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Hybrid classical-quantum formulations ask for hybrid notions
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We reappraise some of the hybrid classical-quantum models proposed in the literature with the goal of retrieving
some of their common characteristics. In particular, first, we analyze in detail the Peres-Terno argument regarding
the inconsistency of hybrid quantizations of the Sudarshan type. We show that to accept such hybrid formalism
entails the necessity of dealing with additional degrees of freedom beyond those in the straight complete
quantization of the system. Second, we recover a similar enlargement of degrees of freedom in the so-called
statistical hybrid models. Finally, we use Wigner’s quantization of a simple model to illustrate how in hybrid
systems the subsystems are never purely classical or quantum. A certain degree of quantumness (classicality) is
being exchanged between the different sectors of the theory, which in this particular unphysical toy model makes
them undistinguishable.
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I. INTRODUCTION

After almost 100 years since the formulation of quantum
mechanics we still have to face unsettled issues, particularly
concerning the elucidation of its regime of applicability. On
one extreme, classical mechanics is openly an effective but
very convenient description of the macroscopic world. Under
clear approximations one can treat certain systems as being
composed of interacting classical points (e.g., the solar system)
or as continuous classical entities (e.g., fluid mechanics).
Based on these notions we have developed the concept of
a curved space-time as a classical and continuous arena in
which everything else seems to take place.

On the other extreme, quantum mechanics appears as a
potentially fundamental description of the microworld and,
adopting a reductionist view, also of the macroworld. However,
arguably, quantum mechanics is not self-contained as it incor-
porates notions from the classical realm in its very formulation
and its operational verification. Moreover, we are certain of
the faithfulness of quantum mechanics as an accurate model
of the world only in microphysical experiments monitored by
perfectly classical apparatus. If only because it incorporates
classical notions, one could expect quantum mechanics to be
also an effective, but very convenient, nevertheless, description
of the microworld.

We do not know how to establish a clear sharp border
between the micro- and the macroworlds; it is difficult even to
know when a variable is going to behave classically or quantum
mechanically. What is certain is that the cleanly explored limits
are still far apart: e.g., in terms of interference of collection
of atoms, one has to go from the observed interferences of
beams of molecules made of 103 atoms to the clearly classical
behavior of collections of 1023 atoms. Therefore, from a purely
logical and observational point of view, it is still possible
that there exists one, or several, depending on the situation,

hybrid classical-quantum theory (not derivable from pure
quantum mechanics) which provides a better description of
the yet-to-come mesoscopic experiments. Furthermore, such
hypothetical theory would surely be more apt to describe our
perception of the world, in which its macrovariables seem to
have as much relevance in its evolution as its microvariables
(see, e.g., the discussion in Ref. [1]). In this paper, among
other specific developments, we want to put forward the
view that the study of hybrid classical-quantum constructions
suggests that it is indeed possible to build consistent hybrid
theories, but at the (reasonable) cost of allowing them to be
populated by subsystems which are neither purely classical
nor purely quantum: Every subsystem would have a certain
degree of classicality and of quantumness, with pure notions
being applicable only to ideal situations. Moreover, the theory
would not be a suitable hybrid limit of the straightforward fully
quantum theory: It would exhibit new physical properties.

The possibility of formulating a consistent hybrid classical-
quantum theory has been approached in many different ways.
In all these approaches one starts with initially separated
purely classical and quantum sectors and then makes them
interact in order to analyze the outcome. Without pretending
to be exhaustive, we can classify these approaches in the
following categories: (1) approaches that try to maintain
the use of quantum states (or density matrices) to describe
the quantum sector and trajectories for the classical sector
[2,3], (2) those that first formulate the classical sector as
a quantum theory [4–6] and then work with a formally
completely quantum system [7–11], (3) conversely, those that
first formulate the quantum sector as a classical theory [12]
and then work with a formally completely classical system
[13–16], and (4) approaches that take the quantum and the
classical sectors to a common language and then extend it to a
single framework in the presence of interactions, for instance,
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using Hamilton-Jacobi statistical theory for the classical sector
and Madelung representation for the quantum sector [17–19]
or modeling classical and quantum dynamics starting from
Ehrenfest equations [20]. This classification is not sharp and
in some cases is subject to interpretation, but it may be useful
as a way to organize the possible procedures and conceptual
viewpoints in the enterprise of constructing a hybrid theory.

Approaches of type 1 have been shown to lead to a
number of inconsistencies [21]. On the one hand, the standard
semiclassical treatment [2] does not transfer the primary
fluctuations in the quantum sector into the classical sector.
This is, for example, problematic for the inflationary paradigm
of generation of structures in the universe [22,23]. On the
other hand, more refined semiclassical treatments [2,24] in
which the primary quantum fluctuations do affect the classical
sector also lead to inconsistencies. For instance, the dynamics
is dictated by a bracket failing to satisfy Jacobi’s identity and
Leibniz’s rule. Under reasonable hypotheses it has been shown
that there is no Lie bracket for a semiquantized theory of this
form [21,25–28]. If one permits the bracket to be of non-Lie
type, it can be shown that the theory will lose the positivity
of its density matrix [2,21] (positive operators could have
nonpositive expectation values). In Ref. [21] it is also argued
that induced fluctuations in the classical sector would spoil the
commutativity of the classical variables. However, this is based
on assuming that the total Hamiltonian is bounded from below;
as we will see, in the Koopman–von Neumann–Sudarshan
approach this boundedness is lost [10], so that one can
accommodate commuting variables with induced fluctuations.

Approaches in category 2 deal with a perfectly defined
quantum theory based on Koopman–von Neumann–Sudarshan
[4–6] translation of classical mechanics into the language
of Hilbert spaces. Thus, previous criticisms based on the
formulation of a well-defined bracket do not apply to it.
However, within this approach, the work of Peres-Terno is
often mentioned as an important objection to the consistency
of hybrid configurations. They proved that, in the presence of
interaction, Heisenberg’s equations of motion of the canonical-
variable operators (Heisenberg picture) are necessarily differ-
ent from what would have been obtained by assuming the
two sectors to be quantum. From this they conclude (as we
will see, somewhat precipitately) that the classical (Ehrenfest)
limit of the classical-quantum (CQ) system will be necessarily
different from that obtained directly from the corresponding
quantum-quantum (QQ) system. On the other hand, they argue
that these two limits should coincide, that is, that any hybrid
theory should comply with this definitive benchmark, as they
call it. Then, they finally conclude that hybrid systems (at least
of this kind) are unphysical.

Here, first of all, we want to stress that this benchmark
only makes sense if one tacitly assumes that a hybrid system
should be just some suitable limit of a purely quantum system.
If this is not assumed, we can invert the logic and see the
failure to satisfy this condition as a clear sign of new physics
in the CQ interplay. Second, as we will see in Sec. II, the
Peres-Terno model has many interesting features, being more
complex than just exposed. When looking at the quadratic
Peres-Terno model in more detail, one realizes that it can
be made to comply with the above benchmark by just adding

some constraints to the system. In fact, to add constraints to the
system is more than reasonable because its very formulation
incorporates more degrees of freedom than the QQ theory
with which it is compared. Nonetheless, in a second twist,
we will show that this hybrid system still exhibits some sort
of refined Peres-Terno no-go result: One cannot require that
the dynamical equations for the second-order momenta (i.e.,
the dispersions) be equal to those in the QQ system (which
for these system are equal to the CC ones). Going beyond
quadratic interactions we also show that there is no way
in general to fulfill the Peres-Terno benchmark by adding
constraints. Overall, we are led to conclude that either the
evolution of the expectation values or the evolution of the
dispersions will exhibit some new physics beyond both QQ
and CC systems.

Let us mention that in a series of papers Sudarshan first
proposed this hybrid formalism as a way of understanding
quantum measurement [7–9]. In doing that he restricted the
types of interaction terms that one can consistently introduce.
The guiding principle for these restrictions was what he called
the principle of integrity of the classical variables. In these
analyses it is explicitly assumed that the resulting hybrid theory
is more than the limit of a purely quantum theory.

Approaches of type 3, as formulated, for example, in
Ref. [13], avoid the problems raised in approaches of type 1,
but mainly because of a shift of perspective. We have a classical
Hamiltonian system for the variables q,p,ai, and a∗

j , where ai

and a∗
j are the coefficients of an expansion of the quantum

state in the Hilbert space and q and p are the genuinely
classical variables. This formulation is, in fact, equivalent
to the standard semiclassical treatment, so that it does not
transfer the quantum fluctuations to the classical variables.
When changing to a statistical description, the transfer of
fluctuations to the classical sector is allowed. In Ref. [13]
it was already noticed that the interaction makes the system
migrate beyond the border marked by the very definition of
the space of all possible unit-norm quantum states (see also
Ref. [29] for a motivation of the form of these interaction
terms). This is natural since the evolution of the quantum
sector becomes, in general, nonunitary when interacting with
external variables. In addition, for consistency, the meaning of
observable has to be extended from what is directly suggested
by the CQ system, i.e., a function on the classical phase space
with values in self-adjoint operators in the quantum Hilbert
space. With this definition, if A is an observable of the hybrid
system, then its time derivative is not an observable in general.

Moreover, Salcedo [28] has recently shown that the evo-
lution of a statistical mixture of configurations would evolve
differently for different representations of the initial density
matrix of the quantum sector. This is so because a distribution
function in configuration space has more information than
a density matrix. If something of this sort were at work in
nature, one would be able to identify special sets of states
in the Hilbert space as the ones consistent with the observed
evolution. One can interpret this special situation as a bad
sign for the hybridization or, instead, as suggesting that the
hybrid theory needs to be complemented with the selection of
a natural basis in the Hilbert space, something that resonates
with the notion of “pointer basis” in decoherence theory.
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Finally, approaches in category 4 are based on the well-
known fact that both classical statistical mechanics and
quantum mechanics can be cast in a fluid-mechanics form
using a density and a nonrotational velocity flow as canonical
field variables [17,18]. Again, this formulation bypasses the
bracket problem as the definition of observables goes beyond
being a tensor product of observables in the quantum and
classical sectors. In the presence of interaction the distinction
of which is the classical and which is the quantum sector
is blurred [28]. This approach has the same problem, or
characteristic, as the previous one: A statistical mixture has
much more information than a standard density matrix.

All in all, in our view the overall image that shows up from
these analyses and the discussion in this paper is the following.

(i) Whereas it is certainly possible to construct hybrid
systems, these constructions typically ask for the introduction
of hybrid concepts absent in a straight classical-quantum
product. These hybrid theories are not derivable from a
straightforward purely quantum theory: They incorporate new
physics. This explicitly warns us about the toy-model nature
and heuristic character of the different frameworks analyzed
above.

(ii) The construction of a consistent hybrid formulation is
far from unique, so it would strongly need feedback from
mesoscopic experiments. This is not strange after all. The new
parameters would specify how the (close to) quantum sector
would back react on the (close to) classical sector. The (close
to) classical sector would typically be described by (close to)
macroscopic variables that would have to be specified with
enough detail to see what their effects would be on the (close
to) quantum system and vice versa.

The rest of the paper is organized as follows. Section II is
devoted to making a detailed analysis of approach 2, which
is very suggestive of the situation one faces when dealing
with hybrid systems. In particular, we reappraise the argu-
ment raised by Peres and Terno regarding the inconsistency
of constructing a hybrid theory within the Koopman–von
Neumann–Sudarshan formalism. Then, Sec. III reviews the
statistical consistency problem raised recently by Salcedo. By
changing the point of view, we show that this problem can
be seen instead as a defining generic characteristic of hybrid
approaches. Section IV takes the most simple model of a hybrid
system one can imagine and describes quantitatively how the
classicality or quantumness is being interchanged between
the two sectors. We finish with a summary and some final
conclusions.

II. SUDARSHAN HYBRIDS

The starting point of this particular hybrid scheme is the
Koopman–von Neumann–Sudarshan formulation of classical
mechanics [4–6,30]. This formulation translates the usual
description of classical mechanics in terms of symplectic
manifolds to a quantum-mechanical language by associating to
each physical observable a self-adjoint operator in a suitable
Hilbert space and by implementing the time evolution as a
unitary operator. Once the classical sector is treated formally as
quantum, one can describe a CQ interaction by using the tensor
product of Hilbert spaces, as in a pure quantum-mechanical

theory [31]. It is in developing this program that one has to
face a number of difficulties.

To make the discussion self-contained let us briefly summa-
rize the Koopman–von Neumann–Sudarshan formalism. For
the sake of simplicity we shall deal with one-dimensional
systems, although the discussion can be easily generalized
to an arbitrary number of degrees of freedom. The quantum
sector will be represented by a Hilbert space HQ with the
standard position and momentum operators,

[x̂,k̂] = ih̄. (1)

In the classical sector we will also have position and momen-
tum operators defined over a Hilbert space HC, but in this case
they commute,

[q̂,p̂] = 0. (2)

The elements of the pre-Hilbert space HC are taken to be the
“classical” wave functions ψ(q,p), whose square equal the
classical distribution functions:

|ψ |2 = ρC(q,p). (3)

The action of the classical operators (24) is then multiplicative,

q̂ ψ(q,p) = qψ(q,p), p̂ ψ(q,p) = pψ(q,p). (4)

As is well known from classical statistical mechanics, the
evolution of a classical probability distribution ρC(q,p) is
given by the Liouville equation ∂tρC = L̂ρC [31]. Since the
Liouville operator L̂ is linear in the derivatives, the evolution
equation for ψ is the same as that for ρC:

ih̄∂tψ = ĤCLψ, ĤCL := ih̄L̂ = ̂∂pHCp̂q + ̂∂qHCq̂p. (5)

Here HC(q,p) is the classical Hamiltonian, and we have
defined the operators (p̂q,q̂p) to be canonically conjugate to
(q̂,p̂):

[q̂,p̂q] = ih̄ = [q̂p,p̂], [q̂,q̂p] = [p̂,p̂q] = 0, (6)

which are correspondingly represented by

p̂q = −ih̄∂q, q̂p = ih̄∂p. (7)

In the following these variables will be called unobservable
variables.

Moreover, under reasonable assumptions about the classical
Hamiltonian, the Liouville Hamiltonian ĤCL is essentially self-
adjoint in the inner product,

(ψ,φ) =
∫

dqdp ψ∗φ, ψ,φ ∈ HC, (8)

so it generates a unitary evolution [32]. The completion of HC

in the inner product (8) constitutes the classical Hilbert space
HC.

Hereafter let us work for convenience in the Heisenberg
picture in which the operators (24) carry the time dependence.
With the previous definitions it is direct to check that
the Heisenberg equations for the operators (q̂,p̂) have the same
form as the classical Hamilton equations. The unobservable
variables (q̂p,p̂q) have their own evolution without influencing
the physical sector (q̂,p̂). So, at least at this level, their evolu-
tion is irrelevant. Let us point out that, concerning the classical
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observable sector and directly related to this decoupling, there
exists a symmetry under phase transformations of the form

ψ(q,p) −→ eiϕ(q,p)ψ(q,p). (9)

As we will see, this ambiguity disappears when developing a
CQ interaction scheme. To end this summary, let us mention
that it can be rigorously proved [4,5] that the Koopman–von
Neumann–Sudarshan formulation of classical mechanics is
equivalent to the standard one in terms of symplectic manifolds
and permits the use of operator techniques to treat classical
problems. In particular, it is especially useful to study some
aspects of statistical mechanics and ergodic theory [32].

Let us now consider an interacting CQ system [6,10]. The
space of states is the tensor product HC ⊗ HQ, and the total
Hamiltonian operator is

ĤT = ĤCL + ĤQ + ĤI, (10)

where ĤQ stands for the Hamiltonian of the quantum system
and ĤI provides the CQ interaction. At this point, the first
question with a nonstraightforward answer appears: How do
we determine the form of the operator ĤI from its classical
counterpart HI?

To discuss this point and connect with earlier work on the
subject, let us first analyze a simple example, which was the
object of study in Ref. [10]: two harmonic oscillators, one
classical and one quantum,

ĤCL = p̂p̂q + �2q̂q̂p, ĤQ = 1

2
(k̂2 + �2x̂). (11)

with bilinear classical coupling

HI = γ qx. (12)

Given any interaction term, one can easily check that the
classical Hamiltonian equations of motion (considering the
system completely classical) and quantum Heisenberg equa-
tions are formally equivalent. The proposal of Peres and
Terno [10] as the definite benchmark for an acceptable
classical-quantum hybrid was that any hybridization of this
system should respect this equivalence. Then, the result which
they proved is that even for this simple system there is no
term ĤI = ĤI(q̂,p̂,x̂,k̂,q̂p,p̂q) which fulfills this condition, so
they rejected this kind of hybrid CQ dynamics for not being
physically meaningful.

In brief, the problem emerges as follows. If one wants the
operators of the quantum sector (x̂,k̂) to appear in the equations
of motion of the classical variables (q̂,p̂), one has to introduce
the unobservable variables (q̂p,p̂q) in the interaction term. But,
by doing that, the decoupling of the unobservable sector no
longer holds. That is, the equations of motion of the variables
in the physical sector will contain the unobservable operators
explicitly. As the unobservable operators do not appear in the
QQ theory, the equations of motion of the CQ and QQ theories
are different.

With the risk of overinterpreting Peres and Terno’s
logic, in our view they took this condition as a definite
benchmark because they identified formally having equal
Heisenberg equations with obtaining an appropriate corre-
spondence principle. As we will see, these are, in prin-
ciple, logically distinct issues. Hereafter, we will call the
Peres-Terno benchmark the condition of just obtaining the

same correspondence limit starting from the QQ system and
from the CQ hybrid.

As mentioned in the Introduction, this benchmark is fully
appropriate if one assumes that the hybrid theory is just a
particular approximation of the straight QQ theory (here by
straight we mean the standard quantization one would have
performed to the classical Hamiltonian for two interacting
harmonic oscillators). However, if one is looking at hybrid
systems as examples of new physics, then the violation of
this benchmark could be interpreted positively. The precise
prescription of an interaction term ĤI should take into account
additional physical insights coming from the detailed charac-
teristics of the variable that is being regarded as classical.

Having this in the back of our minds, let us, however,
proceed in this section to see whether it is really necessary
to abandon the Peres-Terno benchmark. First, we will discuss
the simple quadratic interaction term (12), and then we will
comment about more complicated interactions.

The starting point of our discussion is the observation that
the mixing of the unobservable and physical sectors produces
an enlargement of the total relevant degrees of freedom of the
system. On these grounds the unobservable sector should be
constrained in some way to allow the comparison of the hybrid
theory and the CC and QQ theories on equal footing. To do
that, we are going to describe the different CQ, CC, and QQ
systems with the (infinite) collection of evolution equations
associated with the hierarchy of moments of the corresponding
distribution functions of the systems (see Ref. [33] for a
treatment of the CC and QQ cases). The advantage of this
formulation is that it permits a step-by-step study of the
relevant constraints at different orders.

Among all the interaction terms which can be defined let
us analyze

ĤI = γ

(
q̂

2
+ q̂p

)
x̂, (13)

which, as we will see, has interesting properties. This interac-
tion leads to the equations of motion:

˙̂q = p̂, ˙̂p = −�2q̂ − γ x̂,

˙̂x = k̂, ˙̂k = −ω2x̂ − γ

(
q̂

2
+ q̂p

)
, (14)

˙̂qp = p̂q, ˙̂pq = −�2q̂p − γ

2
x̂.

The equations for the first moments can be read directly
from these formulas: One just has to take the mean values on
both sides of the equations. Now, it is easy to see that if one
imposes the conditions〈

q̂p + 1
2 q̂

〉 = 〈q̂〉, 〈
p̂q + 1

2 p̂
〉 = 〈p̂〉, (15)

which form a closed set under time evolution (that is, they are
fully consistent as a set of constraints), it is possible to actually
satisfy the benchmark. In fact, we have checked that the
interaction term (13) is the only term involving only position
operators, αq̂x̂ + βq̂px̂, with α and β being real parameters,
which permits the recovery of the benchmark through the
imposition of consistent constraints. This precise term can be
obtained by applying the general CQ formulation developed in
Ref. [34], a formulation which suffers from the same problems
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pointed out by Peres and Terno, to this particular system. An
additional good property of the interaction term (13) is that,
as we have checked, it does not lead to strange behaviors such
as the energy nonconservation which appears in the particular
model analyzed by Peres and Terno. Let us also mention in
passing that this interaction term does not belong to the class
analyzed by Sudarshan; that is, it does not satisfy the classical
integrity criterion [6,8].

To gain insight into the significance of the appearance of
the up-to-now unobservable variables in the hybrid dynamics,
let us come back to the local phase symmetry (9) of the
classical observable sector. The introduction of an interaction
breaks this symmetry, making the unobservable variables
actively participate in the behavior of the physical sector.
That is, different elections of the local classical phase result
in different evolutions and so in different active degrees of
freedom. This can be seen by looking at the classical wave
function eiϕ(q,p)ψ(q,p). The quantity |ψ(q,p)|2 contains all
the information about the moments of the classical variables
(q̂,p̂). On the other hand, the moments of the unobservable
pair (q̂p,p̂q) involve the correlations between the unobservable
and physical sectors and therefore depend on the phase ϕ(q,p).
In particular, a change in this local phase results in different
mean values 〈q̂p〉, 〈p̂q〉, which are the relevant quantities to
the benchmark [recall Eq. (15)]. In view of this, the local
phase ϕ(q,p), which is irrelevant when there is no interaction
between the classical and quantum sectors, has great influence
over the properties of the hybrid system.

Although we have succeeded in fulfilling the benchmark,
from the paragraph above we see that the hybrid theory still has
many more active degrees of freedom than its corresponding
CC and QQ counterparts. To set up a proper comparison be-
tween these theories one needs to impose additional constraints
in the hybrid theory. This suggests analyzing the behavior of
the higher moments in the hybrid theory. The second moments
are almost as interesting as the first ones: It is well known that
for a general quantum system, the equations for the moments
of a classical system and a quantum system coincide for the
first and second moments and may start to differ for higher
moments [33]. For quadratic systems this equivalence extends
to all moments. Then, since the QQ and CC systems have the
same second-moment equations, following Peres-Terno logic,
it appears sensible to require that the hybrid CQ system also
follows these same equations. We will here call this condition
the second-moment benchmark.

To simplify this analysis we find it convenient to work in a
new set of canonical variables:

ˆ̄q := q̂p + 1
2 q̂, ˆ̄p := p̂q + 1

2 p̂,
(16)

l̂p := q̂p − 1
2 q̂, l̂q := p̂q − 1

2 p̂.

Then the CQ Hamiltonian is expressed as

ĤT = − 1
2

(
l̂2
q + �2 l̂2

p

) + 1
2 ( ˆ̄p2 + �2 ˆ̄q2) + 1

2 (k̂2 + ω2x̂2)

+ γ ˆ̄qx̂, (17)

and the first-order equations of motion become

˙̄̂q = ˆ̄p, ˙̂̄p = −�2 ˆ̄q − γ x̂,

˙̂x = k̂, ˙̂k = −ω2x̂ − γ ˆ̄q, (18)
˙̂lp = l̂q ,

˙̂lq = −�2 l̂p.

As we explained before, for the first-moment benchmark
we need the constraint conditions (15), which in these new
variables read

〈l̂p〉 = 0, 〈l̂q〉 = 0. (19)

In order to satisfy the second-moment benchmark one needs
all the moments involving variables q̄ and p̄ to yield the same
results that would have occurred if q and p were used instead.
By performing a recursive analysis of constraints it is not
difficult to check that one needs to impose the following set of
constraints:

〈l̂p ˆ̄q〉 = 0, 〈l̂p ˆ̄p〉 = 0, 〈l̂px̂〉 = 0, 〈l̂pk̂〉 = 0,

〈l̂q ˆ̄q〉 = 0, 〈l̂q ˆ̄p〉 = 0, 〈l̂q x̂〉 = , 〈l̂q k̂〉 = 0, (20)〈
l̂2
p

〉 = 0,
〈
l̂2
q

〉 = 0, 〈l̂p l̂q + l̂q l̂p〉 = 0.

This set is closed under time evolution so that it is consistent
with the dynamics of the system. The same set can be
equivalently obtained by working with the original coordinates
(restricting to quadratic Hamiltonians, there are no operator
ordering problems).

By looking at the previous set of constraints one imme-
diately realizes that they cannot be simultaneously satisfied.
The variables l̂q and l̂p are canonically conjugate, so one
cannot impose that their quadratic mean values 〈l̂2

q〉 and

〈l̂2
p〉 be simultaneously zero. Therefore, the second-moment

benchmark cannot be attained. This result tells us that, even if
the correspondence principle (first-moment benchmark) can be
preserved by the definition of a suitable interaction term (13)
and imposing suitable constraints, the second-order moments
will inevitably follow a different dynamics than both QQ and
CC systems. This happens independently of whether or not
one introduces some consistent constraints in the definition of
the CQ system.

The final situation is the following. If one imposes the
second-moment benchmark as a necessary condition for a
CQ theory to make sense, then these hybrid systems are
unphysical. However, this option follows from the assumption
that quantum mechanics is a fundamental theory from which
the classical theories emerge. When trying to explore the
validity of this very assumption, it is not sensible to directly
reject these types of theories. If one decides to accept these
hybrid theories as interesting systems to confront with reality,
one still has two options.

On the one hand, one could decide not to impose any
constraint on the Sudarshan CQ system. This would imply
that the CQ hybrid would have intrinsic new degrees of
freedom. One would need additional physical information
about the system one is trying to describe in order to obtain an
interpretation of these new degrees of freedom.

On the other hand, one might still want to have a CQ hybrid
theory with the same number of degrees of freedom as the
QQ system (either because a specific physical situation asks
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for it or because one wants to carry out a more direct or strict
comparison between both CQ and QQ theories). To deal with
these situations one would need to introduce some consistent
constraints that eliminate the irrelevant number of degrees of
freedom. It is interesting to note that a constraint of this type
could be, for example,

ĤT�(x,q,p) = 0. (21)

Notice that if one interprets the operator

Ê := 1
2

(
l̂2
q + �2 l̂2

p

)
(22)

as a type of energy and represents it as i∂t , one ends up with a
Schrödinger system equivalent in terms of degrees of freedom
to the QQ system we started from. As is well known, this
effective time is not completely equal to the time appearing
in Schrödinger’s equation due to the bounded character of Ê.
However, it can be interpreted as an effective time parameter as
is done in quantum cosmology [35]. We think it is interesting
to note the formal similarity of these types of constrained
theories with those appearing in quantum cosmology, which
is precisely the system for which the direct application of pure
quantum notions is more controversial.

One way or another, one needs additional information to
work with hybrid systems, either in the form of specifying
additional initial conditions or by prescribing how to conve-
niently restrict the total number of degrees of freedom. This
information depends crucially on the specific character of the
variable to be treated (close to) classically. As a taste of the
physics which might be modeled with this formalism, we can
think of the interaction term (12) as some sort of continuous
measurement of the quantum variable x̂. By looking at the
Heisenberg equations of motion (14), one realizes that the
difference between this CQ theory and the QQ theory is
located in the evolution equation of the quantum momentum
k̂. So this formalism might take into account the effect of
quantum measurements of the variable x̂ by classical devices
in a self-consistent hybrid framework. It is also interesting to
note that, from this point of view, one could decide to regard the
additional degrees of freedom as representing an environment,
similar to the environment variables in the standard approach
of quantum decoherence (see, for example, Ref. [36]). Then,
one could trace over the degrees of freedom of this effective
environment. Although we have already noted this in the
Introduction, let us stress again that, of course, we do not
think of this construction as a full theory of the interaction
of classical and quantum systems, but merely as a toy model
which, however, could be useful to explore some of the features
of this hypothetical CQ theory.

To end this section, let us comment on some aspects of the
generalization of this formalism to systems with a classical
Hamiltonian of the type

HT = 1
2p2 + 1

2k2 + V (q,x), (23)

where V (q,x) is a suitable interaction potential that is not
necessarily quadratic in its variables. It is well known that,
when V (q,x) is not quadratic, the equations of motion of
the different moments do not decouple [31,33]. For instance,
in the equations of motion of the mean values of the
canonical variables the higher-order moments will appear.
This obstructs the possibility of recovering the first-moment

benchmark by imposing first-moment constraints. Together
with the previously described impossibility of satisfying
the second-moment benchmark for quadratic systems, this
dynamical mixing strongly suggests that with nonquadratic
interactions one would not be able to recover, in general, even
the first-moment benchmark.

III. STATISTICAL CONSISTENCY OF HYBRIDS

In this section we want to briefly discuss the “statistical
consistency problem” of hybrid formulations raised recently
by Salcedo [28] (in this section we follow his analysis,
although slightly changing the presentation). To describe this
issue in its simplest terms, let us consider a CQ theory in
which the quantum system is described as a classical system
with all the information of the quantum state contained in a set
of symplectic pairs (Xi,Ki) [12,13]. These pairs are nothing
more than the complex coefficients ai = Xi + iKi in the
expansion of the quantum state in a basis of the Hilbert space
� = ∑

i aiψi . The evolution of these variables is dictated by
a formally classical Hamiltonian of the form

HQ(Xi,Kj ) =
∑
ij

Hij (Xi + iKi)(Xj − iKj );

(24)
Hij = 〈ψi |Ĥ |ψj 〉.

Equivalently, the dynamical evolution of the expectation value
of any observable can be computed directly by just finding the
specific expression of the observable in terms of Xi,Ki :

〈Â〉(Xi,Kj ) =
∑
ij

Aij (Xi + iKi)(Xj − iKj );

(25)
Aij = 〈ψi |Â|ψj 〉.

In order to deal with mixed states, in standard quan-
tum mechanics one introduces the density matrix ρ̂ =∑

ij ρij |ψi〉〈ψj | such that Tr(ρ̂) = 1. Knowing the density
matrix of the quantum system amounts to knowing the value
of the Hermitian, positive, and unit-trace matrix ρij . For an
N -state quantum system, the specification of a pure quantum
state requires 2N real numbers (one less if one considers that
the state is unit norm). The specification of a generic density
matrix requires N2 real numbers [one less if one imposes the
condition Tr(ρ̂) = 1].

However, if we were interpreting the quantum system
completely in classical terms, when extending the formalism
to incorporate statistical ensembles of states, instead of the
standard density matrix, we would introduce a positive and
normalized function P(Xi,Kj ). The amount of information
encoded in this function is much larger than in a density matrix,
but in a purely quantum evolution this extra information does
not play any role.

To see this clearly consider, for example, a spin-1/2
system (N = 2). A density matrix can be written in different
representations. For instance,

ρ = 1
2 |↑〉〈↑| + 1

2 |↓〉〈↓|
= 1

2 |←〉〈←| + 1
2 |→〉〈→|. (26)

Here |↑〉 and |↓〉 represent the eigenstates of the spin in
the z direction, and |←〉 and |→〉 represent those in the y
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direction. These are just different representations; the density
matrix is one and the same. However, the probability functions
corresponding to each of these representations are actually
different:

1
2δ4(ξa − ξ

↑
a ) + 1

2δ4(ξa − ξ
↓
a )

:= P1(ξa) �= 1
2δ4(ξa − ξ←

a ) + 1
2δ4(ξa − ξ→

a ) := P2(ξa),

(27)

where ξi = Xi , ξ2+i = Ki , and ξσ
a represent the Xi and Ki

values associated with the corresponding quantum state |σ 〉. If
the quantum system does not interact with a classical sector,
this difference does not lead to observable effects. In fact, two
distribution functions, P1(ξa) and P2(ξa), such that∫

dξ [P1(ξa) − P2(ξa)]

×
[ ∑

ij

Aij (Xi + iKi)
(
Xj − iKj

) ]
= 0 (28)

for any Hermitian matrix Aij , cannot be distinguished.
However, the issue comes about when adding a generic CQ

hybrid interaction,

HT = HC(q,p) + HQ(Xi,Kj ) + HI(q,p,Xi,Kj ). (29)

Then, the distribution functions will have the formPT(ξa,q,p).
Imagine that, before the interaction is switched on, we start
with two different distribution functions with equal and
separable classical parts:

PT1(ξa,q,p) = P1(ξa)ρC(q,p),
(30)

PT2(ξa,q,p) = P2(ξa)ρC(q,p),

such that P1(ξa) and P2(ξa) initially satisfy (28) for any
Hermitian matrix Aij . Notice that now the coefficients Aij

derive from hybrid observables:

Aij =
∫

dqdpρC(q,p)Aij (q,p). (31)

The hybrid dynamics makes it, in general, impossible to
express the time derivative of the observable in Eq. (28),∑

ij

{[(∂qAij (q,p))q̇ + (∂pAij (q,p))ṗ]

× (Xi + iKi) (Xj − iKj ) (32)

+Aij (q,p)(Ẋi + iK̇i)(Ẋj − iK̇j )},
as a quadratic form∑

ij

Bij (q,p)(Xi + iKi)(Xj − iKj ). (33)

Therefore, the dynamical evolutions of initially equal density
matrices separate, and the additional information in the
probability functions comes into play.

Here we want to highlight that this phenomenon can be
interpreted as emergent new physics caused by hybridization
(something already acknowledged by Salcedo but with the
opposite emphasis) and that the effect is similar to what we
have seen for Sudarshan hybrids. The information contained
in a hybrid state is more than that contained in the product of a
quantum density matrix and a classical distribution function.

Consider, for instance, the highly hypothetical case in which
the system could be modeled satisfactorily as a pure quantum
sector and a pure classical sector without interaction for all
times t < t0. If an interaction between the two sectors is
switched on at t0, the formalism tells us that, in order to
know how the system will evolve, it will not be enough
to know the classical distribution and the quantum density
matrix at the time t−0 . As additional information we would
need to select a specific representation of the density matrix
as being special. From the point of view of a quantum system,
this information will qualify as hidden variables [37]. The
only source of information available that could help select
a specific representation is contained in the very form of
the interaction terms. However, it might seem that this new
information is somewhat arbitrary, leaving the theory with no
predictive power.

However, consider now the more realistic case in which
the CQ interaction was always present and thus that the
state of the system was always hybrid. The state of the
system would always have had this additional information.
By controlling the interaction one can imagine driving the
system to a situation in which part of the system behaves as a
pure quantum system. The additional information beyond the
quantum density matrix will be there but will be irrelevant for
the evolution of the pure quantum sector during its isolation.
The additional information, now hidden, would be perfectly
dictated by the initial state of the hybrid system and its precise
hybrid dynamics. Once the isolation of the quantum part is
removed, the evolution will follow a precise track, with no
arbitrariness.

We cannot help but seeing the situation as reminiscent
of what happens with decoherence in standard quantum
mechanics: The specific way in which the environmental
variables interact with the system determines the specific
pointer basis in which decoherence occurs (see, e.g., Ref. [36]).
In this framework the state of the environment and the form of
its interactions play the role of hidden variables.

IV. TWO OSCILLATORS IN THE
WIGNER REPRESENTATION

In this section, we want to describe some characteristic
behavior expected generically in hybrid systems. With this
aim we are going to deal with a simple model based on
the Wigner quantization of a quadratic system composed
of two interacting harmonic oscillators, one classical and
one quantum. As we will see, the distinction between the
classical and the quantum sectors in this model is just a
matter of initial conditions for the distribution functions and
has nothing to do with the dynamics, which is equal for
both sectors. In this sense, the model does not qualify as a
proper hybrid. Let us also mention that this dynamics cannot
be recovered within the set of Sudarshan evolutions. The
Sudarshan analysis points out the presence of new physics even
at the level of simple quadratic models. Having said that, here
we will use this model exclusively to illustrate how the initial
dispersion in the initially quantum variables is modified by the
interaction with the initially classical sector, thus blurring the
classical-quantum distinction.
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It is well known that quantum mechanics can be alterna-
tively formulated as a phase-space theory, formally equivalent
to classical mechanics [38,39]. In classical mechanics, for each
function in phase space A(q,p), one associates an operator (a
Hamiltonian vector field)

Â = {A,·}P, (34)

where {·,·}P represents the Poisson bracket. Then, one can
define the Lie algebra in the space of operators as

[Â,B̂] := Â · B̂ − B̂ · Â = ̂{A,B}P. (35)

Here the dot (·) denotes the straightforward consecutive
application of the operators. The evolution of any dynamical
variable is then dictated by either of the following equivalent
equations:

dÂ

dt
= [Â,Ĥ ] + ∂Â

∂t
,

dA

dt
= {A,H }P + ∂A

∂t
. (36)

Finally, a classical statistical theory can be constructed by
defining a probability distribution function ρC(q,p).

In the Heisenberg picture a particular quantization of a
classical system (which involves the selection of a specific
operator ordering) can be constructed in the same formal way
by simply replacing the Poisson bracket by the Moyal bracket
[38]:

{f,g}M := 1

ih̄
(f � g − g � f ) = {f,g}P + o(h̄),

(37)

f � g := f (x,k) exp

[
ih̄

2
(
←
∂ x

→
∂ k − ←

∂ k

→
∂ x)

]
g(x,k).

The classical probability distribution function is now substi-
tuted by the Wigner distribution function WQ(x,k).

In this setting the construction of a hybrid theory would
involve the construction of a hybrid bracket. As suggested
by what is known in the literature, the straightforward
construction of such a bracket could be obstructed if one
requires certain conditions [28]. However, one could certainly
do it in an extended version, such as the Sudarshan analysis in
the previous sections, but at the cost of having many different
possible constructions.

The simplicity of the analysis that follows comes from the
selection of a quadratic system. When restricted to quadratic
systems, Moyal and Poisson brackets coincide, so the search
for a hybrid bracket can be seen as trivial: One can choose
this unique bracket as the hybrid bracket for these systems.
Within this Wigner-type approach the quadratic systems do
not openly call for new dynamical physics but still serve to
draw our attention to other emergent phenomena. We expect
that Sudarshan hybrids (and other hybrid formulations) will
exhibit qualitative behaviors similar to the ones described by
this toy model.

We want to study the behavior of a hybrid distribution
function WCQ(q,p,x,k,t). As before, let (q,p) be the phase-
space variables that describe one of the oscillators, for instance,
the one with classical initial conditions. Similarly, let (x,k)
be the position and canonical momentum of the second
oscillator, which will have quantum initial conditions. Let
� and ω be their corresponding characteristic frequencies.
Finally, let us consider that these oscillators are coupled by an

interaction term of the form γ qx, as before. Then the classical
Hamiltonian of this system is obviously

HT = 1
2 (p2 + �2q2) + 1

2 (k2 + ω2x2) + γ qx. (38)

The classical trajectories can then be solved to yield

ξ (t) = U (t)ξ ′, (39)

where ξ is the column vector ξ = (q,p,x,k)T, ξ ′ are the initial
conditions, and the evolution matrix U (t) can be obtained via
a standard expansion in normal modes.

Now, hybrid states of this system of two coupled harmonic
oscillators are determined by the hybrid Wigner distribution
WCQ(ξ ,t). As we have already mentioned, because for a
quadratic system the evolutions of a classical distribution
function (Poisson bracket) and a quantum distribution function
(Moyal bracket) coincide, we will use this very same dynamics
for the evolution of the hybrid distribution function

∂tWCQ = {HT,WCQ}P. (40)

Hereafter, to simplify notation we eliminate the subscript
CQ in the complete distribution function. This equation can
be easily solved by means of the time-dependent canonical
transformation generated by the inverse classical evolution,
which takes any phase-space configuration to its initial con-
ditions; namely, we use as canonical variables ξ ′ = U−1(t)ξ .
The new Hamiltonian vanishes identically, and therefore, in
these variables the Wigner function W ′(ξ ′,t) does not evolve:
W ′(ξ ′,t) = W0(ξ ′). Therefore, if we go back to the original
variables we obtain the Wigner function straightforwardly in
terms of the initial Wigner distribution W0:

W (ξ ,t) = W0[ξ ′(ξ ,t)] = W0[U−1(t)ξ ]. (41)

Let us compute the evolution of the first and second
moments. Let us start with the mean values 〈ξ 〉:

〈ξ〉 =
∫

d4ξ ξ W (ξ ,t) =
∫

d4ξ ξ W0(U−1ξ )

=
∫

d4ξ ′ Uξ ′ W0(ξ ′) = U 〈ξ 〉0, (42)

where we have used the fact that det U = 1. As should happen
for quadratic Hamiltonians, the mean values obey the classical
evolution law, regardless of whether the system is classical or
quantum. As for the second moments,

〈ξ ξT〉 =
∫

d4ξ ξ ξT W (ξ ,t) =
∫

d4ξ ξ ξT W0(U−1ξ )

=
∫

d4ξ ′ Uξ ′ ξ ′T UTW0(ξ ′) = U 〈ξ ξT 〉0U
T, (43)

so that the covariance matrix � = 〈ξ ξT〉 − 〈ξ〉〈ξ 〉T evolves
according to

� = U�0U
T. (44)

It also obeys the classical evolution, again independent of the
classical or quantum characteristics of the variables.

The classical or quantum nature of the variables is entirely
encoded in the initial Wigner distribution since, as we have
already mentioned, the dynamics is the same in both situations.
Our interest is to analyze the dynamics of an initially classical
oscillator coupled to an initially quantum one. For the initially
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FIG. 1. In both plots, the solid line shows the time evolution of
�q�p, and the dashed one shows �x�k. On the left, the frequency
of the initially classical oscillator is larger than the frequency of the
classical one: � = 3 and ω = 2. On the right, the situation is reversed,
i.e., � = 2 and ω = 3. The coupling has been set to γ = 1. We also
use h̄ = 1.

classical oscillator, described by the variables (q,p), we will
choose a specific initial position and momentum, so that its
initial Wigner function will be

ρC0(q,p) = δ(q − q0)δ(p − p0). (45)

The initially quantum oscillator, described by (x,k), will be
taken to be initially in a coherent state of the form

WQ0(x,k) = 1

2πσxσk

e−(x−x0)2/2σ 2
x e−(k−k0)2/2σ 2

k . (46)

Therefore the initial Wigner function of the coupled system
will be

W0(q,p,x,k) = ρC0(q,p)WQ0(x,k), (47)

so that its first momenta are

〈ξ 〉0 = ξ 0, (48)

and the only nonvanishing components of the covariance
matrix are

(�x)2
0 = �0xx = σ 2

x , (�k)2
0 = �0kk = σ 2

k . (49)

The time evolution of the covariance matrix can be obtained
by introducing this result into Eq. (44). We are now ready
to analyze the behavior of the uncertainties of each of the
oscillators, given by the diagonal elements of this covariance
matrix. Figures 1–3 show the time evolution of �q�p
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FIG. 2. In both plots, the solid line shows the time evolution of
�q�p, and the dashed one shows �x�k. On the left, the frequency
of the initially classical oscillator � = 2 is greater than the coupling√

γ = 1, which, in turn, is larger than the frequency of the initially
quantum oscillator ω = 0.51. On the right, the situation is reversed,
i.e. ω = 2 and � = 0.51, with

√
γ = 1. We also use h̄ = 1.
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FIG. 3. In both plots, the solid line shows the time evolution of
�q�p, and the dashed one shows �x�k. On the left, both frequencies
are equal ωq = ωx = 1.73 and larger than the coupling

√
γ = 1.

On the right, both frequencies are very similar to each other, with
ω = 1.01, � = 1, and to the coupling

√
γ = 1. We also use h̄ = 1.

and �x�k for various configurations determined by the
characteristic frequencies of both oscillators, � and ω, and
the coupling γ .

We have seen that if one (or both) frequency is much larger
than the coupling, both oscillators effectively decouple. As we
depart from this limit, the product of the uncertainties of both
oscillators �q�p and �x�k starts to oscillate (see Fig. 1);
i.e., there is a small transfer of quantum uncertainty back and
forth. The case in which only one of the frequencies is larger
than the coupling leads to a significantly higher transfer of
quantum uncertainties between both oscillators (see Fig. 2).
The initially classical oscillator evolves to a state which is not
purely classical, and the initially quantum oscillator evolves
to a state which is not purely quantum in a (quasi-)periodic
evolution.

The other (more interesting) limit is when both frequencies
� and ω are almost equal. In this case, for very large
frequencies compared with the coupling, we end up in
the previous situation. However, for finite frequencies, the
exchange of quantum uncertainty between both oscillators
may be significant and even extreme, to the extent that the
initially classical oscillator may become purely quantum and
vice versa. This is shown in Fig. 3.

The masses of the two oscillators are encoded in the Hamil-
tonian as the inverse of the frequencies, and since classical
masses are typically large (macroscopic) and quantum masses
are in the nanoworld, we could say, in an attempt to extract
consequences for real systems from this oversimplified toy
model, that it is impossible to see a hybrid system with exotic
features in our regular macroscopic world or in the experiments
of the quantum world because of the effective decoupling
between them. We would need to go to specific mesoscopic
environments to witness a hybrid system with neither classical
nor quantum behavior. This suggests that we should not require
a hybrid system to have a completely classical or quantum limit
because when they interact there is new physics that we will
have to cope with.

An interesting observation is that, independent of the
parameters of the hybrid system, the total quantum uncertainty
never goes below that initially present. More specifically, the
quantity �q�p + �x�k is never smaller than its initial value
h̄/2. However, there is no restriction concerning each term
individually. In particular, they can vanish (at different times),
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as seen, for instance, in Fig. 3. Further, we have started with
a vanishing value for the uncertainty of the classical oscillator
(q,p), and this has led to no inconsistencies. The idea that the
interaction between classical and quantum variables will lead
to a transference of quantumness from the initially quantum
sector to the initially classical one and vice versa (or of
classicality in the other direction) was already pointed out
by DeWitt in the 1960s [40,41] (see also the comments by
Unruh in Ref. [42]). In these references, they argued that this
transference makes the coupling of purely classical systems
and purely quantum systems the only consistent one. However,
this analysis suggests that hybrid systems might simply be
transferring around a certain degree of quantumness between
its different parts, never becoming purely quantum or classical.
We ask ourselves whether this could not even be a crucial
ingredient for evolution in nature.

V. SUMMARY AND CONCLUSIONS

In this work we have tried to find some generic features
of hybrid classical-quantum systems by revising some of the
models proposed in the literature. In Sec. II we analyzed
in some detail the hybrid model proposed by Peres and
Terno [10]. Their model is presented within the Koopman–von
Neumann–Sudarshan formulation of classical mechanics and
consists of two harmonic oscillators, one quantum and one
classical, in interaction. We find that in the case of a quadratic
interaction, as opposed to what was suggested by Peres and
Terno, it is indeed possible to recover the correspondence
principle starting from the CQ system. For that, one needs
to impose some constraints on the possible states, which, on
the other hand, seems more than reasonable, given the enlarge-
ment of degrees of freedom exhibited by the Koopman–von
Neumann–Sudarshan formulation. However, this correspon-
dence principle cannot be extended to the second moments of
the variables as could have been expected. At second order, this
hybrid theory shows new physics (a new dynamical behavior)
which cannot be recovered within the complete quantization
of the classical model. When the interactions are nonquadratic
we see that, generically, it is not possible to find a consistent
set of constraints leading to the correspondence principle. So
we can conclude that these hybrid theories are not limits of
the straight quantum theory: They incorporate new physics. In
particular, they contain new active degrees of freedom which
one cannot fix without additional physical information. This
new information is related to a more detailed description of the
quasiclassical variables, variables of a macroscopic (typically
complex) nature.

In Sec. III we reviewed the statistical consistency problem
recently raised by Salcedo [28] as an obstruction to obtain
sensible hybrid systems, at least of a particular type. We
show that, again, these hybrid systems exhibit properties
beyond what would be obtained from a complete and straight
quantization of the system. They are not a partial limit of this
completely quantum theory. Among other things, one finds
again that these hybrid systems have more degrees of freedom
than expected.

Finally, in Sec. IV we analyzed a very simple system
of two harmonic oscillators, initially, one classical and one

quantum, coupled through a quadratic interaction term by
using a Wigner-distribution formalism. In this model the
classical and quantum character of the different variables is
not encoded in their dynamics but only in the type of initial
conditions imposed on them. Within this model we have shown
that, depending on the specific values of the frequencies of
the classical and quantum oscillators, the products of their
respective dispersions, �q�p and �x�k, oscillate between
different minimum and maximum values. As initial conditions
we have fixed the classical variables to have zero dispersion;
the initial quantum state has been set to be a coherent (minimal
quantum uncertainty) state. The hybrid evolution requires that
initial classical variables develop dispersion up to some levels.
In some situations, when the two frequencies are comparable,
the behavior of the initially classical and quantum variables
is such that one cannot distinguish them after some time. The
product of quantum dispersions �x�k reaches almost zero
quasiperiodically (this depends on the commensurability of
the frequencies), and the product of the classical dispersions
�q�p reaches h̄/2. However, in all situations we have
checked that �q�p + �x�k � h̄/2. We interpret this fact
as indicating that the total quantumness (or classicality) of the
total system is being maintained.

All in all, it appears that one can formulate consistent hybrid
theories, but these theories incorporate new physics. They are
not suitable limits of a direct quantization of the entire system.
We should distinguish this straight quantum theory from the
possibility of using a quantum formalism to describe all the
physics of the hybrid system, as happens in the Koopman–von
Neumann–Sudarshan formalism. Among other things, the new
physics appears to bring about new degrees of freedom, which
should be associated with the additional level of description
of the quasiclassical (macroscopic) variables one would need
to prescribe the precise form of the quantum back reaction
to these variables. In this respect, the measurement process as
presented by the Copenhagen interpretation could be seen as an
extreme case of interaction between a classical and a quantum
system in which there is no transfer of fluctuations into the
classical variables. The measurement theory of Sudarshan
goes one step further, allowing some transfer of fluctuations
provided that it does not compromise the classical integrity
of the variables. Another interesting lesson is that in a
hybrid context pure notions such as quantum or classical
are only limiting notions, which are very useful in isolated
situations but are, strictly speaking, nonexistent; in a hybrid
setting everything might have a certain degree of quantumness
(classicality).

An issue that has not been dealt with in this paper is
the role of relativity in hybridization. Many of the aspects
analyzed here are quite independent of whether the hybrid
system is relativistic or not. However, one should not forget that
relativity entails new conceptual approaches to, e.g., causality
or localization. They may well affect the dynamical behavior
of hybrid systems and deserve further study.

At the end of the day, only new experiments in the
mesoscopic realm can help us decide whether in the behavior
of a complete system there is something beyond quantum
dynamics of microscopic quantum constituents. Proposals
such that those of Diósi and Penrose [43–45] or Guirardi et al.
[46] of new physics at the classical-quantum cut find additional
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justification in light of these hybrid models. In particular, the
proposal that gravity, with its stubborn resistance to quanti-
zation, might play a role in going beyond standard quantum
mechanics is a powerful idea that we should not forsake.
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