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Zero-energy wave packets that follow classical orbits
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Coherent states for a large class of the Lenz-Demkov-Ostrovsky (LDO) potentials are constructed as
superpositions of zero-energy Hamiltonian eigenstates. They represent very well-localized stationary wave
packets. Moreover, it is shown how to make the packets move along suitable classical orbits. The calculations are
performed for a few members of the LDO family of potentials, among them, for the Maxwell’s fish-eye model
and that used for a theoretical explanation of the periodic system of elements.
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I. INTRODUCTION

Since the beginnings of quantum mechanics, there has
been a great deal of interest in the construction and time
evolution of wave packets. The contemporary development
of the laser technique enables us to produce and observe
well-localized packets and study various relations between
classical and quantum mechanics. The wave packets were
first observed some 25 years ago [1,2] and were created by
photoexcitation using ultrashort pulses. A very convenient tool
to produce the packets was proposed by Jones et al. [3] and
consists in using unipolar electric-field pulses of the terahertz
spectrum (half-cycle pulses). Since then, many papers have
been devoted to both theoretical as well as experimental studies
of packet dynamics. Some representative experimental papers
on Rydberg wave packets in atoms can be found in [4,5] and
those for molecules in [6].

Formally, wave packets can be derived in many ways.
The most popular and best known are those based on either
the construction of the coherent states as eigenstates of the
lowering operator [7], creating them from the ground state
with the help of a displacement operator [8], or finding
minimum-uncertainty wave packets [9]. Examples of interest-
ing theoretical studies on the subject are presented in [10,11]
and a review of theoretical methods is presented in [12,13].
Also very intensively studied are nonspreading states called
Trojan packets [14,15].

Our construction of spatially well-localized and nonspread-
ing packets is not related to the above methods, but constitutes a
generalization of the approach [16] used for a two-dimensional
(2D) harmonic oscillator. In the present paper, the packets are
superpositions of states with well-defined angular momentum
and, contrary to Ref. [16], all correspond to the total energy
E = 0. In what follows, calculations are performed for
potentials in the form

Vk(r) = −wρ2k

2R2ρ2(1 + ρ2k)2
= −w

2R2ρ2(ρ−k + ρk)2
, ρ ≡ r

R
,

(1)

introduced by Lenz [17], and Demkov and Ostrovsky [18,19]
(LDO).
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The normalizable bound-state solutions for E = 0 have
found many applications. For k = 1/2, they were used [19–21]
for describing the Aufbau law for building up the periodic
system of elements and, in [22,23], for explaining some
properties of the Wannier-Mott excitons. The solutions for
k = 1 correspond to the fish-eye model (see Ref. [24] and
references therein) introduced by Maxwell a long time ago
[25], and are also used [26] in the theory of quantum
dots with smooth boundaries. The case of k = 3 has found
an application [27] in explaining some grouping of levels
observed in medium-size sodium clusters.

The aim of our paper is to derive wave packets for the
potential in Eq. (1) for an arbitrary value of k > 0 and the
total energy E = 0. Additionally, we require that the packets
follow precisely classical trajectories. To this end, we first
survey zero-energy solutions for the LDO potentials. Details
are given in Sec. II. Then, in Sec. III, we shall derive a
general formula for stationary wave packets. In Sec. IV, we
show how to set in motion the constructed packets, and their
time evolution is presented in a number of figures. Section V
contains conclusions.

II. ZERO-ENERGY WAVE FUNCTIONS

For the class of central potentials in Eq. (1), the radial part
of the two-dimensional (2D) Schrödinger equation, with the
total energy E = 0, reads

d2F

dρ2
+ 1

ρ

dF

dρ
+

[
mw

h̄2

ρ2k

ρ2(1 + ρ2k)2
− l2

ρ2

]
F (ρ) = 0, (2)

where m stands for the mass of particle, l stands for
angular momentum quantum numbers, ρ = √

X2 + Y 2, and
the coupling constant w is restricted to w > 0. Equation (2)
has regular solutions vanishing at infinity provided that the
value of w is quantized according to the rule

mw

h̄2 = 4k2Q(Q + 1), (3)

Q = n + l/k, k > 0, (4)

with n = 0,1,2, . . . denoting the radial quantum number. The
solutions of Eq. (2) have the following form:

F
(k)
nl (ξ ) = N

(k)
nl (1 − ξ 2)l/2kCl/k+1/2

n (ξ ), (5)
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FIG. 1. (Color online) The probability density |� (k)
αβ (X,Y )|2 for

the zero-energy coherent state, given by Eq. (12), with α = 0.75,
β = 1, and k = 2. Its contour plot is given in Fig. 4(a). The
coordinates X and Y are dimensionless.

where

ξ = 1 − ρ2k

1 + ρ2k
(6)

and C
γ
n (ξ ) are the Gegenbauer polynomials. Thus, the full

solution, including the angle factor, has the form

�
(k)
nl (ξ,ϕ) = Nϕ exp(ilϕ)F (k)

nl (ξ ). (7)

The square-integrable solutions for the LDO potentials in
Eq. (1) were first found in 3D configural space in [18,19],
whereas they were found in 2D space in [20], and those
generalized to arbitrary dimensions were found in [28].

In spite of its tedious calculations, the normalization of
radial wave functions, including the 2D case∫ ∞

0

[
F

(k)
nl (ρ)

]2
ρdρ = 1, (8)

can be formally done as described in [28], where an example
is worked out for k = 1. In any case, no simple expression can
be derived for the constants N

(k)
nl . However, we do not need

any explicit formula for them. It is only important that the
functions in Eq. (5) obey the condition (8) for l > 1.

III. STATIONARY WAVE PACKETS

We shall now construct a spatially well-localized state
composed of the following combination of states (7):

�
(k)
αβ (ξ,ϕ) = N (α,β)

∞∑
l=2

∞∑
n=0

[
NϕN

(k)
nl

]−1 αnβl

l!
�

(k)
nl (ξ,ϕ). (9)

The parameters α and β, complex in general, can be taken
real without loss of generality. The symbols N (α,β), Nϕ ,
and N

(k)
nl stand for the normalization of corresponding states.

Though the sums constitute a superposition of states associated
with different coupling constants w [Eqs. (3) and (4)], the
corresponding potential in Eq. (1) is still invariant in shape.
Whatever is the value of w, and hence of the quantum numbers
n � 0 and l � 2, the sums combine states, all corresponding
to the same energy E = 0. In this case, with growing w, the
kinetic energy of the particle is growing as well, and the ratio
of the kinetic and potential energies is a constant. This is a
consequence of conservation of the total energy E = 0.

Now, using Eqs. (7) and (5), and the formula [29]
∞∑

n=0

anCl/k+1/2
n (ξ ) = (1 − 2aξ + a2)−l/k−1/2, |α| < 1,

(10)

we get

�
(k)
αβ (ξ,ϕ)

= N (α,β)√
1 − 2αξ + α2

∞∑
l=2

1

l!

[
β exp(iϕ)(1 − ξ 2)1/(2k)

(1 − 2αξ + α2)1/k

]l

.

(11)
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FIG. 2. (Color online) (a) Contour lines of the probability density |� (k)
αβ (X,Y )|2 for k = 1/2, α = 0.21, and β = 1. The shaded contour is

for |� (k)
αβ (X,Y )|2 = 0.95. (b) The time evolution of the stationary packet, given by Eq. (12), according to Eq. (18). The contour of constant

density is plotted for equidistant instants of time. Its initial position for τ = 0 is marked by the shaded area. The figure is for k = 1/2, α = 0.21,
and β = 1. Dots represent the positions of the packet’s maxima and the continuous line depicts the corresponding classical orbit from Eq. (22),
where C2 = 0, C1 = 0.475, and ϕ0 = π . The coordinates X and Y are dimensionless.
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Obviously, the sum over l can be performed as well, and finally,
for the probability density, we obtain

∣∣�(k)
αβ (X,Y )

∣∣2 = N2(α,β)

1 − 2αξ + α2
{1 + A2 + 2A cos(ϕ)

+ exp[2A cos(ϕ)] − 2 exp[A cos(ϕ)]

× (cos[A sin(ϕ)] + A cos[A sin(ϕ) − ϕ])},
(12)

where

A = β(1 − ξ 2)(1/(2k))

(1 − 2αξ + α2)1/k
, (13)

ϕ = tan−1(Y/X), and ξ is defined in Eq. (6).
Note that the sum over l in Eq. (11) starts from the value

of l = 2, which is a crucial point in our calculations. If the
values of l = 0 and l = 1 were allowed as well, we would
get in Eq. (12) merely the fourth term in the curl brackets. In
such a case, the resulting probability density does not vanish at
infinity. For our packet, when ξ = 1 (ρ = 0) and ξ = −1(ρ →
∞), in both cases A = 0 and |�(k)

αβ (X,Y )|2 tends to zero. Its
image is given in Fig. 1 and shows that the probability density
forms up into a well-localized wave packet. Numerical tests
show that its general shape is about the same for all values
of k (see below), i.e., for a large class of the LDO focusing
potentials in Eq. (1). It is also noticeable that a contemporary
pico- and femtosecond laser technique has provided tools to
produce and control packets of this shape [4].

IV. PACKETS THAT FOLLOW CLASSICAL ORBITS

The question emerges of how to set the stationary packet
in motion; even more, how to make it move along classical
orbits. The standard method of quantum mechanics consists
in using the time-shift operator, say T̂t , and then ψ(t) =
T̂tψ(t = 0). For time-independent Hamiltonians, it reads as
T̂t = exp(− i

h̄
Ĥ t). In our case, the states composing the wave

packet (12) are all zero-energy eigenstates of the Hamiltonian.
Thus, the above approach does not apply here and, instead, we
propose the following way.

By defining the operator

G = −ρ2(1 + ρ2k)2

4k2ρ2k

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ 1

ρ2

∂2

∂ϕ2

)
, (14)

Eq. (2) can be written in the Sturm-Liouville form

GF (ρ) = Q(Q + 1)F (ρ). (15)

Now, we can replace the quantum number Q by the operator
i∂/∂τ and the wave functions �

(k)
nl (ξ,ϕ) in Eq. (7) by

f
(k)
nl (ξ,ϕ,τ ) = exp(−iQτ )�(k)

nl (ξ,ϕ). (16)

Since i(∂/∂τ ) exp(−iQτ ) = Q exp(−iQτ ), the generalized
version of Eq. (15) reads[

G − i
∂

∂τ

(
i

∂

∂τ
+ 1

)]
f

(k)
nl (ξ,ϕ,τ ) = 0, (17)

where the wave functions (16) obey also Eq. (2). An equation
of this form was used in [20] for a group-theoretical analysis
of dynamical symmetries of the LDO potentials for the special
case of k = 1/2.

On the other hand, we know that scalar potentials are
determined, in the simplest case, with the accuracy to an
additive constant. So, for the potentials in Eq. (1), we can
write Vk → Vk + C. The choice of the constant C is a matter
of the problem under consideration. The above scaling of our
potentials results in the appearance of an additional phase
factor, exp(−iCτ/h̄), which, with the choice of C = h̄Q, leads
to the functions f

(k)
nl (ξ,ϕ,τ ) in Eq. (16). We claim here that

replacing in Eq. (9) the functions �
(k)
nl (ξ,ϕ) by the new ones

f
(k)
nl (ξ,ϕ,τ ) leads to the τ -dependent analog of the stationary

packet in Eq. (12), which now moves as a classical particle
in the potential of Eq. (1). From a technical point of view,
the same final result can be achieved if, in the summands of
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FIG. 3. (Color online) As in Fig. 2, but for α = 0.2, k = 1, C1 = 0.353, and ϕ0 = π/2.
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FIG. 4. (Color online) As in Fig. 2, but for α = 0.75, |� (k)
αβ (X,Y )|2 = 0.9, k = 2, C1 = 2.6, and ϕ0 = π/4.

Eq. (9), the parameter α is replaced by α exp(−iτ ) and β by
β exp(−iτ/k).

The parameter τ is not a fictitious time. It is a “genuine”
time, as in the Newtonian mechanics, since it orders packet
positions from the earlier through the present into the future, in
perfect agreement with the classical particle’s actual position
within the same force field. It is also a genuine time from
another point of view. Only with τ introduced in this paper,
the packet evolution is unitary and hence its norm is pre-
served. Formally, we have ih̄∂ψ/∂τ = (T̂ + Vk + C)ψ(r,τ ).
Then, with the substitution ψ(r,τ ) = exp[(−i/h̄)Cτ ]φ(r),
we get (T̂ + Vk)φ(r) = 0, and square-integrable solutions of
this equation are used in the construction of our coherent
state.

Now, making the replacements and repeating the calcula-
tions as in Sec. III, we get

∣∣�(k)
αβ (X,Y,τ )

∣∣2 = N2(α,β)√
M

{
1 + A2

τ + 2Aτ cos(θ )

+ exp[2Aτ cos(θ )] − 2 exp[Aτ cos(θ )]

× (cos[Aτ sin(θ )]+Aτ cos[Aτ sin(θ )−θ ])
}
,

(18)

where

M = 1 + α4 + 4α2ξ 2 − 4α(1 + α2)ξ cos(τ ) + 2α2 cos(2τ ),

(19)

X

Y

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−2 −1 0 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

X

Y

FIG. 5. (Color online) As in Fig. 2, but for α = 0.5, |� (k)
αβ (X,Y )|2 = 0.9, k = 3, C1 = 0.95, and ϕ0 = π/6.
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Aτ = β

(
1 − ξ 2

M

)1/(2k)

, (20)

and

θ = 1

k
tan−1

[
sin(kϕ − τ ) − 2αξ sin(kϕ) + α2 sin(kϕ + τ )

cos(kϕ − τ ) − 2αξ cos(kϕ) + α2 cos(kϕ + τ )

]
.

(21)

When τ = 0, we have
√

M = 1 − 2αξ + α2, Aτ = A,
θ = ϕ, and |�(k)

αβ (X,Y,τ )|2 = |�(k)
αβ (X,Y )|2. Let us remem-

ber that ξ = (1 − ρ2k)/(1 + ρ2k), ρ2 = X2 + Y 2, and ϕ =
tan−1(Y/X).

Note also that classical equations of motion can be formally
integrated for E = 0 for all potentials in Eq. (1), and the result
can be given in the form [28]

ρk − ρ−k = 2{C1 sin[k(ϕ − ϕ0)] + C2 cos[k(ϕ − ϕ0)]}, (22)

where, for the real constants of integration, we have C2
1 +

C2
2 = mwc

4L2
c

− 1, and wc and Lc stand for the classical coupling
constant and angular momentum, respectively.

Accepting τ as a dimensionless time, we can observe that
the packet in Eq. (18) precisely follows classical orbits of
Eq. (22) for all values of k. Now, the time evolution of the
packet is presented in a number of figures. Its normalization,
i.e., the value of N2(α,β), is found numerically for particular
cases and, of course, is conserved during the packet’s motion.

The shape of our packet is visualized in Figs. 2(a)–5(a) by
contour lines of constant probability density. With growing

value of k, the packet spreads out without changing its general
shape as presented in Fig. 1. In Figs. 2(b)–5(b), we show the
time evolution for equidistant instants of time τ . For k = 1/2
[Fig. 2(b)], the packet follows a limaçon of Pascal shaped
curve obtained from Eq. (22), where dots point the positions
of the packet’s maxima and the shaded “bean” is for τ = 0.
The breathing of the distinguished contour is also seen. When
k = 1 [Fig. 3(b)], the packet follows a circle; in Figs. 4(b)
and 5(b), respectively, for k = 2 and k = 3, the packet follows
more complex curves. In each case, the packet’s trajectory
is in excellent agreement with the corresponding classical
solution.

V. CONCLUSION

In this paper, we have been concerned with the construction
of two-dimensional wave packets for a class of physically
important potentials of the Lenz-Demkov-Ostrovsky type.
The construction involves in each case the zero-energy
square-integrable Hamiltonian eigenstates. We have shown
that their suitable combination leads to very well-localized
packets. As a separate problem, we have discussed a possible
way of setting the states in motion. The idea used here
of gauging potentials to get the required packet trajectories
seems to be a proper approach to the zero-energy wave
packets. However, it is not clear at present how to do that for
other potentials and we leave the problem for future studies.
Anyway, the method proposed in our paper results in obtaining
the observed very good quantum-classical correspondence.
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