X|0〉 = ZNi

|G \ i〉. �
With respect to the sharing of quantum secrets we have

considered only those schemes arising from bipartite graphs; in
terms of quantum codes they correspond to CSS codes. As such
they do not exhaust all possible access structures. For instance,
the ((3,5)) threshold scheme can be realized using a [[5,1,3]]
code, which is not a CSS code. It is possible to extend the
ideas presented in this paper to the more general case when the
graph is not bipartite, but we do not have a simple classification
of graphs which lead to perfect QQ secret-sharing schemes.
Although given a graph and an encoding set we can check if it
leads to a QQ secret-sharing scheme (see [5] and [4, Corollary
3]), this is not efficient, in that we must check for all possible
encoding sets. In contrast, the present result gives a class of
graphs which are guaranteed to lead to perfect QQ schemes;
additionally, the encoding sets are also defined based on the
graph. (Please note that a similar problem exists even when the
question is formulated in terms of quantum codes. Although
the results in Ref. [1] (see Theorem 7 therein) can be used to

find out if a given quantum code can be viewed as a secret-
sharing scheme but it also involves exhaustive checking.)

Before we conclude this section, we demonstrate the
usefulness of our results by showing how they can help in
answering some questions related to the graph-state formalism.
Just as every CC scheme is a quantum code, every QQ scheme
is also a quantum code by Ref. [1, Proposition 6].

Theorem 6. There do not exist any graph-state ((k,2k − 1))
QQ secret-sharing protocols if k � 4.

Proof. In Ref. [15], it was shown that every ((k,2k −
1)) quantum threshold secret-sharing scheme is a [[2t −
1,1,t]] quantum maximum distance separable (MDS) code.
In Ref. [10], it was shown that there do not exist any [[n,1]]
binary quantum MDS codes of length greater than 5. It
follows, therefore, that there are no (pure-state) QQ quantum
threshold schemes of length 2k − 1 greater than 5; equivalently
k � 4. �

Please note that Theorem 6 refers only to perfect QQ
protocols using qubits. If we use qudits, then it is possible
to realize a ((k,2k − 1)) quantum threshold secret-sharing
scheme for any k; see [1, Theorem 5]. Such schemes can share
a qudit of higher dimension, thus using them to share only a
qubit would mean lower efficiency. The existence of quantum
threshold schemes was studied at great length in Ref. [4].
Through the connection to quantum codes we are able to shed
light on this issue, immediately improving upon the bound in
Ref. [4, Corollary 4].

IV. CONCLUSION

In this paper we have elucidated the connection between
graph-state secret-sharing schemes [3] and those based on
quantum error-correcting codes [1,8]. In particular, we have
shown that CC secret-sharing protocols arise from [[n,1]]
quantum codes. We also characterized the access structure
of these schemes in terms of the encoded operators of the
associated quantum code. Further, we bounded the maximal
size of an unauthorized set when the schemes are based on
CSS codes.

We also showed that a class of [[n,1]] CSS codes are in
correspondence with QQ protocols for sharing a qubit. As a
consequence we were able to construct quantum secret-sharing
schemes with arbitrary access structures in the graph-state
formalism. Although these access structures can be realized by
secret-sharing schemes based on quantum codes, our results
close some gaps in our understanding of graph-state protocols
for nonthreshold access structures. They also lead to a partial
classification of graphs which lead to perfect QQ protocols.

Our results also lead to a better understanding of the graph-
state protocols. We showed, in particular, how they can address
questions related to graph-state secret sharing. Many of the
ideas presented here, with respect to the encoding, recovery,
and characterization of the access structure could be useful
even when the QQ protocol is based on nonbipartite graphs.
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