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Ever since the inception of gravitational-wave detectors, limits imposed by quantum mechanics to the detection
of time-varying signals have been a subject of intense research and debate. Drawing insights from quantum
information theory, quantum detection theory, and quantum measurement theory, here we prove lower error
bounds for waveform detection via a quantum system, settling the long-standing problem. In the case of
optomechanical force detection, we derive analytic expressions for the bounds in some cases of interest and
discuss how the limits can be approached using quantum control techniques.
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I. INTRODUCTION

The study of quantum measurement has come a long way
since the proposal of wavefunction collapse by Heisenberg
and von Neumann, the philosophical debates by Bohr and
Einstein, and the cat experiment hypothesized by Schrödinger.
With more and more experimental demonstrations of bizarre
quantum effects being realized in laboratories, many re-
searchers have shifted their focus to the practical implications
of quantum mechanics for precision measurements, such as
gravitational-wave detection, optical interferometry, atomic
clocks, and magnetometry [1–4]. Braginsky, Thorne, Caves,
and others pioneered the application of quantum measurement
theory to gravitational-wave detectors [5–7], while Holevo,
Yuen, Helstrom, and others have developed a beautiful
theory of quantum detection and estimation [8,9] based on
the more abstract notions of quantum states, effects, and
operations [10]. Although the approach of Holevo was able
to produce rigorous proofs of quantum limits to various
information processing tasks, so far it has been applied mainly
to simple quantum systems with trivial dynamics measured
destructively to extract static parameters. Applying such an
approach to gravitational-wave detection, or optomechanical
force detection in general [11], proved to be far trickier; the
signal of interest there is time-varying (commonly called a
waveform in engineering literature [12]), the detector is a
dynamical system, and the measurements are nondestructive
and continuous [5–7]. Quantum limits to such detectors had
been a subject of debate [13–15], with no definitive proof
that any limit exists. In more recent years, the rapid progress
in experimental quantum technology suggests that quantum
effects are becoming relevant to metrological applications and
has given the study of quantum limits a renewed impetus
[1–3,11].

Generalizing the quantum Cramér-Rao bound first pro-
posed by Helstrom [8], Tsang, Wiseman, and Caves recently
derived a quantum limit to waveform estimation [16], which
represents the first step toward a rigorous treatment of quantum
limits to a waveform sensor. That work assumes that one is
interested in estimating an existing waveform accurately, so
that the mean-square error is an appropriate error measure.
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The first goal of gravitational-wave detectors is not estimation,
however, but detection of the existence of gravitational waves,
in which case the miss and false-alarm probabilities are
the more relevant error measures [12] and the existence of
quantum limits remains an open problem. Here we settle
this long-standing question by proving lower error bounds
for the quantum waveform detection problem. To illustrate
our results, we apply them to optomechanical force detection,
demonstrating a fundamental tradeoff between force detection
performance and precision in detector position, and discuss
how the limits can be approached in some cases of interest
using a quantum-noise cancellation (QNC) technique [17–22]
and an appropriate optical receiver, such as the ones proposed
by Kennedy and Dolinar [8,23]. Merging the continuous
quantum measurement theory pioneered by Braginsky et al.
and the quantum detection theory pioneered by Holevo et al.,
these results are envisaged to play an influential role in
quantum metrological techniques of the future.

II. QUANTUM DETECTION OF
A CLASSICAL WAVEFORM

Let P [y|H0] be the probability functional of an observation
process y(t) under the null hypothesis H0, and

P [y|H1] =
∫

DxP [x]P [y|x,H1] (2.1)

be the probability functional under the alternative hypothesis
H1. x(t) is a classical waveform, P [x] is its prior probability
functional, and P [y|x,H1] is the likelihood functional under
H1. To perform hypothesis testing given a record of y(t), one
separates the observation space into two decision regions ϒ0

and ϒ1, such that H0 is chosen if y falls in ϒ0 and H1 is chosen
if y falls in ϒ1. The miss probability is defined as

P01 ≡
∫

ϒ0

DyP [y|H1] (2.2)

and the false-alarm probability is

P10 ≡
∫

ϒ1

DyP [y|H0]. (2.3)
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Two popular decision strategies are the Bayes criterion, which
minimizes the average error probability

Pe ≡ P10P0 + P01P1 (2.4)

given the prior hypothesis probabilities P0 and P1 = 1 − P0,
and the Neyman-Pearson criterion, which minimizes P01 for
an allowable P10, or vice versa [12].

To introduce quantum mechanics to the problem, assume
that x(t) perturbs the dynamics of a quantum system under H1

and y(t) results from measurements of the system. Without
any loss of generality, we model P [y|H0] and P [y|x,H1]
by considering a large enough Hilbert space, such that the
initial quantum state |ψ〉 at time ti is pure, the evolution
in the Schrödinger picture is unitary, and measurements are
modeled by a positive-operator-valued measure (POVM) E[y]
at the final time tf via the principle of deferred measurement
[10,16,24]:

P [y|H0] = tr{E[y]U0(tf ,ti)|ψ〉〈ψ |U †
0 (tf ,ti)}, (2.5)

P [y|x,H1] = tr{E[y]U1(tf ,ti)|ψ〉〈ψ |U †
1 (tf ,ti)}, (2.6)

where only the unitaries U0 and U1 are assumed to differ and
U1 depends on x. Assume further that

U0(tf ,ti) = T exp

[
− i

h̄

∫ tf

ti

dtH0(t)

]
, (2.7)

U1(tf ,ti) = T exp

[
− i

h̄

∫ tf

ti

dtH1(x(t),t)
]

, (2.8)

H1(x(t),t) = H0(t) + �H (x(t),t), (2.9)

where T denotes time-ordering and �H (x(t),t) is the Hamil-
tonian term responsible for the coupling of the waveform x(t)

FIG. 1. (Color online) Quantum-circuit diagrams for the wave-
form detection problem. The quantum system is modeled as a pure
state |ψ〉 with unitary evolution (U0 or U1) under each hypothesis
(H0 or H1) in a large enough Hilbert space for a given classical
waveform x(t), which perturbs the evolution under H1. If x(t) is
stochastic, the final quantum state under H1 is mixed. Measurements
are modeled as a positive-operator-valued measure (POVM) E[y] at
the final time through the principle of deferred measurement.

to the quantum detector. Figure 1 shows the quantum-circuit
diagrams [25] that depict the problem.

This setup can now be cast as a problem of quantum state
discrimination between a pure state

ρ0 ≡ U0|ψ〉〈ψ |U †
0 (2.10)

and a mixed state

ρ1 ≡
∫

DxP [x]U1|ψ〉〈ψ |U †
1 . (2.11)

Let |�j 〉 be a purification of ρj in a larger Hilbert space HA ⊗
HB , such that ρj = trB |�j 〉〈�j | and tr{E[y]ρj } = tr[(E[y] ⊗
1B)|�j 〉〈�j |], where 1B denotes the identity operator with
respect to HB . The average error probability is thus lower-
bounded by [8]

Pe � 1
2 (1 −

√
1 − 4P0P1|〈�0|�1〉|2), (2.12)

which is valid for any purification. Hence

Pe � 1
2

(
1 −

√
1 − 4P0P1 max

|�0〉,|�1〉
|〈�0|�1〉|2

)
(2.13)

= 1
2 (1 −

√
1 − 4P0P1F ), (2.14)

where F is the quantum fidelity by Uhlmann’s theorem [24]:

F (ρ0,ρ1) ≡ (tr
√√

ρ1ρ0
√

ρ1)2. (2.15)

As ρ0 is pure, the fidelity is given by

F = 〈ψ |U †
0ρ1U0|ψ〉 = E(Fx), (2.16)

Fx ≡ |〈U †
0 (tf ,ti)U1(tf ,ti)〉|2, (2.17)

where we have defined classical and quantum averages by

E(·) ≡
∫

DxP [x](·), (2.18)

〈·〉 ≡ 〈ψ | · |ψ〉. (2.19)

By similar arguments, a quantum bound on the miss probability
P01 for a given allowable false-alarm probability P10 can be
derived from the bound for the pure-state case [8]:

P01 �
{

1 − [
√

P10F + √
(1 − P10)(1 − F )]2, P10 � F ;

0, P10 � F.

(2.20)

Note that the latter bound is equally valid if we interchange
P01 and P10; for example, fixing P01 = 0 means P10 � F .
Equations (2.14) and (2.20) are valid for any POVM and
achievable if x(t) is known a priori, such that both ρ0 and
ρ1 are pure [8].

In terms of related prior work at this point, Ou [26] and Paris
[27] studied quantum limits to interferometry in the context
of detection, while Childs et al. [28], Acı́n et al. [29,30],
and D’Ariano et al. [31] also studied unitary or channel
discrimination, but none of them considered time-dependent
Hamiltonians, which are the subject of interest here.

A key step toward simplifying Eq. (2.17) is to recognize
that

U
†
0 (tf ,ti)U1(tf ,ti) = T exp

[
− i

h̄

∫ tf

ti

dt�H0(x(t),t)
]

,

(2.21)
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where

�H0(x(t),t) ≡ U
†
0 (t,ti)�H (x(t),t)U0(t,ti) (2.22)

is �H in the interaction picture [5]. In general, Eq. (2.17)
can then be expanded in a Dyson series and evaluated
using perturbation theory [32]. To derive analytic expressions,
however, we shall be more specific about the Hamiltonians
and the initial quantum state.

III. FORCE DETECTION WITH
A LINEAR GAUSSIAN SYSTEM

Assume that x is a force on a quantum object with position
operator q, so that

�H = −qx, (3.1)

and the conditional fidelity Fx becomes

Fx =
∣∣∣∣
〈
T exp

[
i

h̄

∫ tf

ti

dtq0(t)x(t)

]〉∣∣∣∣
2

, (3.2)

with q0(t) obeying equations of motion under the null
hypothesis H0 in the interaction picture. The 〈·〉 expression
in Eq. (3.2) is a noncommutative version of the characteristic
functional [33]. To simplify it, assume further that H0 consists
of terms at most quadratic with respect to canonical position
or momentum operators, such that the equations of motion are
linear and q0(t) depends linearly on the initial-time canonical
operators. Let Z(t) be a column vector of canonical position
and momentum operators, including q0(t), that obey the
equation of motion

dZ(t)

dt
= G(t)Z(t) + J (t) (3.3)

under hypothesis H0, where G(t) is a drift matrix and J (t) is a
source vector, both consisting of real numbers. q0(t) can then
be written as

q0(t) = Vq(t,ti)Z(ti) +
∫ t

ti

dτVq(t,τ )J (τ ), (3.4)

where Vq(t,ti) is a row vector and a function of G(t). This
gives

1

h̄

∫ tf

ti

dtq0(t)x(t) = κ�Z(ti) + φ, (3.5)

κ� ≡ 1

h̄

∫ tf

ti

dtx(t)Vq(t,ti), (3.6)

φ ≡ 1

h̄

∫ tf

ti

dtx(t)
∫ t

ti

dτVq(t,τ )J (τ ). (3.7)

With Fx now given by

Fx = |〈T exp[iκ�Z(ti) + iφ]〉|2, (3.8)

the time-ordering operator becomes redundant:

Fx = |〈ψ | exp[iκ�Z(ti)]|ψ〉|2. (3.9)

This expression can be simplified using the Wigner rep-
resentation W (z,ti) of |ψ〉, which has the following
property [34]:

〈ψ | exp[iκ�Z(ti)]|ψ〉 =
∫

dzW (z,ti) exp(iκ�z), (3.10)

where z is a column vector of phase-space variables. Assuming
further that W (z,ti) is Gaussian with mean vector z̄ and
covariance matrix 
, we obtain an analytic expression for
Fx :

Fx =
∣∣∣∣
∫

dzW (z,ti) exp(iκ�z)

∣∣∣∣
2

(3.11)

= exp(−κ�
κ) (3.12)

= exp

[
− 1

h̄2

∫ tf

ti

dt

∫ tf

ti

dt ′x(t)
q(t,t ′)x(t ′)
]

, (3.13)


q(t,t ′) ≡ Vq(t,ti)
V �
q (t ′,ti). (3.14)

The covariance matrix is given by the Weyl-ordered second
moment:


jk = 1
2 〈Zj (ti)Zk(ti) + Zk(ti)Zj (ti)〉 − 〈Zj (ti)〉〈Zk(ti)〉.

(3.15)

Hence


q(t,t ′) = 1
2 〈q0(t)q0(t ′) + q0(t ′)q0(t)〉 − 〈q0(t)〉〈q0(t ′)〉.

(3.16)

It is interesting to note that the expression given by − ln Fx in
Eq. (3.13) coincides with the one proposed in Refs. [5,35] as an
upper quantum limit on the force-sensing signal-to-noise ratio,
and 4
q(t,t ′)/h̄2 is equal to the quantum Fisher information in
the quantum Cramér-Rao bound for waveform estimation [16].
The relation of this expression to the fidelity and the detection
error bounds is a novel result here, however.

If the statistics of q0(t) can be approximated as stationary,
viz.,


q(t,t ′) =
∫ ∞

−∞

dω

2π
Sq(ω) exp[−iω(t − t ′)], (3.17)

Fx becomes

Fx = exp

[
− 1

h̄2

∫ ∞

−∞

dω

2π
Sq(ω)|x(ω)|2

]
, (3.18)

x(ω) ≡
∫ tf

ti

dtx(t) exp(iωt). (3.19)

For example, if

x(t) = X cos(
t + θ ) (3.20)

is a sinusoid,

Fx ≈ exp

[
− T

h̄2 Sq(
)X2

]
, T ≡ tf − ti . (3.21)

These expressions for the fidelity suggest that, for a given
x(t), there is a fundamental tradeoff between force detection
performance and precision in detector position.

IV. OPTOMECHANICS

Suppose now that the mechanical object is a moving mirror
of an optical cavity probed by a continuous-wave optical beam,
the phase of which is modulated by the object position and
the intensity of which exerts a measurement back action via
radiation pressure on the object, as depicted in Fig. 2. This
setup provides a basic and often sufficient model for more
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FIG. 2. (Color online) A cavity optomechanical force detector.
An optical cavity with a moving mirror is pumped on-resonance with
an input field Ain, and the output field Aout is measured to infer
whether a force x(t) has perturbed the motion of the mirror.

complex optomechanical force detectors. Let the output field
operator under hypothesis Hj be

Aoutj (t) ≈ K1(t) ∗ Ain(t) + iAK2(t) ∗ qj (t), (4.1)

where

a(t) ∗ b(t) ≡
∫ ∞

−∞
dτa(t − τ )b(τ ) (4.2)

denotes convolution,

Kn(t) ≡
∫ ∞

−∞

dω

2π
Kn(ω) exp(−iωt) (4.3)

is an impulse-response function with

K1(ω) ≡ iω + γ

−iω + γ
, (4.4)

K2(ω) ≡ 2ω0

L

1

−iω + γ
(4.5)

in the frequency domain, A is the input mean field, ω0 is the
optical carrier frequency, L is the cavity length, and γ is the
optical cavity decay rate [17]. qj (t) is the position operator
under each hypothesis, which can be written as [17]

q0(t) ≈ K3(t) ∗ h̄K2(t) ∗ ξ (t), (4.6)

q1(t) ≈ K3(t) ∗ [h̄K2(t) ∗ ξ (t) + x(t)], (4.7)

where K3(t) is another impulse response function that transfers
a force to the position,

ξ ≈ A∗�Ain(t) + A�A†
in(t) (4.8)

is the back action noise, and the transient solutions are assumed
to have decayed to zero. Defining

K4(t) ≡ K3(t) ∗ K2(t), (4.9)

such that the position power spectral density is

Sq(ω) = h̄2|K4(ω)|2Sξ (ω), (4.10)

we obtain

Fx = exp

[
−

∫ ∞

−∞

dω

2π
Sξ (ω)|K4(ω)x(ω)|2

]
. (4.11)

The back action noise ξ that appears in the output field,
in addition to the shot noise in Ain, can limit the detection
performance at the so-called standard quantum limit [5–7,15].
This does not seem to agree with the fundamental quantum

limits in terms of Eq. (4.11), which suggest that increased
fluctuations in q0(t) due to ξ (t) can improve the detection.
Fortunately, it is now known that the back action noise can be
removed from the output field [13,14,17–22,36]. One method,
called quantum-noise cancellation, involves passing the optical
beam through another quantum system that has the effective
dynamics of an optomechanical system with negative mass
[17,18,20–22]. With the back action noise removed, the output
fields become

Aout0(t) ≈ K1(t) ∗ Ain(t), (4.12)

Aout1(t) ≈ K1(t) ∗ Ain(t) + iAK2(t) ∗ K3(t) ∗ x(t). (4.13)

If the phase quadrature of Aoutj (t) is measured by homodyne
detection, the outputs can be written as

y0(t) ≈ η(t), (4.14)

y1(t) ≈ η(t) + K2(t) ∗ K3(t) ∗ x(t), (4.15)

η(t) ≡ 1

2i|A|2 [A∗K1(t) ∗ �Ain(t) − AK∗
1 (t) ∗ �A†

in(t)].

(4.16)

The power spectral densities of ξ (t) and η(t) satisfy an
uncertainty relation [5]:

Sξ (ω)Sη(ω) � 1
4 . (4.17)

The detection problem described by Eqs. (4.14) and (4.15)
becomes a classical one with additive Gaussian noise, a
scenario that has been studied extensively in gravitational-
wave detection [37,38].

V. ERROR BOUNDS FOR DETERMINISTIC
WAVEFORM DETECTION

Suppose that x(t) is known a priori. It is then well known
that the error probabilities for the detection problem described
by Eqs. (4.14) and (4.15) using a likelihood-ratio test are [12]

P10,hom = 1

2
erfc

(
σ + λ

4σ

)
, (5.1)

P01,hom = 1

2
erfc

(
σ − λ

4σ

)
, (5.2)

where

erfc u ≡ 2√
π

∫ ∞

u

dv exp(−v2), (5.3)

λ is the threshold in the likelihood-ratio test, which can be
adjusted according to the desired criterion, and σ is a signal-
to-noise ratio given by

σ 2 ≈ 1

8

∫ ∞

−∞

dω

2π

|K4(ω)x(ω)|2
Sη(ω)

(5.4)

for a long observation time relative to the duration of x(t) plus
the decay time of K4(t). To compare homodyne detection with
the quantum limits, suppose that the duration of x(t) is long
and σ 2 increases at least linearly with T , so that we can define
an error exponent as the asymptotic decay rate of an error
probability in the long-time limit. For simplicity, we consider
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here only the exponent of the higher error probability:

� ≡ − lim
T →∞

1

T
ln max {P10,P01} . (5.5)

Although this asymptotic limit may not be relevant to
gravitational-wave detectors in the near future, the error
probabilities for which are anticipated to remain high, we focus
on this limit to obtain simple analytic results, which allow us to
gain useful insight into the fundamental physics. More precise
calculations of error probabilities are more tedious but should
be straightforward following the theory outlined here.

For homodyne detection, the error exponent is

�hom = σ 2

T
= 1

8T

∫ ∞

−∞

dω

2π

|K4(ω)x(ω)|2
Sη(ω)

. (5.6)

The quantum limit, on the other hand, is

− lim
T →∞

1

T
ln max {P10,P01}

� − lim
T →∞

1

T
ln max

P0

Pe � − lim
T →∞

1

T
ln F ≡ �F , (5.7)

which gives

�F = 1

T

∫ ∞

−∞

dω

2π
Sξ (ω)|K4(ω)x(ω)|2. (5.8)

Using the uncertainty relation between Sξ and Sη in Eq. (4.17),
it can be seen that

�hom � �F

2
, (5.9)

that is, the homodyne error exponent is at most half the optimal
value. This fact is well known in the context of coherent-state
discrimination [8,23,39,40]. The suboptimality of homodyne
detection here should be contrasted with the conclusion of
Ref. [16], which states that homodyne detection together with
QNC are sufficient to achieve the quantum limit for the task
of waveform estimation.

To see how one can get closer to the quantum limits, let
us go back to Eqs. (4.12) and (4.13). Observe that if the input
field is in a coherent state, the output field is also in a coherent
state (in the Schrödinger picture) under each hypothesis. This
means that existing results for coherent-state discrimination
can be used to construct an optimal receiver. The Kennedy
receiver, for example, displaces the output field so that it
becomes vacuum under H0 and then detects the presence of
any output photon [8]. Any detected photon means that H1

must be true. Deciding on H0 if no photon is detected and
H1 otherwise, the false-alarm probability P10 is zero, while
the miss probability is the probability of detecting no photon
given H1, or

P01,Ken = exp

[
−

∫ tf

ti

dt |AK2(t) ∗ K3(t) ∗ x(t)|2
]

. (5.10)

For a long observation time with Sξ = |A|2 for a coherent
state,

P01,Ken ≈ exp

[
−

∫ ∞

−∞

dω

2π
Sξ |K4(ω)x(ω)|2

]
= F, (5.11)

which makes the Kennedy receiver optimal under the Neyman-
Pearson criterion in the case of P10 = 0 according to Eq. (2.20)

FIG. 3. (Color online) An integrated QNC-Kennedy receiver.
The output field Aout from the optomechanical force detector in
Fig. 2 is displaced by −A and then passed through an optical
setup that removes the measurement back action noise. The dashed
arrows represent a red-detuned optical cavity mode that mimics a
negative-mass oscillator and interacts with the optical probe field via
a beam splitter (BS) and a two-mode optical parametric amplifier
(OPA). Details of how this setup works can be found in Refs. [17,18].
If the field Ain is in a coherent state, the final output field should be
in a vacuum state under the null hypothesis H0. Any photon detected
at the output indicates that H1 must be true.

and also achieve the optimal error exponent:

�Ken = − lim
T →∞

1

T
ln P01,Ken = �F . (5.12)

The Kennedy receiver can be integrated with the QNC setup;
an example is shown in Fig. 3. The Dolinar receiver, which
updates the displacement field continuously according to
the measurement record, can further improve the average
error probability slightly to saturate the lower limit given by
Eq. (2.14) [8,23]. Other more recently proposed receivers may
also be used here to beat the homodyne limit [39,40].

VI. ERROR BOUNDS FOR STOCHASTIC
WAVEFORM DETECTION

Consider now a stochastic x(t), which should be relevant to
the detection of stochastic backgrounds of gravitational waves
[41]. Since Fx is Gaussian,

F =
∫

DxP [x] exp

[
− 1

h̄2

∫
dtdt ′x(t)
q(t,t ′)x(t ′)

]
(6.1)

can be computed analytically if the prior P [x] is also Gaussian.
Here we shall use a discrete-time approach and take the
continuous limit at the end of our calculations. If x(t) is a
zero-mean Gaussian process with covariance


x(t,t ′) ≡ E[x(t)x(t ′)], (6.2)

it can be discretized as

x ≡ (x0, . . . ,xN−1)�, (6.3)

DxP [x] ≈ dx0 · · · dxN−1
1√

(2π )N det 
x

× exp

(
−1

2
x�
−1

x x

)
, (6.4)


x ≡ E(xx�). (6.5)
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The fidelity then becomes a finite-dimensional Gaussian
integral:

F ≈
∫

dx0 · · · dxN−1
1√

(2π )N det 
x

× exp

(
−1

2
x�
−1

x x − δt2

h̄2 x�
qx

)
(6.6)

=
√

det
(

−1

x + 2δt2
q/h̄
2
)−1

det 
x

(6.7)

=
[

det

(
I + 2δt2

h̄2 
q
x

)]−1/2

(6.8)

= exp

[
−1

2
tr ln

(
I + 2δt2

h̄2 
q
x

)]
(6.9)

= exp

(
−1

2

∑
ω

ln λω

)
, (6.10)

where λω are the eigenvalues of the matrix

C ≡ I + 2δt2

h̄2 
q
x. (6.11)

If 
q(t,t ′) and 
x(t,t ′) are both stationary, viz.,


q(t,t ′) = σq(t − t ′), (6.12)


x(t,t ′) = σx(t − t ′), (6.13)

they can be modeled as circulant matrices in discrete time, so
that C is also circulant, with eigenvalues given by the discrete
Fourier transform of a row or column vector of the matrix.
Taking the continuous-time limit using∑

ω

→ T

∫ ∞

−∞

dω

2π
, (6.14)

we get

F = exp(−�F T ), (6.15)

�F = 1

2

∫ ∞

−∞

dω

2π
ln

[
1 + 2

h̄2 Sq(ω)Sx(ω)

]
, (6.16)

Sq(ω) ≡
∫ ∞

−∞
dtσq(t) exp(iωt), (6.17)

Sx(ω) ≡
∫ ∞

−∞
dtσx(t) exp(iωt). (6.18)

This fidelity expression can then be used in the detection error
bounds.

For homodyne detection, the error exponent is more
complicated for stochastic waveform detection and given by
the Chernoff distance [42,43]:

�hom

= sup
0�s�1

1

2

∫ ∞

−∞

dω

2π
ln

1 + (1 − s)|K4(ω)|2Sx(ω)/Sη(ω)

[1 + |K4(ω)|2Sx(ω)/Sη(ω)]1−s
.

(6.19)

The performance of homodyne detection relative to the quan-
tum limits then depends on the specific form of |K4(ω)|2Sx(ω).
The Kennedy receiver, on the other hand, is still applicable

here, as the output is still a coherent state under H0. The
false-alarm probability is still zero, and the miss probability is
now

P01,Ken ≈ E exp

[
−

∫ ∞

−∞

dω

2π
Sξ (ω)|K4(ω)x(ω)|2

]
≈ F,

(6.20)

which means that the Kennedy receiver remains optimal, both
in terms of the Neyman-Pearson criterion in the case of P10 = 0
and the error exponent. Whether other receivers can do even
better and saturate the other quantum bounds is a more difficult
question, as the output field under H1 is now in a mixed state
and the fidelity lower bounds may not be achievable.

The use of Kennedy or Dolinar receivers assumes coherent
states at the output, which is the case only if the back action
noise cancellation is complete and quantum shot noise in the
input beam is the only source of noise at the output. Although
such assumptions are highly idealistic, especially for current
gravitational-wave detectors, the ideal scenario shows that the
quantum bounds proposed here are in principle achievable
using known optics technology. Optimal discrimination of
squeezed or other Gaussian states remains a topic of current
research [44–46] and may be useful for future gravitational-
wave detectors that use squeezed light [47]. Generalization of
the results here to multi-waveform discrimination should also
be useful for gravitational-wave astronomy [37,38] and may
be done by following Refs. [8,48,49].

VII. OUTLOOK

Now that quantum limits to waveform detection have been
discovered, the natural next question to ask is how they can be
approached in practice. In the case of optomechanical force
detection, the requirements are quantum shot noise as the only
source of noise at the output and an appropriate receiver, such
as the Kennedy receiver. A proof-of-concept experimental
demonstration of waveform detection approaching the shot-
noise limits based on Eq. (4.11) should be well within reach
of current quantum optics technology. To demonstrate the
tradeoff between force detection performance and detector
localization suggested by Eq. (3.18) with optomechanics,
however, can be much more challenging, as it would require
quantum back action noise to dominate the detector position
fluctuation but become negligible in the output via QNC. A
more promising candidate for this demonstration is atomic
spin ensembles, with which back action-noise–canceled mag-
netometry has already been realized [22]. The likelihood-ratio
formulas derived in Ref. [50] should be used in practice instead
of the ideal-case decision rules discussed here to account for
any excess noise.

In terms of potential further theoretical work, it should
be useful to generalize beyond the assumptions of scalar
waveform, linear Gaussian systems, optical coherent states,
stationary processes, and long observation time used here.
The fidelity expressions derived here may also be useful for
the study of waveform estimation [16], either as an alternative
way of deriving the quantum Fisher information via a Taylor
series expansion [51] or used directly in the quantum Ziv-Zakai
bound [52].

042115-6



FUNDAMENTAL QUANTUM LIMITS TO WAVEFORM DETECTION PHYSICAL REVIEW A 86, 042115 (2012)

From a more conceptual point of view, this study, together
with the earlier work on waveform estimation [16], shows
that the concepts of states, effects, and operations fade into
background when dealing with dynamical quantum informa-
tion systems, and multitime quantum statistics, through the use
of Heisenberg or interaction picture, take the center stage. It
may be interesting to explore whether this perspective has any
relevance to other dynamical quantum information systems,

such as quantum computers [24], and the study of quantum
correlations [53].
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[11] M. Aspelmeyer, S. Gröblacher, K. Hammerer, and N. Kiesel, J.

Opt. Soc. Am. B 27, A189 (2010).
[12] H. L. Van Trees, Detection, Estimation, and Modulation Theory,

Part I (Wiley, New York, 2001).
[13] H. P. Yuen, Phys. Rev. Lett. 51, 719 (1983).
[14] M. Ozawa, Phys. Rev. Lett. 60, 385 (1988).
[15] C. M. Caves, Phys. Rev. Lett. 54, 2465 (1985).
[16] M. Tsang, H. M. Wiseman, and C. M. Caves, Phys. Rev. Lett.

106, 090401 (2011).
[17] M. Tsang and C. M. Caves, Phys. Rev. Lett. 105, 123601

(2010).
[18] M. Tsang and C. M. Caves, Phys. Rev. X 2, 031016 (2012).
[19] T. Caniard, P. Verlot, T. Briant, P.-F. Cohadon, and A. Heidmann,

Phys. Rev. Lett. 99, 110801 (2007).
[20] B. Julsgaard, A. Kozhekin, and E. S. Polzik, Nature (London)

413, 400 (2001).
[21] K. Hammerer, M. Aspelmeyer, E. S. Polzik, and P. Zoller, Phys.

Rev. Lett. 102, 020501 (2009).
[22] W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V.

Balabas, and E. S. Polzik, Phys. Rev. Lett. 104, 133601 (2010).
[23] R. L. Cook, P. J. Martin, and J. M. Geremia, Nature (London)

446, 774 (2007).
[24] M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information (Cambridge University Press, Cambridge,
2000).

[25] C. M. Caves and A. Shaji, Opt. Commun. 283, 695 (2010).
[26] Z. Y. Ou, Phys. Rev. Lett. 77, 2352 (1996).

[27] M. G. A. Paris, Phys. Lett. A 225, 23 (1997).
[28] A. M. Childs, J. Preskill, and J. Renes, J. Mod. Opt. 47, 155

(2000).
[29] A. Acı́n, Phys. Rev. Lett. 87, 177901 (2001).
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