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Analytical examples, measurement models, and classical limit of quantum backflow
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We investigate the backflow effect in elementary quantum mechanics—the phenomenon in which a state
consisting entirely of positive momenta may have negative current and the probability flows in the opposite
direction to the momentum. We compute the current and flux for states consisting of superpositions of Gaussian
wave packets. These are experimentally realizable but the amount of backflow is small. Inspired by the numerical
results of Penz et al. [Penz, Grübl, Kreidl, and Wagner, J. Phys. A 39, 423 (2006)], we find two nontrivial wave
functions whose current at any time may be computed analytically and which have periods of significant backflow,
in one case with a backward flux equal to about 70% of the maximum possible backflow, a dimensionless number
cbm ≈ 0.04, discovered by Bracken and Melloy [Bracken and Melloy, J. Phys. A 27, 2197 (1994)]. This number
has the unusual property of being independent of h̄ (and also of all other parameters of the model), despite
corresponding to an obviously quantum-mechanical effect, and we shed some light on this surprising property
by considering the classical limit of backflow. We discuss some specific measurement models in which backflow
may be identified in certain measurable probabilities.
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I. INTRODUCTION

A striking but seemingly little-known phenomenon in
elementary quantum mechanics is the backflow effect. This
is the fact that, for a free particle described by a wave function
centered in x < 0 consisting entirely of positive momenta,
the probability of remaining in x < 0 may, for certain states,
increase with time. That is, the quantum-mechanical current
at the origin can be negative and the probability flows
“backward.”

This surprising and clearly nonclassical effect, so far
unchecked experimentally, was first noted by Allcock in his
seminal work on arrival time in quantum mechanics [1] and
subsequently highlighted by Bracken and Melloy in 1994, who
elucidated some of its features [2–4]. In particular, they showed
that there is a limit on the total amount of backflow. Although
backflow means that the probability for remaining in x < 0
may increase with time, the increase can be no greater than an
amount cbm, a dimensionless number computed numerically by
Bracken and Melloy to be approximately 0.04. Furthermore,
although this effect is clearly nonclassical, the number cbm is
independent of h̄ (and also of the particle mass m and the time
duration of backflow). For this reason Bracken and Melloy
declared cbm to be a “new quantum number.”

This remarkable effect has been further investigated by
a number of authors. Eveson et al. significantly refined
the numerical computation of cbm [5]. Similar numerical
computations were carried out by Penz et al. [6], who
gave numerically obtained plots for the form of the state
of maximum backflow and also gave a rigorous account of
the optimization problem involved. Muga et al. gave some
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analytic examples of backflow states and explored some
aspects relating to detection [7]. Berry [8] has also explored
various aspects of backflow and related it to the phenomenon of
superoscillations [9]. Bracken and Melloy have also explored
the effect in the Dirac equation [3] and for a nonrelativistic
particle with constant force [4]. Furthermore, the existence of
the effect is frequently noted in connection with the arrival
time problem [10–18]. The purpose of this paper is to explore
and illustrate various aspects of backflow and in particular to
provide concrete analytic examples of it.

We begin in Sec. II with a detailed formulation of the
problem. We define the current and the flux and consider the
properties of the spectrum of the flux operator, in terms of
which the backflow problem is most clearly defined.

In Sec. III we give some simple examples of states
with backflow using superpositions of Gaussian states. The
backflow for such states, however, is rather small.

In Sec. IV, we review and repeat the numerical computation
of the maximal backflow state and eigenvalue. We give two
nontrivial wave functions with backflow which appear to
match very closely the numerical solutions for the maximal
backflow state by Penz et al. [6]. The current at arbitrary times
of these wave functions is computed analytically and we find
that one has a backflow of approximately 70% of the maximal
value. This is a much larger backflow than any analytically
tractable states previously discovered.

In Sec. V, we consider the naive classical limit h̄ → 0
of backflow, and, in particular, we address the fact that the
bound on backflow cbm discovered by Bracken and Melloy
appears to be independent of h̄. We show that the expected
dependency on h̄ reappears in realistic measurement models,
where measurements are described not by exact projectors
but by quasiprojectors involving parameters characterizing the
imprecision of real measurements. Under these conditions the
naive classical limit is restored.
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In Sec. VI, we consider some simple measurement models
and discuss the ways in which backflow may be seen in the
probabilities for measurements. We summarize and conclude
in Sec. VII.

II. DETAILED FORMULATION OF THE PROBLEM

A. The flux

We consider a free particle with initial wave function ψ(x)
centered in x < 0 and consisting entirely of positive momenta.
Note that it may not of course be perfectly localized in x < 0,
since this is incompatible with positive momenta. We consider
the amount of probability flux F (t1,t2) crossing the origin
during the time interval [t1,t2], defined by

F (t1,t2) =
∫ 0

−∞
dx|ψ(x,t1)|2 −

∫ 0

−∞
dx|ψ(x,t2)|2 (2.1)

=
∫ t2

t1

dt J (t), (2.2)

where J (t) is the usual quantum-mechanical current at the
origin

J (t) = − ih̄

2m

(
ψ∗(0,t)

∂ψ(0,t)

∂x
− ∂ψ∗(0,t)

∂x
ψ(0,t)

)
. (2.3)

The flux is also easily rewritten in terms of the Wigner function
[19] at time t, Wt (p,q),

F (t1,t2) =
∫ t2

t1

dt

∫
dpdq

p

m
δ(q)Wt (p,q). (2.4)

(For a useful review of the properties of the current and
related phase-space distribution functions, see Ref. [20].) It
is also useful to write these expressions in an operator form.
We introduce a projection operator onto the positive x axis,
P = θ (x̂), and its complement, P̄ = 1 − P = θ (−x̂). The flux
may then be written in terms of a flux operator F̂ (t1,t2) defined
by

F̂ (t1,t2) = P (t2) − P (t1) =
∫ t2

t1

dt Ṗ (t)

=
∫ t2

t1

dt
i

h̄
[H,θ (x̂)] =

∫ t2

t1

dt Ĵ (t), (2.5)

where we have introduced the current operator

Ĵ = 1

2m
(p̂δ(x̂) + δ(x̂)p̂). (2.6)

So Eqs. (2.2) and (2.3) may also be written

F (t1,t2) = 〈F̂ (t1,t2)〉 = 〈P̄ (t1)〉 − 〈P̄ (t2)〉
= 〈P (t2)〉 − 〈P (t1)〉 =

∫ t2

t1

dt 〈ψ |Ĵ (t)|ψ〉, (2.7)

where J (t) = 〈ψ |Ĵ (t)|ψ〉.
The flux equation (2.2) is a difference between two proba-

bilities and is clearly positive when those probabilities behave
according to classical intuition, i.e., when the probability of
remaining in x < 0 decreases monotonically. For this reason,
the flux is often proposed as the provisional semiclassical
answer to the arrival-time problem: what is the probability
for crossing the origin during the time interval [t1,t2]? This

is discussed at length elsewhere [10–17] and, although the
arrival-time problem forms the backdrop to the current work,
the properties of the flux pose an interesting set of problems
in themselves and it is these problems we focus on.

As indicated already, in the full quantum-mechanical case,
the flux can be negative. The above formulas give some clues
as to why this is the case. First of all, since the Wigner function
can be negative [19], Eq. (2.4) suggests that the flux can be
negative for certain states. More precisely, negative Wigner
function is a necessary condition for negative flux, which
indicates that it relates to states with interferences in position
or momentum. Negative Wigner function is not a sufficient
condition since the integral in Eq. (2.4) may yield a positive
expression, even for negative W .

The second clue to the possible negativity comes from
the current operator Eq. (2.6): the two operators p̂ and δ(x̂) are
non-negative (on states with positive momentum), but since
they do not commute, the current operator Ĵ is not a positive
operator.

B. Most negative flux as an eigenvalue problem

Following Bracken and Melloy [2], a useful way to find the
states with negative flux is to look at the spectrum of the flux
operator Eq. (2.5) (restricted to positive momenta). We thus
look for the solution to the eigenvalue problem

θ (p̂)F̂ (t1,t2)|�〉 = λ|�〉, (2.8)

where the states |�〉 consist only of positive momenta. (We
choose an opposite sign convention to Bracken and Melloy,
which means that the backflow states have λ < 0). The most
negative value of the flux F (t1,t2) is then the most negative
eigenvalue of the flux operator.

It is convenient to choose the time interval [t1,t2] to be
[−T/2,T /2], as is easily achieved by time-evolving the state,
and the eigenvalue equation in momentum space then reads

1

π

∫ ∞

0
dk

sin[(p2 − k2)T/4mh̄]

(p − k)
�(k) = λ�(p). (2.9)

We then define rescaled variables u and v by p = 2
√

mh̄/T u

and k = 2
√

mh̄/T v and the eigenvalue equation is then

1

π

∫ ∞

0
dv

sin(u2 − v2)

(u − v)
φ(v) = λφ(u), (2.10)

where φ(u) = (mh̄/4T )1/4�(p) and is dimensionless. Note
that all physical constants h̄, m, and T have dropped out of
this equation so that the eigenvalues λ are dimensionless and
independent of h̄, m, and T . It is useful to record the result that
the flux for any state φ(u) in these variables is given by

F (−T/2,T /2) = 1

π

∫ ∞

0
du

∫ ∞

0
dv φ∗(u)

sin(u2 − v2)

(u − v)
φ(v).

(2.11)

The eigenvalue equation, Eq. (2.10), clearly has approximate
solutions with eigenvalues close to 1 or 0 consisting of
wave packets which cross the origin either well inside
or well outside the interval [−T/2,T /2]. Further study of
this eigenvalue equation has been carried out by a number
of authors, both numerically and analytically [2,5,6]. The
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eigenvalue equation is real, so one may take the eigenstates
φ(u) to be real-valued functions. This has the consequence
that the corresponding wave function in configuration space at
time t , ψ(x,t), has the symmetry

ψ∗(x,t) = ψ(−x, −t) (2.12)

as is indeed observed in the numerical solutions. The eigen-
values lie in the range

−cbm � λ � 1, (2.13)

where cbm was computed numerically and found to be

cbm ≈ 0.038452. (2.14)

It was conjectured in Ref. [2] that the spectrum is discrete in
the interval [−cbm,0] but continuous in the interval [0,1]. The
extremizing state was given numerically by Penz et al. [6],
who gave numerical evidence to suggest that its asymptotic
form for large u is close to sin u2/u, which indicates that the
extremizing state is square integrable. We find good analytic
expressions approximating the numerical results for all u in
what follows.

The eigenvalue equation, Eq. (2.10), was solved without
any conditions on φ(u) at u = 0 [2,5,6], as is reasonable for
an integral equation. Since φ(u) = 0 for u < 0 this means that
the state could be discontinuous in momentum space and as a
consequence the position width (
x)2 is infinite. The above
asymptotic form for φ(u) in momentum space also means that
(
p)2 is infinite. This means that the state is somewhat unusual
although there is no obvious reason to require that the widths in
position or momentum space should be finite and indeed such
a restriction may limit the amount of backflow. We offer no
simple explanations as to why these properties hold, although
there are some hints in Ref. [6].

At present there is no analytic account of the properties of
the results in Eqs. (2.13) and (2.14). Physically, backflow is
related to the fact that both specifying positive momenta and
asking for the probability of remaining in x > 0 correspond to
incompatible measurements in quantum mechanics. That is,
it is related to the fact that the operators θ (p̂) and θ (−x̂) do
not commute. This leads to the question, is there an analytic
calculation of the most negative eigenvalue −cbm, perhaps
involving the noncommutativity of θ (p̂) and θ (−x̂)? We do
not have an answer to this question but it remains an important
question for future study. Also, the fact that the eigenvalues
are independent of h̄ means there are some potential problems
with the naive classical limit and we address this below.

Note that the eigenvalues are independent of T . This simply
means that the duration of a period of negative current can be
arbitrarily long, as long as the total flux over that time period
is bounded from below by −cbm; that is,∫ T/2

−T/2
dt J (t) � −cbm. (2.15)

This means that a relationship of the form

T J (ξ ) � −cbm (2.16)

holds, for some time ξ in the interval [−T/2,T /2]. These
relations also imply that there is no restriction on the current
being arbitrarily negative, as long as it is negative for a
sufficiently short time.

III. BACKFLOW FOR SUPERPOSITIONS OF GAUSSIANS

Bracken and Melloy gave two explicit examples of states
displaying backflow [2]. Although these examples served to
demonstrate the existence of the effect, the particular states
chosen were rather unphysical. Muga et al. gave an example
of a backflow state consisting of a Gaussian in momentum
space but restricted to p > 0 [7], which means that the wave
function in configuration space is not a simple function. Berry
also gave some simple examples [8], essentially plane waves,
similar to those considered in Ref. [2]

In this section we show that the backflow effect also
arises in the more familiar, and also potentially experimentally
realizable, setting of a superposition of two Gaussian wave
packets. (This example does not seem to have been considered
previously, other than the closely related result in Ref. [7].)
A single Gaussian has positive Wigner function so must
have positive current [Eq. (2.4)]. The Wigner function of a
superposition of Gaussians may, however, be negative in some
regions, so the current can be negative.

Of course the problem with using Gaussian wave packets
is that they have support on both positive and negative
momenta, and so as well as demonstrating the appearance
of negative current, we also have to show that this is not
the result of any initially negative momentum. We see that
whereas superpositions of Gaussian states do indeed give rise
to backflow, the size of the effect is considerably smaller than
the theoretical maximum.

We begin with the simple case of a superposition of two
plane waves, as considered in Ref. [2]. This can be turned
into a more physical state by replacing the plane waves with
Gaussians tightly peaked in momentum, without affecting the
basic conclusion that the state displays backflow for well-
chosen values of the various parameters. Normalizable states
are necessary in order to have a properly normalized flux. In
this section we work in units in which h̄ = 1 and we set the
particle mass m = 1.

We start with the unnormalized state,

ψ ′(x,t) =
∑
k=1,2

Ak exp[ipk(x − pkt)], (3.1)

where the Ak are taken to be real. (One could of course add to
each component an arbitrary phase, but this is an unnecessary
complication.) The current at the origin for this state is given
by

J (t) = A2
1p1 + A2

2p2 + A1A2(p1 + p2) cos[(E1 − E2)t].

(3.2)

This oscillates between a maximum value of (A1p1 +
A2p2)(A1 + A2) and a minimum value of (A1p1 −
A2p2)(A1 − A2). Thus, for instance, if A1 > A2 and A1p1 <

A2p2, this state displays backflow.
Consider now the normalized state

ψ(x,t) =
∑
k=1,2

Ak

1√
4σ 2 + 2it

× exp

(
ipk(x − pkt) − (x − pkt)2

4σ 2 + 2it

)
. (3.3)
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FIG. 1. (Color online) Plot of the current for a wave function
consisting of a superposition of two Gaussians, with the parameters
given in Eq. (3.4).

This is a sum of two initial Gaussian wave packets with equal
spatial width σ , evolved for a time t . If we let σ → ∞ we
essentially recover Eq. (3.1). The idea is that if we take σ to be
large enough, the current at the origin is the product of Eq. (3.2)
and a slowly varying function, so that the conclusions about
backflow still hold. The analytic expression for the current
is somewhat long and complex, and we do not give it here.
Instead we show below two sets of plots of the current at the
origin and the probability of remaining in x < 0 as functions
of time for the state in Eq. (3.3) for the following two sets
of parameters, obtained by a search of parameter space of
examples illustrating the backflow effect as well as possible.
In Figs. 1 and 2 we plot the parameters

p1 = 0.5, p2 = 2, σ = 10, A1 = 1.7, A2 = 1, (3.4)

and in Figs. 3 and 4 we plot the parameters

p1 = 0.3, p2 = 1.4, σ = 10, A1 = 1.8, A2 = 1.

(3.5)

We clearly see from these plots that there are several
intervals during which the current is negative. These examples
show that the backflow can occur in several disjoint time
intervals. A magnification of one of these backflow regions
is shown in Fig. 5. The effect is robust with respect to small
changes of the parameters, Eq. (3.4) or Eq. (3.5), which were
chosen because they give reasonable amounts of backflow.

The set of parameters in Eq. (3.5) gives rise to the greatest
amount of backflow we have been able to find, although we
have not performed anything like a comprehensive search of

30 20 10 0 10 20 30
t

0.2

0.4

0.6

0.8

1.0
P t

FIG. 2. (Color online) Plot of the probability for remaining in
x < 0 for a wave function consisting of a superposition of two
Gaussians, with the parameters given in Eq. (3.4).

30 20 10 10 20 30
t

0.01

0.02

0.03

0.04

0.05
J t

FIG. 3. (Color online) Plot of the current for a wave function
consisting of a superposition of two Gaussians, with the parameters
given in Eq. (3.5).

the parameter space. The value of the flux during the largest
period of backflow is

F =
∫ t2

t1

dtJ (t), (3.6)

where J (t) is the current, Eq. (2.3), and the interval [t1,t2] is
chosen such that the current is negative for the whole of this
time. Computing the flux during the largest backflow interval
gives

F ≈ −0.0061, (3.7)

or about 16% of the theoretical maximum.
It is important to check that this probability backflow

cannot be explained by the tiny probability of having negative
momentum which comes from this Gaussian state. An order-
of-magnitude estimate suffices here. We have two Gaussian
wave packets centered about different momenta. Consider the
wave packet centered around p = 0.3. The probability that a
measurement of the momentum of this state would yield a
negative answer is given approximately by

Prob(p < 0) ∼
∫ 0

−∞
dp exp[−200(p − 0.3)2] ∼ 10−10.

(3.8)

The negative flow of probability is therefore entirely due to
the backflow effect.

40 20 0 20 40
t

0.2

0.4

0.6

0.8

1.0
P t

FIG. 4. (Color online) Plot of the probability for remaining in
x < 0 for a wave function consisting of a superposition of two
Gaussians, with the parameters given in Eq. (3.5).
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t0.38

0.40

0.42

0.44

0.46

0.48

0.50
P t

FIG. 5. (Color online) Closeup of Fig. 4. The probability is clearly
seen to increase between t ≈ 2 and t ≈ 4.

IV. AN APPROXIMATION TO THE BACKFLOW
MAXIMIZING STATE

Backflow states may be found by solving the eigenvalue
equation, Eq. (2.10). The numerical work of Penz et al.
[6] yielded a plot of the approximate eigenstate satisfying
Eq. (2.10) giving the most negative eigenvalue −cbm, i.e., the
largest amount of backflow. This state appears to be of the
form φ(u) ∼ sin u2/u for large u.

A problem of great interest is to find analytic expressions for
wave functions with backflow which match these numerical
results and asymptotic results as closely as possible and for
which the current at arbitrary time may be computed analyti-
cally. This is what we do in this section. To be clear, we do not
find approximate analytic solutions to the eigenvalue problem,
Eq. (2.10). Rather, inspired by the numerical solutions to the
eigenvalue problem, we exhibit analytic expressions for wave
functions, compute their current at time t analytically, and
show that they have significant negative flux, calculated using
Eq. (2.11).

A. Numerical results

We first review the numerical results of the computation of
the backflow state. We have repeated the numerical analysis
of Penz et al. [6] of the optimizing state and its current. This
is purely for comparison with our analytic results and we do
not claim any improvements in accuracy over Penz et al.

Our numerically computed maximum backflow state has
the asymptotic form

φas(u) = a
sin(u2)

u
+ b

cos(u2)

u
. (4.1)

In Fig. 6 we plot the numerically computed maximum back-
flow state together with φas for a = 0, b = −0.1. Comparing
by eye it seems like these parameters produce the best fit, but
we consider states with the more general form of Eq. (4.1).
We plot in Fig. 7 the current computed from the numerically
obtained backflow maximizing state. Note that the current
appears to have a very specific singularity structure at t = ±1,
at which it jumps between −∞ and +∞. (This is presumably
related to some properties of the flux operator.) These two
plots are in agreement, in general shape, with the numerical
results of Penz et al. [6] and we compare our analytic results
with these plots in what follows.

2 4 6 8 10
u

0.5

0.0

0.5

1.0

1.5
u

FIG. 6. (Color online) Plot of the backflow maximizing state
(solid line) together with φas for a = 0, b = −0.1 (dashed line).

B. The form of the extremizing state

We first make a brief remark about the asymptotic form
φ(u) ∼ sin u2/u, used by Penz et al. [6] mainly to check for
square integrability, but it is useful to check its current to see
if it has backflow. It is easy to see that it has positive current
at t = 0, contrary to the numerical result shown in Fig. 7. We
see this as follows. In terms of the dimensionless quantities
introduced in Sec. II, the current at t = 0 is

J (0) = 1

2π

∫ ∞

0
du dv (u + v)φ(u)φ(v)

= 1

π

∫ ∞

0
du

sin(u2)

u

∫ ∞

0
dv sin(v2) = 1

8

√
π

2
> 0.

(4.2)

Hence, to have negative current, the optimizing state must be
quite different from sin u2/u for small u, but may agree with
it asymptotically.

Another obvious guess for the approximate form of the
extremizing state is the Bessel function J0(u2). However, using
the formulas ∫ ∞

0
du uJ0(u2) = 1

2
, (4.3)

∫ ∞

0
du J0(u2) =

√
2
(5/4)

(3/4)
≈ 1.04605, (4.4)

it is clear that the current at t = 0, Eq. (4.2), is again positive.
These unsuccessful guesses, combined with a process of

trial and error, have led us to the two guesses for which the
current at arbitrary times can be computed analytically and
which have substantial backflow. It has not been difficult to
simply guess momentum-space wave functions matching the

3 2 1 1 2 3
t

0.1

0.1
0.2
0.3
0.4
0.5
0.6
J t

FIG. 7. (Color online) The current, J (t), as computed from the
numerically obtained backflow maximizing state.
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numerical solution in Fig. 6. (However, we have found that
it is difficult to match the precise singularity structure of the
current at t = ±1, as we see.)

C. Guess 1

Our first guess is the momentum-space wave function φ1(u)
given by

φ1(u) = N
[(

1
2 − C(u)

) + a
(

1
2 − S(u)

)]
, a ∈ R,

(4.5)

where N is some normalization factor. Here

C(u) = fresnelC

(√
2

π
u

)
=

√
2

π

∫ u

0
dx cos(x2) (4.6)

and similarly for S(u). This state has the asymptotic form

φ1(u) ∼ N

[
− sin(u2)

u
+ a

cos(u2)

u

]
. (4.7)

Note that

φ1(u) = N

√
2

π

∫ ∞

1
dzu[cos(z2u2) + a sin(z2u2)], (4.8)

which is a form we use below. Note that the norm N is given
by

N−2 = 1

4
√

π
[1 + a2 + 2a(1 + a)(

√
2 − 1)]. (4.9)

We plot the wave function in Fig. 8, and we see that it shows
reasonable agreement with the numerical result.

2 4 6 8 10
u

0.5

0.0

0.5

1.0

1.5
u

FIG. 8. (Color online) φ(u), for a = 0.4 (solid line), with the exact
numerical result for comparison (dashed line).

We wish to evaluate the flux, Eq. (2.11), which may be
written

F =
∫ 1

−1
dt J (t), (4.10)

where we have introduced the current

J (t) = 1

2π

∫ ∞

0
du dv(u + v) exp[it(u2 − v2)]φ(u)φ(v)

(4.11)

written in terms of the dimensionless variables introduced in
Sec II (and here t is a dimensionless time parameter).

Because we are working only with approximate eigenstate
of the flux, the interval during which the J (t) is negative may
not coincide exactly with [−1,1], so for that reason, we take
the flux instead to be

F =
∫ t2

t1

dt J (t) (4.12)

and adjust the interval [t1,t2] to match the region of negative
flux. Equation (4.11) can also be written as

J (t) = Re

(
1

π

∫ ∞

0
du exp(itu2)φ(u)

∫ ∞

0
dv v exp(−itv2)φ(v)

)
= 1

π
Re(U (t)V (t)), (4.13)

so that we can compute the current by first computing each of the integrals in Eq. (4.13) separately.
We begin by computing the U integral in Eq. (4.13). We use Eq. (4.8) to write

U1(t) = N

√
2

π

∫ ∞

0
du

∫ ∞

1
dz

u

2
{(1 − ia) exp[i(t + z2)u2] + (1 + ia) exp[i(t − z2)u2]}. (4.14)

We would like to change the order of integration at this point, but we cannot, since the u integral only converges conditionally.
To remedy this we introduce a convergence factor exp(−εu2), where ε > 0. We can then write

U1(t) = N

√
2

π

∫ ∞

1
dz

∫ ∞

0
du

u

2
{(1 − ia) exp[i(t + z2)u2 − εu2] + (1 + ia) exp[i(t − z2)u2 − εu2]}

= N

2
√

2π

∫ ∞

1
dz

(
1 − ia

ε − i(t + z2)
+ 1 + ia

ε − i(t − z2)

)
= iN

2
√

2π

[
(1 − ia)

arctan
(

z√
t+iε

)
√

t + iε
− (1 + ia)

arctan
(

z√−t−iε

)
√−t − iε

]∞

z=1

= N

2
√

2π (t + iε)

[
π (1 + i)(1 + a)

2
− (i + a) arctan

(
1√

t + iε

)
− (i − a)arctanh

(
1√

t + iε

)]
, (4.15)
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where we have used the standard integrals ∫
du

1

α + u2
=

arctan
(

u√
α

)
√

α
, (4.16)

∫
du

1

α − u2
=

arctanh
(

u√
α

)
√

α
. (4.17)

We now turn to the V integral in Eq. (4.13). Again, we use Eq. (4.8) to write

V1(t) = N

√
2

π

∫ ∞

0
dv

∫ ∞

1
dz

v2

2
{(1 − ia) exp[−i(t − z2)v2] + (1 + ia) exp[−i(t + z2)v2]} (4.18)

As before, in order to change the order of integration we insert a convergence factor,

V (t)1 = N

√
2

π

∫ ∞

1
dz

∫ ∞

0
dv

v2

2
{(1 − ia) exp[−i(t − z2)v2 − εv2] + (1 + ia) exp[−i(t + z2)v2 − εv2]}

= N

4
√

2

∫ ∞

1
dz

(
1 − ia

[ε + i(t − z2)]3/2
+ 1 + ia

[ε + i(t + z2)]3/2

)

= N

4
√

2

[
(1 − ia)

z
√−i

√
z2 − t + iε

(t − iε)(z2 − t + iε)
− (1 + ia)

z
√

i
√

z2 + t − iε

(t − iε)(z2 + t − iε)

]∞

1

= N

4
√

2

[
(1 − ia)

√−i

t − iε

(
1 − 1√

1 − t + iε

)
− (1 + ia)

√
i

t − iε

(
1 − 1√

1 + t − iε

)]
, (4.19)

where we have used the standard integrals∫
du

1

(a + u2)3/2
= u

a
√

u2 + a
, (4.20)

∫
du

1

(a − u2)3/2
= u

a
√

u2 − a
. (4.21)

Given U and V we may now plot the current, Eq. (4.13). The
plot is shown in Fig. 9. It has a substantial period of backflow
and is in broad agreement with the numerical result in Fig. 7,
although it differs significantly in the behavior near t = ±1.
We have chosen the value a = 0.4 which approximately
maximizes the backflow for this wave function. The flux,
Eq. (4.12), for this choice may be calculated by numerically
integrating the current and is approximately

F = −0.02095. (4.22)

The amount of negative flux obtained is of the order of 55%
of cbm, which is a much greater fraction than we were able to
achieve in Sec. III using superpositions of Gaussians.

3 2 1 1 2 3
t

0.05

0.10

0.15

0.20

0.25

0.30

J t

FIG. 9. (Color online) Current, J1(t), for a = 0.4 and ε = 10−7.

D. Guess 2

Our second guess is the momentum-space wave function

φ2(u) = N
[
ae−bu + (

1
2 − C(u)

)]
, a,b ∈ R, (4.23)

where N is a normalization factor. This has the asymptotic
form

φ2(u) ∼ N
sin(u2)

u
. (4.24)

We plot φ2 in Fig. 10 for the values of a and b which maximize
backflow. We see good agreement with the numerical result.

We first calculate the norm N ,

N−2 =
∫ ∞

0
du

[
a2e−2bu +

(
1

2
− C(u)

)2

+ 2ae−bu

(
1

2
− C(u)

)]
. (4.25)

2 4 6 8 10
u

0.5

0.0

0.5

1.0

1.5

u

FIG. 10. (Color online) Plot of φ(u), for a = 0.6 and b = 2.8
(solid line), with the numerical result for comparison (dashed line).
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The first two terms can be computed easily enough. The last
term is more challenging. Using the standard integral∫ ∞

0
dxe−axC(x) = 1

a

{[
1

2
− S

(
a

π

)]
cos

(
a2

2

)

−
[

1

2
− C

(
a

π

)]
sin

(
a2

2

)}
, (4.26)

we find

N−2 = a2

2b
+ 1

4
√

π
+ a

b
− 2a

b

{[
1

2
− S

(
b

π

)]
cos

(
b2

2

)

−
[

1

2
− C

(
b

π

)]
sin

(
b2

2

)}
. (4.27)

We now turn to computing the U integral in Eq. (4.13). We
wish to compute

U2(t) = N

∫ ∞

0
du eitu2−εu2

(
ae−bu + 1

2
− C(u)

)

= aN

∫ ∞

0
du e−bu−(ε−it)u2

+N

∫ ∞

0
du e−(ε−it)u2

(
1

2
− C(u)

)
, (4.28)

where we have added a convergence factor e−εu2
. The second

integral we have already seen; it is just U1(t) for our first guess
of φ1(u), with the coefficient of the term involving S(u) taken

to be zero. The first integral can also be done easily, using the
standard integral∫ ∞

0
dx exp(−αx2 − βx) = 1

2

√
π

α
e

β2

4α erfc

(
β

2
√

α

)
,

for Re(α) > 0. (4.29)

Combining these gives

U2(t) = aN

2

√
iπ

t + iε
e

ib2

4(t+iε) erfc

(
b

2

√
i

t + iε

)

+ N

2
√

2π (t + iε)

[
π (1 + i)

2
− i arctan

(
1√

t + iε

)

− iarctanh

(
1√

t + iε

)]
. (4.30)

Next we compute the V integral in Eq. (4.13),

V2(t) = N

∫ ∞

0
dv ve−(ε+it)v2

(
ae−bv + 1

2
− C(v)

)

= aN

∫ ∞

0
dv ve−bv−(ε+it)v2

+
∫ ∞

0
dv ve−(ε+it)v2

(
1

2
− C(v)

)
. (4.31)

As with U2(t), the second integral can be simply written down
by comparing to V1(t) for our first guess of φ1(u). The first
integral is also easily performed, using the standard integral

∫ ∞

0
dx xe−αx2−βx = 1

2α

[
1 − β

2

√
π

α
exp

(
− β2

4α

)
erfc

(
β

2
√

a

)]
, for Re(α) > 0. (4.32)

We thus find

V2(t) = aN

2(ε + it)

[
1 − b

2

√
π

ε + it
exp

(
− b2

4(ε + it)

)
erfc

(
b

2
√

ε + it

)]

+ N

4
√

2

[ √−i

t − iε

(
1 − 1√

1 − t + iε

)
−

√
i

t − iε

(
1 − 1√

1 + t − iε

)]
. (4.33)

Now we have U and V and we can compute the current,
Eq. (4.13), and, by numerical integration, the flux, Eq. (4.12).
The maximum amount of negative flux we can generate
is

F = −0.02757, (4.34)

which occurs for the parameters a = 0.6, b = 2.8. This
corresponds to about 70% of the maximum cbm. We plot the
current J (t) for these parameters in Fig. 11. The current is
closer to the numerical result, Fig. 7, than our first guess,
Fig. 9, but still lacks the correct behavior as t → ±1.

Finally, to give a clear illustration of the backflow phe-
nomenon, in Fig. 12 we plot the probability that the state
will be found in x < 0 as a function of time, for the state
Eq. (4.23). The probability decreases over the whole interval
plotted but has a very noticeable period of increase between
t = ±1.

V. THE CLASSICAL LIMIT OF BACKFLOW

Some insights into the properties of backflow may be
found by looking at its classical limit. In the usual account

3 2 1 1 2 3
t

0.2

0.4

0.6

0.8
J t

FIG. 11. (Color online) Current, J2(t), for a = 0.6, b = 2.8, and
ε = 10−7.
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4 2 0 2 4
t

0.3

0.4

0.5

0.6

0.7

0.8
P t

FIG. 12. (Color online) Probability P (t) that the state will be
found in x < 0 at time t for the wave function φ2. The probability is
clearly seen to increase during the interval [−1,1].

of emergent classicality for the free particle considered here,
one considers a larger system in which the particle is coupled
to a wider environment and one considers the evolution of the
reduced density matrix of the particle only [21,22]. It is well
known that, in a wide variety of such open system models,
the Wigner function of the particle will become positive after
a short period of time [23]. From Eq. (2.4), it is then easily
seen that the flux will then be positive, so the backflow clearly
goes away in the standard approach to the classical limit. A
detailed discussion of the arrival-time problem in the presence
of an environment was given in Ref. [24], and in this work the
resulting positivity of the current, after finite time, is clearly
seen.

However, there is a more interesting and subtle question,
noted by Bracken and Melloy [2], which is that the eigenvalues
of the flux operator are independent of h̄, as we saw in
Eq. (2.10), despite the fact that the existence of negative eigen-
values (negative flux) is clearly a quantum phenomenon. This
means that in the naive classical limit, h̄ → 0, the backflow
does not go away, as one might expect. Of course, this “limit”
is an oversimplification of what the classical limit means; but
despite this, it is still disconcerting that this obviously quantum
phenomenon is apparently independent of h̄.

This situation is reminiscent of another situation without
naive classical limit, namely, scattering off a step potential,
where it is known that the quantum-mechanical reflection
coefficient is independent of h̄, so it does not go to zero as
h̄ → 0, contrary to classical expectations. The origin of the
problem is the use of an exact step potential. If instead a
smoothed-off step is used, with length scale σ describing the
size of the smoothing region, then reflection does indeed go
away if h̄ → 0 with σ held constant and nonzero [25]. The
point here is that the exact step potential is an idealization that
fails to capture all physical properties. Replacement with a
more realistic potential restores the naive classical limit.

In the backflow situation, we may therefore also expect to
get a reasonable naive classical limit by small modification of
the situation. In particular, instead of defining the flux operator
in terms of exact projection operators P = θ (x̂), we define it
in terms of a quasiprojector Q. This seems reasonable since,
as discussed earlier, backflow can be measured by measuring
whether the particle is in x > 0 at two different times and,
due to the inevitable imprecision of real measurements,

such measurements are best modeled by quasiprojectors. A
convenient choice of quasiprojector is

Q =
∫ ∞

0
dy δσ (x̂ − y), (5.1)

where δσ (x̂ − y) is a smoothed out δ function,

δσ (x̂ − y) = 1

(2πσ 2)1/2
exp

(
− (x̂ − y)2

2σ 2

)
. (5.2)

This goes to the usual δ function as σ → 0 and then Q → θ (x̂).
If we replace P with the quasiprojector Q in the expression for
the flux, we get Eq. (2.7) but with the current operator replaced
by

Ĵ = 1

2m
[p̂δσ (x̂) + δσ (x̂)p̂]. (5.3)

The resulting flux will, loosely speaking, be less negative,
since the commutator between p̂ and δσ (x̂) becomes smaller
as σ becomes larger.

With the quasiprojector, the flux written in the form of
Eq. (2.11) acquires an exponential factor

F (−T/2,T /2) = 1

π

∫ ∞

0
du

∫ ∞

0
dv φ∗(u)

sin(u2 − v2)

(u − v)

× e−a2(u−v)2
φ(v), (5.4)

where the dimensionless number a is given by a2 = 2mσ 2/h̄T

and the eigenvalue equation, Eq. (2.10), acquires the same
exponential factor,

1

π

∫ ∞

0
dv

sin(u2 − v2)

(u − v)
e−a2(u−v)2

φ(v) = λφ(u). (5.5)

This means that the eigenvalues λ now depend on a, so we write
λ = λ(a). Through a they therefore depend on h̄ and the “limit”
h̄ → 0 now clearly means the regime a � 1, that is, h̄ 
2mσ 2/T . Hence, in a more realistic measurement situation,
the bound on the total backflow—the most negative eigenvalue
of Eq. (5.5)—will depend on h̄ and the limit h̄ → 0 may now
be more meaningful.

Bracken and Melloy noticed a similar phenomenon in
two other models. The first is in the context of the Dirac
equation, where the presence of the speed of light as another
physical parameter permits the construction of a dimensionless
parameter analogous to a above [3]. The second is in a
nonrelativistic model with a constant force, which again
introduces a new physical parameter [4].

A reasonable conjecture is that the negative eigenvalues
will increase with a and also that

λ(a) � −cbm (5.6)

for all a, so that the Bracken-Melloy bound −cbm emerges
as a lower bound on the eigenvalues, achievable only in the
limit a → 0. It seems unlikely, however, that all the negative
eigenvalues will all become positive or zero, except perhaps in
the limit a → ∞. This behavior is best explored numerically,
which we now consider.

We consider the behavior of the most negative eigenvalue
λ(a) of Eq. (5.5). We have not been able to solve this equation
analytically, so instead we have obtained numerical estimates
for λ(a) for various values of a, and we plot the result in Fig. 13.
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FIG. 13. (Color online) Plot of the size of the most negative
eigenvalue of Eq. (5.5), λ(a), as a function of a.

The value of λ(a) does indeed increase with a, tending to zero
asymptotically. In fact, numerical solutions are consistent with
the asymptotic form

λ(a) ∼ − 1

a2
(5.7)

for large a. One can get some analytic evidence for this result
from the eigenvalue equation, Eq. (5.5), in the limit of large
a2, which is

1

π

∫ ∞

0
dv (u + v)e−a2(u−v)2

φ(v) ≈ λ(a)φ(u), (5.8)

since different values of u and v are suppressed by the
exponential. By simple scaling of u and v, it is easily seen
that if φ0(u) is an eigenstate of Eq. (5.8) with eigenvalue
λ(a0), then φ(u) = φ0(ua/a0) is an eigenstate with eigenvalue
λ(a) = (a0/a)2λ(a0). Hence the eigenvalues scale like 1/a2

for large a.
To confirm that this result about the negative eigenvalues

is significant, we need also to compare it with the behavior of
the positive eigenvalues for large a. (It could be, for example,
that they all go to zero, rendering the above result spurious.)
As noted in Sec. II, wave packets which clearly cross or
do not cross the origin during the interval [−T/2,T /2] are
approximate eigenstates of Eq. (2.10) with eigenvalues 1 or
0. It is reasonably clear that they will also be approximate
eigenstates of the modified eigenvalue equation, Eq. (5.5),
as long as the wave packets cross the origin sufficiently far
from the end points of the interval [−T/2,T /2], since under
these conditions the incoming wave packet does not notice the
smearing of the projector into a quasiprojector. This is also
backed up by numerical work. We have computed a number
of eigenvalues for different values of a. There appears to be
a reasonably even distribution of positive eigenvalues in the
interval [0,1] for a range of values of a, so, unlike the negative
eigenvalues, this part of the spectrum is not significantly
changed as a becomes large.

In summary, for smeared projectors [Eq. (5.1)], which are
perhaps better models for real measurements than exact pro-
jectors, the eigenvalues and in particular the lowest eigenvalue
representing the most negative flux are dependent on h̄ (and
m and T ). Numerical work indicates that the most negative
eigenvalue increases with a. It is still negative for finite a,
indicating that backflow will still be present for more realistic
measurements. The lowest eigenvalue appears to go to zero
for a → ∞. This indicates that all the negative eigenvalues
go to zero (or become positive) in the naive classical limit

h̄ → 0. (This is in contrast to the more realistic classical limit
of a particle coupled to an environment, where it can be shown
that the backflow effect does indeed vanish exactly after a
finite time [24].) By contrast the positive eigenvalues are not
significantly affected.

VI. BACKFLOW AND MEASUREMENT MODELS

In this section we relate the above results on backflow to
measurements. This is partly to begin to address the practical
question of how backflow is measured, but also to get some
insight into the negativity of the flux. A discussion of the
possible measurement of backflow was given by Bracken and
Melloy [2] and some earlier discussions of measurement of
the current may be found in Refs. [8,26–29].

A. Explicit measurement of backflow

Our first observation concerning the possible measurement
of backflow is that the flux Eq. (2.2) is defined as the
difference between two probabilities; therefore, the flux can be
measured by measuring these two probabilities. This requires
two ensembles, each prepared in the initial state |ψ〉. On one
ensemble, measurements are made to determine if the particle
is in x > 0 at time t1, hence determining 〈P (t1)〉. On the second
ensemble, the same measurements are performed at time t2,
which thus determines 〈P (t2)〉. From the two results the flux
can determined.

This is perhaps the most direct way of measuring back-
flow and could in principle be done using Bose-Einstein
condensates. Briefly, for weak interactions a Bose-Einstein
condensate corresponds to a whole ensemble of nonrelativistic
particles, so measurements of the above probabilities could be
determined by a single measurement on the condensate [30].
Backflow could be investigated if it is possible to prepare the
system in a state of positive momentum. This will be explored
in more detailed in a future publication.

Note that the above is not the same as performing sequential
measurements of position on the same ensemble. We come to
these sorts of measurements below.

B. A simple measurement model for arrival time

A different way of gaining insight into the properties and
measurement of the flux is to consider simple models for
measuring the arrival time. This is because such models, if
properly constructed, yield a non-negative probability which
will, however, be approximately the same as the flux in some
limit, since the flux is the correct semiclassical probability for
the arrival time [15–18]. Hence, by comparing the (always
non-negative) probability arising in such models with the
(sometimes negative) flux, we may be able to see the origin of
the negativity and also gain some insight into ways in which
the current can be measured.

The simplest model for measurement of the arrival time
involves simply measuring to see if the particle is in x < 0 at
time t1 and then in x > 0 at time t2. This probability is given
by

p(t1,t2) = 〈ψ |P̄ (t1)P (t2)P̄ (t1)|ψ〉, (6.1)
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which is clearly positive. It gives a simple notion of arriving at
the origin during the time interval [t1,t2] (but ignoring issues
about multiple crossings). Using the flux operator Eq. (2.5)
this may be rewritten

p(t1,t2) = 〈ψ |P̄ (t1)(P (t2) − P (t1))P̄ (t1)|ψ〉
=

∫ t2

t1

dt 〈ψ |P̄ (t1)Ĵ (t)P̄ (t1)|ψ〉. (6.2)

This coincides with the flux Eq. (2.7) except for the projection
operators onto x < 0 at t1. Since Eq. (6.2) is positive, this
means that the negativity of the flux comes entirely from the
part of the state which is already in x > 0 at the initial time t1.

For a wave packet which either cleanly crosses or does not
cross the origin, during the time interval [t1,t2], the probability
Eq. (6.2) will, to a good approximation, be equal to the flux,
which will be positive (or zero). However, for states with
backflow, the flux is negative but p(t1,t2) is non-negative,
so there will be a substantial difference between them. The
interesting question is then to see how the negativity of the flux
leaves its signature in the non-negative arrival-time probability.
To see this we need a more elaborate model.

C. A complex potential model for arrival time

Many more elaborate and realistic models for the mea-
surement of the arrival time (involving model detectors, for
example) naturally lead to an arrival-time probability defined
with a complex potential. This is described in detail in
many places [16,31–34]. These models typically yield an
arrival-time probability distribution which is closely related to
the current and from which the current may be extracted, even
when negative, thereby leading to a possible measurement of
backflow.

A typical model is something like the following. We again
consider an initial wave packet starting in x < 0 with positive
momentum and seek the arrival-time probability distribution
�(τ )dτ for crossing the origin between τ and τ + dτ . We
consider a complex absorbing potential of step-function form
in x > 0 so the Hamiltonian is H0 − iV0θ (x̂), where H0 is the
free Hamiltonian. We define the survival probability N (τ ) to be
the norm of the state at time τ after evolution with this complex
Hamiltonian. The arrival-time distribution is then given by

�(τ ) = −dN

dτ

= 2V0〈ψ |e[iH0−V0θ(x̂)]τ θ (x̂)e[−iH0−V0θ(x̂)]τ |ψ〉. (6.3)

We seek a simple form for this expression which exposes
its dependence on the current operator and thus gives some
idea as to how it will be affected when backflow is present.
Differentiating with respect to τ , we get

d�

dτ
= −2V0� + 2V0〈ψ |e[iH0−V0θ(x̂)]τ Ĵ e[−iH0−V0θ(x̂)]τ |ψ〉,

(6.4)

where Ĵ is the current operator Eq. (2.6). Equation (6.4) is a
differential equation for �(τ ), which is easily solved to yield

�(τ ) = 2V0

∫ τ

−∞
dt e−2V0(τ−t) 〈ψ |e[iH0−V0θ(x̂)]t Ĵ

× e[−iH0−V0θ(x̂)]t |ψ〉, (6.5)

where we have assumed that �(τ ) → 0 as τ → −∞. Equa-
tion (6.5) is the exact expression for �(τ ) and displays
the dependence on the current operator Ĵ . It is positive by
construction, even though Ĵ is not a positive operator. The
probability for crossing during the time interval [t1,t2] then is

p(t1,t2) =
∫ t2

t1

dt �(t). (6.6)

This is the analog of Eq. (6.2).
It is not easy to see how the presence of backflow states in

Eq. (6.5) may register in the probability distribution �(τ ). The
expression is, however, simpler in the usual weak measurement
approximation (small V0), which involves neglecting the
complex potential terms in the bracket expression, yielding

�(τ ) ≈ 2V0

∫ τ

−∞
dt e−2V0(τ−t) 〈ψt |Ĵ |ψt 〉, (6.7)

where |ψt 〉 = e−iH0t |ψ〉. This is the expected semiclassical
result [1,16,35,36] (although note that the derivation given
here is considerably shorter than those given elsewhere!).

Note that Eq. (6.7) is not necessarily positive, due to the
negativity of the current in certain states. The positivity may
have been lost in going from Eq. (6.5) to Eq. (6.7) because
we took the limit V0 → 0 in the bracket expression but not in
the rest of the expression. However, this should not matter for
sufficiently small V0, and we assume that Eq. (6.7) is positive.

The quantity �(τ ) corresponds to the arrival-time distri-
bution measured by a realistic measurement and so can in
principle be determined experimentally. The current can then
be extracted from Eq. (6.7) by deconvolution [35,36] or by
taking a derivative, via Eq. (6.4) (with the limit of small V0

taken in the current expression). This therefore gives a method
of measuring the current and hence the flux, and checking for
backflow.

Equation (6.7) has the form of the current smeared over
a range of time. This general form has also been observed
in other models for the measurement of arrival time (see,
for example, Ref. [18]). What this means is that a region of
negative current can cancel out a region of positive current
in the measured probability �(τ ). This may be interpreted
as meaning that backflow produces a time delay between the
arrival of the wave packet at the origin and its registration in
a measuring device. (Ideas along these lines were explored in
Ref. [7].)

In Fig. 14 we plot the measurement probability Eq. (6.7)
for two values of V0 and also the original numerically
computed current to see how the time smearing affects the
backflow. We see that positive regions of the current are not
qualitatively changed very much, in keeping with semiclassical
expectations, but negative regions of the current become
positive as a result of the smearing, as they must, since the
measured probability is positive.

It is also striking that the discontinuous jumps in the current
from positive to negative at t = ±1 arise as discontinuous
changes in the derivative of the time-smeared current. We
speculate that such discontinuities may be signatures (in the
measured probabilities) of backflow in the underlying current.
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FIG. 14. A plot of the current (solid line) and time-smeared
current, Eq. (6.7), for V0 = 0.5 (dashed line) and V0 = 0.1 (dotted
line).

VII. SUMMARY AND CONCLUSIONS

The purpose of this paper was to explore and illustrate the
backflow effect in a variety of different ways. After setting up
the problem in Sec. II, in Sec. III we computed the current and
the flux for states consisting of superpositions of Gaussians.
These states are important since they are experimentally
realizable. Backflow is easily obtained with these states but
the maximum amount of flux is very small, only about 16% of
the maximum possible.

In Sec. IV, we looked for analytic expressions for states
matching as closely as possible the numerically computed
states giving maximal backflow, computed by Penz et al.
[6]. We presented two candidate analytic expressions and
computed the current at arbitrary times analytically. The plot
of the current in each case had reasonably good agreement
with the numerical solution, except at the end points t = ±1
of the backflow region. We computed the most negative flux
of these states. In one case, the total flux is about 70% of
the numerically computed maximum backflow, significantly
better than any previous analytic expression for a backflow
state. For this most negative flux state, we plotted the
probability of remaining in x < 0 against time in Fig. 12.
This gives a particularly striking illustration of the back-
flow phenomenon, showing a distinct period of increase in
probability.

Note that although the backflow obtained in these analytic
guesses is significant, which is what we aimed to achieve, it
is not in fact that close to the maximum backflow, despite the
fact that our analytic guesses for the momentum-space wave
function appeared to be very close. What is perhaps relevant

here is that our analytic wave functions failed to match the
singularity structure of the current at t = ±1. We deduce from
this that the singularity structure of the current is somehow
important in obtaining the maximum backflow states. This
issue will be addressed in future publications.

In Sec. V, we discussed the classical limit of backflow.
The most interesting aspect of this is the issue, first noted
by Bracken and Melloy, that the eigenvalues of the flux
operator are independent of h̄. This appears to mean that there
is a genuine quantum phenomenon, negative flux, which is
independent of h̄ and which does not appear to go away in the
naive classical limit h̄ → 0. We showed that this situation starts
to appear more physically sensible when the projectors used
in the definition of the flux operator are replaced by quasipro-
jectors, which includes a physical parameter characterizing
the imprecision of real measurements. The eigenvalues then
do depend on h̄ and the most negative eigenvalue becomes
less negative as the quasiprojectors become more smeared.
Furthermore, there is evidence that all the negative eigenvalues
become zero or positive as h̄ → 0, restoring the naive classical
limit. However, there are clearly more issues to explore around
this question.

In Sec. VI we discussed measurement models that exposed
certain aspects of backflow. Equation (6.2) establishes that
backflow arises from the part of the state which is already in
x > 0. The complex potential model of Sec. VI C corresponds
to a number of reasonable realistic measurement models. The
current can be obtained from the measured probability by
deconvolution, and from this result the negative current could
in principle be obtained. [Along the way, we also discovered
a very concise derivation of the arrival-time formula with a
complex potential, Eq. (6.7).]

The features of backflow elucidated here may be of value
in designing experiments to test backflow. These and related
ideas with be explored elsewhere.

Note added. Recently we became aware of interesting
related work involving the backflow effect for angular mo-
mentum [37].
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