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We propose a theoretical and practical framework for the study of light-matter interactions and the angular
momentum of light. Our proposal is based on helicity, total angular momentum, and the use of symmetries. We
compare the framework to the current treatment, which is based on separately considering spin angular momentum
and orbital angular momentum and using the transfer between the two in physical explanations. In our proposal,
the fundamental problem of spin and orbital angular momentum separability is avoided, predictions are made
based on the symmetries of the systems, and the practical application of the concepts is straightforward. Finally, the
framework is used to show that the concept of spin to orbit transfer applied to focusing and scattering is masking
two completely different physical phenomena related to the breaking of different fundamental symmetries:
transverse translational symmetry in focusing and electromagnetic duality symmetry in scattering.
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I. INTRODUCTION

In the last decade, the angular momentum of light has
received much attention from very diverse areas of physics:
From experimental astrophysics proposals for the detection of
exotic cosmic objects [1] to the use of light beams to rotate
atoms [2], through the exploitation of the infinite number of
possible angular momentum values for increasing the capacity
of optical communication networks [3], or the development
of new concepts in quantum information [4]. The list of
applications is long indeed [5].

The availability of appropriate theoretical tools for the study
of light beams with angular momentum and their interactions
with matter is crucial for the development of such a wide and
promising range of applications. The current state-of-the-art
theoretical framework is based on the separation of angular
momentum J in its orbital (L) and spin (S) components:
J = L + S. In the paraxial approximation the value of the
total angular momentum along the optical axis can be split
into a term which depends on the azimuthal spatial phase of
the field and a term which depends on the polarization [6].
Several efforts have been undertaken to rigorously extend this
approach to the nonparaxial regime, but have encountered
fundamental difficulties [7,8]. Strongly nonparaxial tightly
focused light fields are the bread and butter of applications
where light is made to interact with nanostructures, molecules,
and atoms. The mechanism of spin to orbit angular momentum
conversion (SAM to OAM), also referred to as spin-orbit
interaction, is the explanation of choice for numerically
obtained observations in focusing [9–11] and remarkable
results in scattering experiments [12–14]. For example, the
presence of optical vortices in tightly focused fields and in
scattered fields is explained by conversions between the two
types of angular momenta.

Rigorously speaking, though, the separation between SAM
and OAM cannot be made on firm physical grounds. Conse-
quently, a conversion between the two quantities is not a fully
satisfactory explanation for physical phenomena. The separate
consideration of S and L is known to pose fundamental
problems for the electromagnetic field [7,8] and its quantum

excitations [15,16]. From the point of view of quantum field
theory only the total angular momentum operator is a valid
observable property of the photon. Even more generally, the
strict nonseparability is not restricted to photons. For example,
it also applies to the electron since only in the nonrelativistic
limit can the orbital and spin parts of its angular momentum be
separately considered [15]. The fundamental reason for such
nonseparability is the geometry of rotations of vectors and
spinors. Such a restriction also applies to rotations of classical
electromagnetic fields [17].

In this article we put forward an alternative theoretical
framework for the general and rigorous treatment of the
angular momentum of light and its role in light-matter inter-
actions. Our approach solves the theoretical difficulties of the
current framework, draws its predictive power from symmetry
considerations, and can be simply applied in practice. By using
it, we discover that the actual physical reason responsible for
the presence of optical vortices in tightly focused beams is
totally unrelated to the one responsible for the appearance
of optical vortices in scattering experiments. In the current
state-of-the-art framework, both cases are explained as SAM
to OAM conversion.

Our proposal is based on total angular momentum and
helicity. The role of helicity (�) in light matter interactions
has recently been considered [18]. The macroscopic Maxwell
equations have been shown to be invariant under generalized
electromagnetic duality transformations, and helicity has been
identified as the generator of those transformations. By exploit-
ing this connection, helicity can be used within the powerful
formalism of symmetries and conserved quantities for the
study of light matter interactions when the approximations
implicit in the macroscopic Maxwell equations hold [19]. The
use of symmetries and conserved quantities for the study
of electromagnetic problems is the paradigm used in this
article for the development of its theoretical concepts and their
application to practical situations.

In Sec. II we outline the paradigm, mathematical concepts,
and notation used throughout the paper. In Sec. III we
summarize the different aspects involved in the separation
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of SAM and OAM. In Sec. IV we outline our proposal.
First, we discuss the concept of helicity and its associated
symmetry and comment on a result from [18], which shows
that, upon scattering, helicity transforms independently of the
geometry of the scatterer. Then we show that the combined
use of angular momentum and helicity solves the problems
associated with the separation of SAM and OAM in a way
that is simpler than the existing theoretical solutions and
comment on the practical applicability of our ideas. Finally,
we establish a relationship between helicity eigenstates and
the transverse electric (TE) and transverse magnetic (TM)
components of the field. Using this relationship we express
the conservation law for helicity as a function of the partial
scattering matrices in the TE-TM basis. This expression
becomes useful in the practical application of the framework.
In Sec. V we use the developed ideas to revisit the concept
of SAM to OAM conversion in focusing and scattering. We
are able to clearly identify the underlying reasons for the
presence of optical vortices in focused and scattered fields,
which happen to be two totally different physical phenomena
connected to the breaking of two independent fundamental
symmetries: transverse translational symmetry in focusing
and electromagnetic duality in scattering. Up to now, the
two are explained by SAM to OAM conversion. During
Sec. V, we provide the analytical tools necessary for the
practical application of our framework. Section VI contains
our conclusions and discussion.

II. PARADIGM, MATHEMATICAL SETTING,
AND NOTATION

The paradigm that we follow in our work is the use
of symmetries and conserved quantities for the study of
electromagnetic problems. In this article we consider clas-
sical Maxwell fields. Symmetry operations like rotations
and translations are linear transformations that apply to the
fields. Similarly, we model the light-matter interactions as
linear transformations of the free space fields. The fields
themselves will hence always be transverse. These ideas are
best formalized using the mathematical setting of Hilbert
spaces.

Therefore, in this article we make extensive use of the
concepts and tools associated with a vector space endowed
with an inner product (i.e., a Hilbert space), and the linear
operators acting within that vector space. The vector space
we consider is the space of transverse solutions of Maxwell’s
equations, or transverse Maxwell fields, which we call M.
A linear operator within M takes one of its vectors, a
transverse Maxwell field, and transforms it into another
vector of the space, still a transverse solution of Maxwell’s
equations. We are interested in symmetry transformations of
the fields: time translation, spatial translations, and rotations,
etc. These transformations are operators acting withinM. Such
continuous symmetries are generated by Hermitian operators,
also acting within M, which are associated with properties of
the fields. For instance, energy generates time translations, the
components of linear momentum generate spatial translations
and the components of angular momentum generate spatial
rotations. A Hermitian operator O generates a continuous

symmetry transformation T (θ ) by means of

T (θ ) = exp(−iθO) =
∑

n

(−iθO)n

n!
. (1)

See [17] for the detailed study of classical Maxwell fields
using angular momentum and its generated transformation,
spatial rotations. The fact that M has an inner product allows
us to speak of Hermitian operators. It also allows us to construct
orthonormal basis into which any transverse Maxwell field can
be expanded. The basis vectors can be chosen to be transverse
fields which are simultaneous eigenvectors of four commuting
Hermitian operators. The choice of the inner product is not
necessarily unique, even though the one we have used, defined
in Sec. IV C has a long tradition for vector fields [20].

The consideration of M, the Hermitian operators asso-
ciated with the fundamental quantities of the field and the
transformations that these operators generate, allows one to
study electromagnetic problems using Maxwell fields together
with the powerful framework of symmetries and conserved
quantities. When the electromagnetic equations of a given
system are invariant under the transformations generated by a
given Hermitian operator, the property of the field associated
with that operator is a constant of the motion. Conversely, if
the system does not possess that symmetry, we know that the
associated property can, in general, change during evolution.
The effect of the symmetry of the system is even stronger, as
it must also preserve the eigenvectors and eigenvalues of the
operator generating the symmetry, thus offering an adequate
basis of vectors to solve the electromagnetic problem. As
we will show, this is a simple yet insightful approach to
electromagnetic problems. In this article, we want to exploit
this approach for the study of the angular momentum of
light. Consequently, for our purposes, we may only use
properties of the electromagnetic field which are associated
with a Hermitian operator in M. Only then can we consider
their associated symmetry. This rules out the separate use of
the components of L and S, since their associated operators
transform a transverse Maxwell field into a nontransverse field
[21] and [16]: They do not act within the required vector space.
From this point of view, L and S are qualitatively different
from J, the linear momentum P, the energy H or, as we will
discuss, helicity �. In the most commonly used representation,
the expressions corresponding to these operators are

H = i
∂

∂t
, P = −i∇, J = L + S, � = J · P

|P| , (2)

L = −ir × ∇, Sk
nm = −iεknm, (3)

where Sk , the kth component of S, is a matrix of indexes nm

defined using the totally antisymmetric tensor εknm with ε123 =
1. As discussed above, the operators in Eq. (2) transform a
transverse Maxwell field into a transverse Maxwell field, while
those in Eq. (3) break the transversality of the fields.

In our notation we use capital letters like Jz and Px to
denote operators, and lower case letters like jz (or n) and kx

to denote their eigenvalues. When we speak of a field having
a “sharp” or “well-defined” value for an operator, we mean
that the field is an eigenvector of that operator with eigenvalue
equal to its “sharp” value. In the text, names like “helicity” or
“third component of angular momentum” refer to the operators
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unless it is clear from the context that this is not the case. In
addition, all analytical calculations from Sec. IV C on, assume
a time harmonic decomposition of the fields with an exp(−iwt)
dependence.

Finally, we would like to mention that the main context of
this work is that of classical Maxwell fields. Nevertheless,
the approach here taken, which is based on the study of
symmetries, is general and often used in quantum mechanics
and other areas of modern physics.

III. THE SEPARATION OF L AND S

Serious theoretical difficulties are encountered when at-
tempting to separately consider L and S for the electromagnetic
fields ( [7,8]) or its quanta ( [15,16]). We also know [21]
and [16] that the operators L and S break the transversality
of the fields, taking a vector of M out of that space. As far
as we are concerned, this prevents the separate use of L and
S for studying electromagnetic problems using symmetries
and conserved quantities: L and S do not generate symmetry
transformations for vectors in M.

On the other hand, the total integrated value of the angular
momentum of the electromagnetic field, expressed here in
convenient units as an integral over all space involving the
electric and magnetic fields E(r) and B(r),

〈J〉 =
∫

dr r × [E(r) × B(r)], (4)

can be separated into two gauge-invariant integrals. To achieve
such separation one needs to consider only the transverse
parts of the field, which are always gauge independent.
This restriction is justifiable because the degrees of freedom
associated with the longitudinal part of the electric field can
always be combined with the degrees of freedom of the
sources [16,22]. Then, in

〈Jt〉 =
∫

dr r × (Et (r) × B(r)) (5)

=
∫

dr (Et (r) × At (r)) +
∫

dr
3∑

i=1

Ei
t (r)(r × ∇)Ai

t (r)

= 〈St〉 + 〈Lt〉, (6)

where index i refers to the three spatial components, the two
terms 〈St〉 and 〈Lt〉 are apparently gauge invariant. From now
on, we will drop the t underscripts since in this article we
only consider transverse Maxwell fields. The identification
of the two parts of Eq. (6) with spin and orbital angular
momenta is tempting due to the appearance of the operator
L = −ir × ∇ and the relationship of the cross-product in
〈St〉 with the spin-1 matrices representing S. But, since L
and S are not operators in M, the question arises of which
are the operators corresponding to the two parts of Eq. (6).
In his book on quantum mechanics, Messiah [22] offers an
expression which corresponds to the second quantization of
the first part of Eq. (6). In 1994, Van Enk and Nienhuis [21],
in a more detailed study, arrived at the same result and
also derived the expression for the second part of Eq. (6).
In that work, they showed that the two operators are not
angular momenta because they do not satisfy the commutation
relations which define angular momentum operators. These

Fock space operators have their corresponding operators in M
for classical fields (see Sec. IV B), and their third components
commute [23]. It is hence possible to split the total angular
momentum J into two operators Ŝ = � P

|P| and L̂ = J − Ŝ.

Consequently 〈Lt 〉 and 〈St 〉 in (6) are in reality 〈L̂〉 and
〈̂S〉. Unfortunately, in terms of the separation of the angular
momentum operator, this approach is not fully satisfactory
because the resulting operators are not angular momentum
operators. This can be easily proved by checking that their
vectorial components do not fulfill the commutation relations
required for angular momentum operators. The consequence
of this is that they cannot separately generate meaningful
rotations. In summary, J can always be decomposed into
two meaningful operators, J = L̂ + Ŝ, independently of the
paraxial approximation. These two operators are never angular
momenta since they never fulfill the correct commutation
relationships. This last statement is also independent of the
paraxial approximation. See Sec. IV B for a more detailed
discussion.

Following the paradigm discussed in Sec. II, we only
consider properties of the field whose corresponding operators
generate transformations in M. As already mentioned several
times, this disqualifies L and S. As substitutes, one may choose
L̂ and Ŝ. We prefer to disregard the question of the separation
completely and use the total angular momentum J and the
helicity instead. Our choice is based on the fact shown below
(Sec. IV B) that J and helicity generate very simple symmetry
transformations which lead to a simpler framework.

Finally, it is worth noting that expressions (4) and (5) can
be interpreted and computed as a weighted average. When the
electromagnetic field is decomposed in a basis of eigenvectors
of Jz, the total integrated value 〈Jz〉 is equal to a weighted
average [19]. The weights are the squares of the amplitudes
in the linear decomposition of the field, and they multiply
the different eigenvalues jz of each mode in the basis. This
connection is not restricted to angular momentum. All the
integrals that are used to compute total integrated values of
properties of the electromagnetic field can be interpreted and
computed as weighted averages involving the squares of the
expansion coefficients and the eigenvalues of the operator
related to each particular property. This connection is the key
step used for obtaining a Fock space operator from the classical
spatial integral involving the fields. See, for instance, Ref. [24]
for the cases of H and P, respectively. This connection
relates the algebraic formalism introduced in Sec. II with the
well-known spatial integrals involving the fields, like (4) for
the case of angular momentum.

IV. A FRAMEWORK BASED ON HELICITY AND
ANGULAR MOMENTUM

A. The helicity of light fields and its associated symmetry

Helicity is defined as the operator which results from
projecting the total angular momentum onto the linear momen-
tum [25], that is, � = J · P/|P|. Helicity commutes with all
the generators of rotations J and translations P [25]. In the case
of the photon, the helicity can only take the values ±1 [26].
For the electromagnetic field, � has only two eigenvalues
equal to ±1. A useful interpretation of helicity is obtained by
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Λ = 1 Λ = −1 Λ undetermined

FIG. 1. (Color online) A field composed by the superposition of
five plane waves has definite helicity equal to one if all the plane
waves have left handedness (left part), equal to minus one if they
all have right handedness (central part), and does not have a definite
helicity if all the plane waves do not have the same handedness (right
part).

considering the expansion of the field as a superposition of
plane waves. In such a representation, helicity is associated
with the handedness of each plane wave. For a particle to have
a well-defined helicity, all the plane waves must be purely
circularly polarized and have the same handedness with respect
to its momentum vector. This is illustrated in Fig. 1.

Given that a general light beam can always be expanded as
a sum of plane waves and that helicity is associated with the
polarization handedness of those plane waves, helicity seems
a very suitable candidate for representing the polarization
degrees of freedom of a general light beam. Crucially, the
action of helicity on a plane wave affects only its polarization
vector: It leaves the plane-wave momentum vector invariant.
This is also true for other types of light beams like multipolar
fields or Bessel beams: The action of helicity does not change
the quantities related to energy, linear or angular momenta
which define those beams. Helicity acts on separated degrees
of freedom, which, in this article, we refer to as the degrees of
freedom of the polarization.

From its definition, it is readily checked that helicity is a
Hermitian operator. With respect to related transformations,
helicity is the generator of the generalized electromagnetic
duality transformation of the fields:

E → cos(θ )E − sin(θ )H,
(7)

H → sin(θ )E + cos(θ )H,

where θ is a real angle. That helicity generates duality is
a remarkable fact which can hardly be deduced from the
mathematical definition of helicity containing the angular and
linear momenta.

Generalized duality (7) is well known to be a symmetry of
the source free microscopic Maxwell equations. The results
in [18] allow one to extend the relationship between helicity
and duality to the macroscopic Maxwell equations in material
systems. That work shows that the helicity of the light
interacting with a piecewise homogeneous isotropic medium
will transform independently of the shapes of the different
material domains, and that helicity will be preserved by
the interaction if and only if the ratio between the relative
electric and magnetic constants of all the involved materials
i ∈ [1 . . . N ] is constant, that is,

εi

μi

= α ∀ i. (8)

When condition (8) is met, the macroscopic Maxwell’s
equations for the system are invariant under transformation (7).

The geometry independent character of the duality symme-
try (helicity conservation) allows one to separately consider
the transformations of the polarization degrees of freedom
from the geometry of the scattering problem. Such notable
simplification is very desirable in a framework for the study
of light-matter interactions.

We propose the use of helicity, the generator of duality
transformations, for treating the polarization degrees of free-
dom in electromagnetic problems. We will show that, when
used in conjunction with the total angular momentum, the
generator of rotations, we obtain a general framework for
the study of problems involving the angular momentum of
light and its interaction with matter using the language of
symmetries and conserved quantities. It is important to recall
that, in this article, we will remain within the approximations
implicit in the macroscopic Maxwell’s equations [19].

For completeness, an expression of the total integrated value
of helicity in terms of electromagnetic fields can be found
in [27]. In this article, though, we are not concerned with
the total integrated value of helicity. Instead, we use modes
with well-defined helicity and consider their transformations
in particular situations, which will depend on whether the
system is invariant under electromagnetic duality.

B. Theoretical and practical considerations when
using � and Jz

The fundamental problem of the separability of Sz and
Lz is avoided by using � and Jz instead. Both Jz and
� are commuting Hermitian operators in M, and generate
two simple and independent symmetry transformations of the
electromagnetic field: Jz generates rotations around the z axis
and � generates the generalized duality transformation (7).

As previously mentioned, the two Fock space operators
obtained from the second quantization of expression (6)
studied in [21] (and also later in [28]) have their corresponding
operators for classical fields: In [23] they are obtained in
the momentum space. For instance, it can be seen that
Ŝz, the operator substituting Sz, is �Pz/|P|. This operator
commutes with L̂z [23,28], whose expression is obviously
L̂z = Jz − �Pz/|P|. Consequently, we could use Ŝz and L̂z

instead of Jz and �. Considering the symmetries generated
by each pair of operators we prefer to choose Jz and � for
reasons of simplicity. While Jz and � are related to the two
simple symmetries indicated above, the symmetries related
with Ŝz and L̂z are more complicated. An explicit mathematical
expression for the transformation generated by Ŝ can be found
in [29]. For once, Ŝz involves a combination of duality and
translational symmetries, while the symmetry related to L̂z

has not been properly studied as such, up to our knowledge.
This suggests that using Jz and � should, in most situations,
result in a simpler analysis. For instance, it is explicitly seen
in Sec. V B that the conservation law associated with �Pz/|P|
is not independent of the geometry of the problem.

In the paraxial limit, when Pz → P , it can be shown
that Ŝz → � and L̂z → Jz − �. Even in this limit, neither
of these operators generates physical rotations for the full
electromagnetic field. For a paraxial beam, the helicity may
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be approximated by the real space circular polarization
component perpendicular to the z axis and, the value of Jz − �

coincides [see Eqs. (17) and (18) below] with the azimuthal
phase winding number of the dominant circular polarization. It
is customary to use the paraxial correspondence between SAM
and circular polarization and OAM and azimuthal phase. From
the previous considerations, we think that it would be more
insightful to use � and Jz − �, which have the advantage of
retaining its meaning outside the paraxial approximation.

From the experimental point of view, Sec. V C shows
that the preparation of general (nonparaxial) beams with
well-defined helicity can be done using simple optics in a
straightforward fashion. The measurement of the helicity state
of a general beam is also shown to be easily achieved using
simple optics.

In this article we focus in the combined use of � and Jz.
However, it is worth mentioning that the fact that � commutes
with all the generators of rotations J and translations P, and
that it generates a transformation which is independent of
geometry, should allow its combined use with other degrees of
freedom different from angular momentum when the particular
problem requires it.

C. Helicity preservation conditions on the TE-TM
scattering matrices

In this section we arrive at a relationship between helicity
conservation and the scattering of the transverse electric and
transverse magnetic components of the field. This relationship
is useful in practical problems, as will be seen in Sec. V.

Let us consider the general scattering problem presented in
Fig. 2. An incident electromagnetic field Ein impinges onto a
scatterer of arbitrary shape S resulting in the scattered field Esc.
Consider an orthonormal basis of transverse electromagnetic
modes with well-defined helicity {A+

ν ,A−
ν } ∀ ν, where the

superindex denotes the sign of � and the subindex ν is
a composed index which contains three other commuting
operators. For example, ν = [H,Px,Py] for plane waves, with
H being the energy, and Px, Py the first two components of
linear momentum.

Both incident and scattered fields can be expanded using the
{A+

ν ,A−
ν } basis, and the scattering process is fully characterized

FIG. 2. (Color online) Scattering problem of arbitrary geometry.

by the following transformation of the incident field:

Esc =SEin,

Esc =
[ ∫

dν̄

∫
dνS

ν̄,+
ν,+ A+

ν̄ A+
ν

† + S
ν̄,−
ν,+ A−

ν̄ A+
ν

† + S
ν̄,+
ν,− A+

ν̄ A−
ν

†

+ S
ν̄,−
ν,− A−

ν̄ A−
ν

†
]

Ein, (9)

where A† is the Hermitian conjugate of A. In (9), the
transformation S is represented by a doubly infinite weighted
sum of projection operators of the type AA†, whose action on
the input field is (AA†)Esc = A(A†Ein) and the inner product,

A†Ein =
∫

drA(r)†Ein(r), (10)

is assumed.
Transformation (9) is specified by the infinite set of 2 × 2

partial scattering matrices relating the coefficients of Ein in
A+

ν ,A−
ν to the coefficients of Esc in A+

ν̄ ,A−
ν̄ for all ν, ν̄:

Sν̄
ν =

(
S

ν̄,+
ν,+ S

ν̄,+
ν,−

S
ν̄,−
ν,+ S

ν̄,−
ν,−

)
. (11)

Let us impose helicity conservation upon scattering, forcing
all the partial scattering matrices to be diagonal: S

ν̄,+
ν,− =

S
ν̄,−
ν,+ = 0 for all ν, ν̄.

Consider the following linear combinations of modes with
well-defined helicity.

Mν = 1√
2

(A+
ν + A−

ν ), Nν = 1√
2

(A+
ν − A−

ν ), (12)

which transform into each other by the action of �,

�Mν = Nν, �Nν = Mν . (13)

In Appendix A we show that, for plane waves, Bessel
beams, and multipoles, the sum and subtraction of modes with
same ν and different helicity result in what are commonly
known as TE and TM modes. We will adopt the TE-TM naming
to denote general sum and subtractions of modes differing only
by their sharp helicity eigenvalue.

Since {A+
ν ,A−

ν } is an orthonormal basis, so is {Mν,Nν}.
After changing (9) to the {Mν,Nν} basis, the condition for
helicity preservation upon scattering, expressed in the TE-TM
basis reads(

S
ν̄,T E
ν,T E S

ν̄,T M
ν,T E

S
ν̄,T E
ν,T M S

ν̄,T M
ν,T M

)

= 1

2

(
1 1

1 −1

)(
S

ν̄,+
ν,+ 0

0 S
ν̄,−
ν,−

)(
1 1

1 −1

)−1

= 1

2

(
S

ν̄,+
ν,+ + S

ν̄,−
ν,− S

ν̄,+
ν,+ − S

ν̄,−
ν,−

S
ν̄,+
ν,+ − S

ν̄,−
ν,− S

ν̄,+
ν,+ + S

ν̄,−
ν,−

)
=

(
aν̄

ν bν̄
ν

bν̄
ν aν̄

ν

)
,

(14)

for all (ν, ν̄). Namely, that the scattering of TE and TM
components is on an equal footing for all (ν, ν̄), as can be seen
from the scattering matrix having the same values aν̄

ν in the
diagonal and bν̄

ν in the off-diagonal. Condition (14) is clearly
a restriction which will not be met in general. We conclude
that, in general, a scatterer will partially convert the helicity
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of the incident field and that this partial helicity conversion is
reflected in asymmetries of the scattering matrices with respect
to the TE and TM modes.

Since helicity conservation is equivalent to invariance under
generalized duality transformations, having information on the
TE-TM scattering properties of a system can be used to assess
its duality invariance and vice versa.

In systems with a high degree of symmetry, like a sphere or
a planar multilayer system, a wise choice of basis simplifies
condition (14). The symmetries of those two systems make
the TE and TM multipoles [19] and the TE and TM plane
waves (definition contained in Appendix B) the eigenmodes
of the spherical and planar structures, respectively. This means
that Sν̄

ν = 0 unless ν = ν̄ and that S
ν,TM
ν,TE = S

ν,TE
ν,TM = 0 for all

ν, ν̄. All the partial scattering matrices are diagonal. The
preservation of the TE-TM components is related to the
geometrical symmetries of the system. Using Mie scattering
theory and Fresnel’s formulas, it is an easy and interesting
exercise to analytically verify that, in these two cases, when the
materials meet (8), all the scattering matrices are proportional
to the identity (Sν,TE

ν,TE = S
ν,TM
ν,TM for all ν), hence preserving

helicity as well.

V. EXEMPLARY APPLICATION OF THE FRAMEWORK:
REVISION OF SPIN TO ORBIT ANGULAR MOMENTUM

CONVERSION IN FOCUSING AND SCATTERING

The conversion between spin and orbital angular momen-
tum is widely used to explain phase singularities in numerical
simulations of tightly focused fields [9–11], and in scattering
experiments [12–14]. A detailed discussion of the SAM to
OAM conversion can be found in [30].

We will now use symmetries and conserved quantities
arguments, particularly those related to Jz and �, to identify

the actual physical reasons for those observations. We will
demonstrate that the mechanism responsible for the presence
of optical vortices in focused fields is totally different from
the one responsible for the observation of optical vortices in
scattering experiments. This, in our opinion, shows that the
SAM-OAM formulation can be quite misleading: It assigns
the same explanation to two distinct physical phenomena.

The analytical tools and methodology employed in this
section allow a simple application of the ideas developed in
the previous section to practical electromagnetic problems.

A. Bessel beams with well-defined angular
momentum and helicity

As already mentioned, Jz and � commute. For our analysis
we will need a basis of transverse electromagnetic modes
which are simultaneous eigenvectors of Jz and �. One such set
of modes is a particular type of Bessel beams. Bessel beams
have been thoroughly studied. See, for instance, the series of
papers [28,31,32].

In Appendix B, we constructively derive a complete
orthonormal basis for transverse electromagnetic fields con-
sisting of Bessel beams with a well-defined third component of
angular momentum Jz and helicity �. These modes appear in
[21], although their relationship with helicity is not considered
in that paper. In [28], these type of electromagnetic modes are
obtained in a different way as linear combinations of other
types of more commonly used Bessel beams, the transverse
electric (TE) and transverse magnetic (TM) modes. The
constructive derivation in Appendix B shows clearly that the
modes are eigenstates of �.

From Appendix B, Eq. (15) is the real space expressions
in cylindrical coordinates [ρ,θ,z]. An implicitly harmonic
exp(−iwt) dependence has been assumed.

Cnkρ
(ρ,θ,z)

=
√

kρ

2π
in exp (i(kzz + nθ ))

(
i√
2

((
1 + kz

k

) (
Jn+1(kρρ) exp(iθ )r̂ +

(
1 − kz

k

)
Jn−1(kρρ) exp(−iθ )l̂

)
− kρ

k
Jn(kρρ)ẑ

)
,

Dnkρ
(ρ,θ,z)

=
√

kρ

2π
in exp (i(kzz + nθ ))

(
i√
2

((
1 − kz

k

)(
Jn+1(kρρ) exp(iθ )r̂ +

(
1 + kz

k

)
Jn−1(kρρ) exp(−iθ )l̂

)
+ kρ

k
Jn(kρρ)ẑ

)
,

(15)

where
(i) kρ =

√
k2
x + k2

y , k2 = k2
ρ + k2

z ,

(ii) l̂ = x̂+iŷ√
2

, r̂ = x̂−iŷ√
2

.
By construction, the two types of vector wave functions

Cnkρ
and Dnkρ

have a sharp value of the z component of
angular momentum Jz equal to n and a sharp value of
helicity � equal to −1 and +1, respectively. Additionally,
they have well-defined values for the energy H and the z

component of the linear momentum Pz proportional to k and kz,
respectively. For a given value of k, a well-defined value of Pz

implies a well-defined value of the transverse momentum Pρ

proportional to kρ . Modes (15) form a complete orthonormal

basis of transverse electromagnetic fields when

k ∈ [0, ∞), n ∈ [0,±1,±2, . . .], kρ ∈ [0, ∞),

and � = ±1, (16)

and both signs of kz in kz = ±√
k2 − k2

ρ are considered. In the
following, the consideration of both signs of kz is implicitly
made.

B. Optical vortices in focusing

In order to study why optical vortices seem to appear in
numerical studies of focalization of apparently vortex free
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beams [9–11], we analyze the aplanatic lens model [33], which
is routinely used to study the effects of high numerical aperture
lenses.

As we show in Appendix C and has been discussed before
[30], the action of an aplanatic lens preserves Jz and �. The
cylindrical symmetry of the model can be reasonably expected,
but its invariance under duality transformations is “hidden” in
the assumption that the lens transmission coefficients for the
two polarization components, TE and TM, are identical and
that there is no crosstalk between input and output TE and TM
components. That this assumption implies duality symmetry
(helicity conservation) is obvious from condition (14) and the
discussion at the end of Sec. IV C. The preservation of � by
an aplanatic lens has been discussed in [30] without using
its relationship to electromagnetic duality. In Appendix C we
explicitly analyze the conservation of Jz, highlight the model’s
key assumption on TE and TM scattering, and show that the
model conditions for the conservation of � and Jz are, as
expected, independent of each other.

Even though both cylindrical and generalized duality
symmetries are preserved by the model, the focalized beam
is quite different from the input beam: Some other symmetry
must be broken. The most obvious candidate is the lack
of translational symmetry on the plane perpendicular to the
optical axis of the lens. We know that the transverse momentum
components Px and Py are the generators of that symmetry.
Below we show that the differences between the input and
focalized beams are due to changes in (kx,ky). We will prove
this point using the basis introduced in (15).

Let us take a collimated right circularly (RC) polarized
Gaussian beam going through an aplanatic lens of high
numerical aperture. The linear momentum components of
a collimated beam are all almost totally aligned with the
propagation direction z: kz ≈ k. Consequently, a collimated
beam only has components with small transverse momentum
value kρ . With respect to (15), in the limit when kz ≈ k

( kρ

k
→ 0), both Cnkρ

and Dnkρ
approach pure RC and LC

polarized modes, respectively. This can be easily seen by
setting a kρ

k
→ 0 ⇒ (kz ≈ k) in (15):

Cnkρ
(ρ,θ,z) ≈

√
kρ

π
in+1 exp[i(kzz)]Jn+1(kρρ)

× exp[iθ (n + 1)]r̂, (17)

Dnkρ
(ρ,θ,z) ≈

√
kρ

π
in+1

× exp[i(kzz)]Jn−1(kρρ) exp[iθ (n − 1)]l̂. (18)

The other polarization components, the opposite circular and
the longitudinal ẑ component, are strongly attenuated in this
regime. Importantly though, they are actually present: without
them, the modes are not solutions of Maxwell’s equations, and
its transformation properties cannot be consistently analyzed
as general electromagnetic fields.

From (17), and since the collimated input RC Gaussian
beam does not have a phase singularity in its r̂ dominant
polarization, we can conclude that mostly C-type modes with

n = −1 will exist in its expansion in the (15) basis:

Einput =
∫ ∞

0
dkρc

input
−1,kρ

Cnkρ
, (19)

where c
input
−1,kρ

is only significant when kρ

k
→ 0. Equation (19)

defines a beam with a sharp value of Jz, n = −1, and a sharp
value of �, λ = −1. As per the above discussion regarding
symmetries, the output beam must also have sharp Jz and
� values of n = −1 and λ = −1. Focusing can hence only
change the relative weight of kρ components. Intuitively,
modes with higher transverse momentum are needed to expand
the field after focusing.

Efoc =
∫ ∞

0
dkρc

foc
−1,kρ

Cnkρ
, (20)

which is in line with the nonpreservation of (kx,ky) due to
broken transverse translational symmetry. The fact that the

change is limited to kρ =
√

k2
x + k2

y could have been foreseen:

It stems from the cylindrical symmetry of the model.
Now, let’s go back to Eq. (15) and check the spatial shape

of Cnkρ
modes when n = −1 and the condition kρ

k
→ 0 is not

met:

Cnkρ
(ρ,θ,z) = −

√
kρ

2π
i exp(ikzz)

(
i√
2

(
1 + kz

k

)
J0(kρρ)r̂

+ i√
2

(
1 − kz

k

)
J−2(kρρ) exp(−i2θ )l̂

− kρ

k
J−1(kρρ) exp(−iθ )ẑ

)
. (21)

The Cnkρ
,
kρ

k
→ 0 modes are almost purely right polarized,

but when kρ increases, the terms multiplying l̂ and ẑ become
significant. As it can be seen in (21), for n = −1 these newly
enhanced terms have phase singularities of orders minus
two and minus one, respectively. Figure 3 shows the radial
spatial profiles of the three polarization components for two
C−1,kρ

(ρ,θ,z) modes, one with kρ

k
= 0.1 and the other with

kρ

k
= 0.9. In the small kρ case [Fig. 3(a)], the dominant

polarization component r̂ is much stronger than the l̂ and ẑ
components (which are nonetheless present). In the large kρ

case [Fig. 3(b)], the relative weight between the intensity of the
different polarizations has shifted significantly. The vortices of
charge −1 in ẑ and charge −2 in l̂ [see (21)] become relatively
more important.

We argue that these are the optical vortices appearing in
numerical simulations of focused beams, and that the correct
explanation is not SAM to OAM conversion but just the inher-
ent spatial properties of light modes with definite energy, Pz,
Jz, and � propagating through a system that conserves energy,
� and Jz while breaking transverse translational invariance.
The lens shifts the weight distribution towards modes with
larger kρ values and optical vortices already existing in the
initially strongly attenuated polarization components of the
input beam gain relative importance in the focalized beam. For
the theoretical study of optical vortices in focused beams, [9]
and [30] use solutions of the paraxial equation as the input
modes, instead of using solutions of the full Maxwell equations
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FIG. 3. (Color online) Normalized field intensity for the right, left, and longitudinal polarization components for two Cnkρ
, n = −1 modes,

one with kρ

k
= 0.1 (a) and the other with kρ

k
= 0.9 (b). Note the scaling of the nondominant polarization components on the kρ

k
= 0.1 case.

as we have done. Since paraxial input modes do not have
the attenuated phase singularities in the other polarization
components because only a single polarization component is
nonzero, the appearance of optical vortices upon focusing was,
contrary to this paper’s explanation, attributed to SAM to OAM
conversion.

It is interesting to note that the property associated with
�Pz/|P| is not preserved upon focusing. Helicity is conserved
but, due to the lack of translational symmetry in the transverse
plane, Pρ changes, which implies that Pz changes. The fact that
the lack of a “geometrical” symmetry breaks the conservation
law corresponding to �Pz/|P| indicates that the symmetry
transformation generated by such “spin operator” is, in general,
not independent of the geometry of the problem.

C. Optical vortices in scattering

The experimental observation of optical vortices in scat-
tered fields has been reported in the literature [12–14]. In these
papers, the observations are explained by means of spin to
orbit angular momentum conversion during the interaction
with the scatterer. Recently, similar observations have been
analyzed in [18] using symmetries and conserved quantities,
and reaching a very different conclusion. In line with the
discussion of the last paper, we will show in this section
that the reason for all these experimental observations is not
SAM to OAM transfer, but a partial helicity change during the
light-matter interaction due to the breaking of electromagnetic
duality symmetry in the system. We will also argue that
the helicity change is enhanced by physical effects which
strongly break duality, beyond the inherent duality asymmetry
of general planar multilayer structures.

We have already mentioned several times that helicity
transforms independently of the geometry of the scatterer. In
particular, it transforms independently of whether the consid-
ered system has cylindrical symmetry or not. Nevertheless, as
seen below, a change in helicity is very clearly identifiable in
the spatial patterns of the scattered fields when the system has
cylindrical symmetry. Several of the experimental setups and
input beams in the articles cited in this section have cylindrical

symmetry and are similar to the system in Fig. 4, which we
will now analyze.

In Fig. 4, we distinguish the preparation and measurement
apparatus from the focusing and scattering part of the setup.
In the preparation stage, a collimated Gaussian beam goes
through a linear polarizer (LP) and quarter wave plate (QWP),
which results in a beam with well-defined values of Jz and
� (see more details below). In the central part, the beam is
focused onto a cylindrically symmetric target and the resulting
scattered light is collected by another lens. The measurement
part of the setup uses another QWP and LP to project light
with different helicity depending on the setting of the LP (see
more details below).

At first sight, the central part is cylindrically symmetric
but lacks translational symmetry in the transverse plane. We
should hence expect conservation of Jz and, as in Sec. (V B),

LASER

LP QWP Lens Lens QWP LP

CCD

Preparation Cylindrical symmetry Measurement

FIG. 4. Archetypal experimental setup. A collimated beam is
circularly polarized by means of a linear polarizer (LP) and a
quarter wave plate (QWP). After focusing, the beam interacts
with a cylindrically symmetric target, in this example, a circular
nanoaperture in a metallic film on a substrate. A portion of the
scattered field is collected and collimated by a second lens, analyzed
by a second set of QWP an LP, and its spatial profile is imaged into a
charged couple Ddevice (CCD) camera. The two orthogonal settings
of the last LP allow the projection of the two collimated helicity
modes (see the text for details).
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nonconservation of Pρ . Since the lenses preserve helicity, the
behavior of the system with respect to � depends on whether
the target sample meets condition (8). Let us assume that it
does not meet such condition.

Let us imagine that, after the first LP and QWP, the input
to the first lens is a predominantly RC polarized Gaussian
beam. Assuming perfect optical elements, and using the same
arguments as in Sec. V B, we can see that the input beam can
be expanded using basis (15) into modes with kρ

k
→ 0 and

sharp values of Jz, n = −1, and of �, λ = −1. The first lens
will focus the beam into the sample without altering either
Jz or �, then, since it is assumed that the sample does not
meet (8), part of the light will change helicity upon interacting
with the cylindrically symmetric target and, after collimation
with the second lens, there will be two types of collimated
modes, both with n = −1, but differing in the value of helicity.
Schematically representing the actions of the lenses and the
cylindrically symmetric scatterer as transformations of fields
expanded in the basis (15) by coordinates cnkρ

and dnkρ
, we

may summarize the whole sequence as

c−1,
kρ

k
→0

Lens−−→ c−1,kρ

Scattering−−−−−→ (
c−1,kρ

,d−1,kρ

)
Lens−−→ (

c−1,
kρ

k
→0,d−1,

kρ

k
→0

)
. (22)

The corresponding modal expressions for the components
of the two types of output modes are

C−1
kρ

k
→0(ρ,θ,z) ≈

√
kρ

π
i2 exp(ikzz)J0(kρρ)r̂.

D−1
kρ

k
→0(ρ,θ,z) ≈

√
kρ

π
i2 exp(ikzz)J−2(kρρ) exp(−i2θ )l̂,

(23)

that is, a predominantly RC beam similar to the input, without
any phase singularity in r̂ and a predominantly LC vortex beam
with a singularity of charge two in l̂. If we set the last LP to
project the LC component of the output collimated beam, this
vortex will appear in the CCD camera.

We argue that these are the vortices observed in the cylin-
drically symmetric scattering experiments of [[12], Fig. 4],
[[13], Figs. 2(c) and 2(d)], and [14], and that the underlying
reason for their appearance is not SAM to OAM transfer, but
that the electromagnetic duality symmetry is broken in those
systems.

The samples used in [12] and [13] consist of nanoapertures
on metallic thin films. The breaking of duality in a general
planar multilayer structure, and in particular when it includes a
metal, is clear since the relative electric and magnetic constants
of the system will not meet condition (8). Nevertheless, as
shown in [18], the effect due to the multilayer alone is typically
small in terms of helicity conversion. The reason why the
helicity conversion is enhanced making it easily detectable, is
that the nanoapertures allow for light to couple to the natural
modes of the multilayer system, where duality is strongly
broken. In a multilayer system, the natural modes are either
TE or TM resonances. Since a mode with well-defined helicity
has equal contributions from TE and TM components (12), a
TE-only or TM-only resonance implies a strong breaking of
electromagnetic duality. The interfaces between a metal and a

dielectric allow the existence of surface plasmon polaritons
of TM-only character. As shown in [18], the influence of
these modes in the transmitted light is responsible for the
experimentally detectable helicity change.

In [14], optical vortices are observed upon propagation
of light through a planar semiconductor microcavity, still a
cylindrically symmetric system as noted in that work. In this
case, duality is strongly broken in the multilayer itself by the
energy splitting between TE and TM modes in the structure.
This splitting is identified in that work as the enabler for SAM
to OAM conversion.

References [12] and [13] contain also results for noncylin-
drically symmetric setups. Even though their study using Jz

is not as simple, we are confident that the generality of the
methodology that we propose can rid their analysis from
the artificial concept of SAM to OAM conversion, possibly
leading to further physical insights. For instance, for the
squared nanoapertures studied in [13], the same argumentation
about the nanoaperture mediated coupling onto strong duality
breaking multilayer natural modes applies. We postulate that
any instance where SAM to OAM conversion is invoked can
be properly explained using our framework.

VI. CONCLUSIONS AND DISCUSSION

Using the helicity of light fields to represent the polarization
degrees of freedom, we have introduced a general framework
for the study of light beams with angular momentum and their
interactions with matter. In particular, the framework does not
depend on the applicability of the paraxial approximation.
Our proposal is based on two Hermitian operators in the
Hilbert space of transverse electromagnetic fields: the helicity
� and a component of angular momentum Jz. These operators
are the generators of simple transformations of the fields:
generalized electromagnetic duality and rotations along the z

axis, respectively. Since the generalized duality transformation
is independent from rotations or translations [18], the use
of � allows one to consider the changes in polarization
independently from other degrees of freedom like angular
momenta (J) and linear momenta (P). This simplification is
crucial for the practical applicability of the framework. We
recall that the approximations implicit in the macroscopic
Maxwell’s equations are assumed in this paper.

We propose this new framework as a substitute of the cur-
rent state of the art treatment, which is based on the separation
of spin and orbital angular momenta for the description of
the angular momentum of light, and on the mechanism of
SAM to OAM transfer in light-matter interactions and other
situations. We have shown that it avoids the fundamental
problems associated with the separation of SAM and OAM
in a simpler fashion than the current theoretical solutions. We
have also demonstrated its predictive power based on analyzing
the broken and unbroken symmetries of the system to predict
which properties of the light will change and which ones will
be preserved. The current framework lacks predictive power
and, at this point, can only be qualified as a descriptive theory.
This is illustrated by the fact that, using our methodology, we
have shown that phenomena commonly explained as SAM
to OAM transfer in focusing and scattering are actually due
to two completely independent physical reasons, showing the
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inconsistency of the current framework. The results of this
paper suggest that such inconsistency may be related with the
use of quantities like SAM and OAM, which are not valid
operators for transverse Maxwell fields and hence cannot be
related to meaningful transformations of the fields.

We are confident that the use of helicity and its associated
transformation will become a powerful theoretical and practi-
cal tool which will improve the understanding and control of
light-matter interactions at the nanoscale. Applications of the
ideas presented in this paper can be foreseen in nano-optics,
for the control of the shape and polarization of electromagnetic
fields, in metrology, for probing the equivalence of the
electric and magnetic responses of a system, and in quantum
science and technology, where the identification of two truly
independently observable degrees of freedom of the field
like � and Jz should allow one to better understand the
potential benefits of the use of angular momentum in quantum
applications.

The association of helicity and duality with other degrees of
freedom and their corresponding transformations constitutes a
general and robust methodology to study practical light-matter
interaction problems by using fundamental concepts.
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APPENDIX A: HELICITY EIGENSTATES AND
TRANSVERSE ELECTRIC AND TRANSVERSE

MAGNETIC MODES

We set out to proof a general relationship between electro-
magnetic states of well-defined helicity and the transverse elec-
tric and transverse magnetic modes. We start by making use of
an elegant method for finding solutions of the monochromatic
Maxwell equations in a source-free, isotropic, and homoge-
neous medium [20,34]. Under some suitable conditions of
the coordinate system {u1,u2,u3}, two transverse independent
solutions of the vectorial Helmholtz equation of the medium
can be obtained from a separable solution ψ(u1,u2,u3) =
U1(u1)U2(u2)U3(u3) of the corresponding scalar Helmholtz
equation. With ŵ a unit vector perpendicular to the surface
of constant coordinate u1 = C, the two vector solutions are
obtained as

M(r) = ∇ × (ŵψ) and N(r) = ∇ × M(r)

k
. (A1)

There are six different coordinate systems for which a
complete basis for transverse electromagnetic fields can be
built in this way [20]. Plane waves, multipoles, and Bessel
beams result from using Cartesian, spherical, and cylindrical
coordinates, respectively [34]. Besides being eigenvectors of
the Hamiltonian due to its monochromatic character, each
coordinate system produces electromagnetic modes which are
eigenvectors of a different set of operators:

(1) Plane waves with ŵ = ẑ: eigenvectors the of transverse
momenta kx and ky .

(2) Multipoles with ŵ = r
|r| : eigenvectors of the squared

angular momentum norm J 2 and a component of angular
momentum, for instance, Jz.

(3) Bessel beams with ŵ = ẑ: eigenvectors of the third
components of the linear and angular momenta Pz and Jz.

From now on, we will lump the energy H , which is
proportional to k, and these other degrees of freedom into
a collective index ν and use Mν and Nν . In all three reference
systems, the Mν and Nν modes are commonly referred to as
TE and TM modes, respectively.

Using ∇× = �S · �P [22], it can be proved that the helicity
operator � can be written in real space as � = ∇×

k
. In such

formulation, it is also true that Mν = �Nν [20]. Then, together
with (A1), we see that

Nν = �Mν, Mν = �Nν . (A2)

Namely, the TE and TM modes are transformed into each other
by the application of �. We can hence obtain electromagnetic
fields with well-defined helicity as

A+
ν = 1√

2
(Mν + Nν), �A+

ν = A+
ν ,

(A3)

A−
ν = 1√

2
(Mν − Nν), �A−

ν = −A−
ν .

Equation (A3) already makes it obvious that helicity conser-
vation will only happen for equivalent scattering of the TE
and TM components of the field, which is needed in order to
preserve their linear combinations.

It is clear that, since {Mν,Nν} are an orthonormal basis
for transverse fields when all values of ν are considered, so is
{A+

ν ,A−
ν }. This derivation of the TE, TM modes is valid for the

systems of coordinates mentioned above. On the other hand,
the helicity operator is well defined for any basis. Thus, we
think that it is more natural to define the TE and TM modes
as Mν = 1√

2
(A+

ν + A−
ν ), Nν = 1√

2
(A+

ν − A−
ν ), and as such we

use them in the main text.

APPENDIX B: DERIVATION OF BESSEL BEAMS WITH
WELL-DEFINED HELICITY

In this appendix we present a constructive derivation of
electromagnetic modes with well-defined energy H , third
component of angular and linear momenta Jz and Pz, and
helicity �.

We start by considering TE and TM modes of well-defined
energy and linear momentum. They are plane waves derived
following the constructive procedure given in [20,34] which
was already used in Sec. IV C. Their explicit expressions are,
in the Cartesian [x̂,ŷ,ẑ] basis,

ŝ · exp(ik · r) = i

kρ

(ky x̂ − kx ŷ) exp(ik · r), (B1)

p̂ · exp(ik · r) =
[−kz(kx x̂ + ky ŷ) + k2

ρ ẑ

kkρ

]
exp(ik · r), (B2)

where kρ = √
k2
x + k2

y , and [kx,ky,kz] and k are proportional
to the linear momentum vector and energy of the plane waves.
As per Eq. (A3), sum and subtraction of TE and TM modes
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result in states of well-defined helicity:

ê+ exp(ik · r) = 1√
2

(̂s + p̂) exp(ik · r),

(B3)

ê− exp(ik · r) = 1√
2

(̂s − p̂) exp(ik · r).

Interestingly, any plane wave of well-defined helicity and
momentum vector proportional to [kx,ky,kz] can also be
obtained [35] by rotating a plane wave of the same helicity
and momentum [0,0,k]:

ê+ exp(ik · r) = R(θk,φk)(−l̂ exp(ikz)),
(B4)

ê− exp(ik · r) = R(θk,φk)(r̂ exp(ikz)),

where l̂ = x̂+iŷ√
2

, r̂ = x̂−iŷ√
2

, θk = arcsin kρ

k
, and φk = arctan ky

kx
.

Equation (B4) exploits the fact that helicity does not change
under spatial rotations.

A rotation operation of a vectorial field R(θk,φk)(A(r)) is,
explicitly,

A(r) → R(φk,θk)A(R−1(φk,θk)r), (B5)

where R(φk,θk) is the rotation matrix,

R(φk,θk) = Rz(φk)Ry(θk)

=

⎛⎜⎝ cos θk cos φk − sin φk sin θk cos φk

cos θk sin φk cos φk sin θk sin φk

− sin θk 0 cos θk

⎞⎟⎠,

(B6)

where Rz(φk) and Ry(θk) are rotations around the ẑ and ŷ axis,
respectively.

We now start our construction of modes with well-defined
H , Pz, Jz, and � by expressing the most general monochro-
matic forward propagating transverse electromagnetic field as
a combination of plane waves with well-defined momentum:

A =
∫ π

2

0
sinθkdθk

∫ 2π

0
dφk

[
α(θk,φk)R(θk,φk)(−l̂ exp(ikz))

+β(θk,φk)R(θk,φk)(r̂ exp(ikz))
]
. (B7)

A backward propagating beam can be obtained by using
−l̂ exp(−ikz) and r̂ exp(−ikz) as the initial plane waves
instead.

Having restricted (B7) to a single wave number k assures
that the resulting mode has a definite energy H proportional
to k. With respect to �, it is clear from (B7) that, if we desire
a field A with well-defined helicity, we need only to set either
α(θk,φk) or β(θk,φk) equal to zero for all (θk,φk), so that only
plane waves of the same helicity type are present in (B7).
With respect to having a well-defined Pz, and because, in a
plane wave, its value is proportional to kz = k cos θk , we must
include only a single value of θk in (B7).

The conditions needed in (B7) to specify a beam with well-
defined Jz are not as apparent as in the case of H , Pz, and
�. The solution can be reached by applying the operator Jz to
the general mode A. In order to do that, we use the following

definition of Jz as an infinitesimal rotation operation:

Jz = lim
dφk→0

I − R(0,dφk)

idφk

, (B8)

where I is the identity operator.
Applying (B8) to (B7) and making use of the properties of

rotation operators we obtain

Jz[A] = lim
dφk→0

∫ π
2

0
sin θkdθk

∫ 2π

0
dφkα(θk,φk)

× R(θk,φk) − R(θk,φk + dφk)

idφk

(−l̂ exp(ikz))

+ β(θk,φk)
R(θk,φk) − R(θk,φk + dφk)

idφk

(r̂ exp(ikz)),

(B9)

which, after integrating by parts can be reduced to

Jz[A] =
∫ π

2

0
sin θkdθk

∫ 2π

0
dφk

∂α(θk,φk)

i∂φk

R(θk,φk)

× (−l̂ exp(ikz)) + ∂β(θk,φk)

i∂φk

R(θk,φk)(r̂ exp(ikz)).

(B10)

So, in this representation, the operator Jz acts by taking the
partial derivative of the coordinates (α(θk,φk),β(θk,φk)) with
respect to φk and dividing by i.

Gathering together all the above, we can assert that

α(θk,φk) = 1

2π
δ(θk − θ ′

k) exp (inφk), β(θk,φk) = 0,

(B11)

specifies a mode with well-defined energy H proportional to
k, well-defined � with value λ = 1, well-defined Jz with value
n, and well-defined Pz proportional to kz = k cos(θ ′

k), and
that

α(θk,φk) = 0, β(θk,φk) = 1

2π
δ(θk − θ ′

k) exp (inφk) (B12)

does the same for the opposite helicity.
After inserting the specified coordinates into Eq. (B7),

substituting the rotated plane wave by their explicit ex-
pressions as linear combinations of (B1) and (B2), chang-
ing basis from [x̂,ŷ,ẑ] to [r̂,l̂,ẑ] and using exp(ik · r) =∑

m imJm(kρρ) exp (im(φ − φk)) exp(ikzz) before performing
the integral in dφk , we finally obtain the real space expressions
of the modes in cylindrical coordinates that have been
extensively used in the main text:

Cnkρ
(ρ,φ,z)

=
√

kρ

2π
in exp (i(kzz + nφ))

(
i√
2

((
1 + kz

k

) (
Jn+1(kρρ) exp(iφ)r̂ +

(
1 − kz

k

)
Jn−1(kρρ) exp(−iφ)l̂

)
− kρ

k
Jn(kρρ)ẑ

)
,
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Dnkρ
(ρ,φ,z)

=
√

kρ

2π
in exp (i(kzz + nφ))

(
i√
2

((
1 − kz

k

) (
Jn+1(kρρ) exp(iφ)r̂ +

(
1 + kz

k

)
Jn−1(kρρ) exp(−iφ)l̂

)
+ kρ

k
Jn(kρρ)ẑ

)
.

(B13)

Note that, due to the integration limits of θk in (B7), the
derivation is restricted to propagating modes. In reality, values
of kρ > k in Eq. (B13) are possible, specifying nonpropagating
modes with well-defined H , Pz, Jz, and �. Including nonprop-
agating modes from the start of the derivation can be done by
using imaginary values of θk in order to obtain values of sin(θ )
bigger than one.

APPENDIX C: PRESERVATION OF Jz AND � BY THE
ACTION OF AN APLANATIC LENS

The aplanatic or spherical lens model allows one to relate
the real space field profile of the collimated input beam
to the angular spectrum of the focused beam. Originally
developed by Richards and Wolf in [33], we can find an
explanation of the model and its formulas in [36], which we
reproduce here using a slightly different notation using that
exp(ikz cos θk) exp (ikρ sin θk cos(φ − φk)) = exp(ik · r):

Eout(ρ,φ,z) = ikf exp(−ikf )

2π

∫ θm
k

0

∫ 2π

0
sin θkdθkdφk

× E∞(θk,φk) exp(ik · r), (C1)

E∞(θk,φk) =
[
t s(θk)( ŝ0,φk

· Einc(f sin(θk),φk)) ŝθk,φk

+ tp(θk)( p̂0,φk
· Einc(f sin(θk),φk)) p̂θk,φk

]
×

√
n1

n2
(cos θk)1/2, (C2)

where
(1) Eout(ρ,φ,z) is the focused field in real space expressed

in cylindrical coordinates [ρ,φ,z].
(2) f is the focal distance of the lens, θm

k = arcsin(NA),
where NA is the numerical aperture of the lens, and k the wave
number of the field.

(3) [ρ,φ,z = z0], with ρ = f sin(θk) and φ = φk are both
the real space cylindrical coordinate system for the input beam
Einc(ρ,φ,z = z0) and the spherical coordinates in momentum
space of E∞(θk,φk), the angular spectrum of the focalized
output beam, with θk = arcsin( kρ

k
),φk = arctan( ky

kx
). This dual

role of the coordinates is the essence of the model.
(4) (t s(θk),tp(θk)) are the lenses TE and TM transmission

coefficients and (n1,n2) the indexes of refraction of the input
and output media.

We emphasize that the model is valid for a collimated input
only.

The definitions of the polarization vectors ŝα,ψ and p̂α,ψ

are those of (B1) and (B2) with α = arccos( kz

k
) and ψ =

arctan( ky

kx
).

We now analyze the properties of the model with respect
to conservation of Jz and �. We start by using some of the
ideas and techniques of Appendix B in order to calculate the
angular momentum of the focused beam when the input beam
has a definite value of Jz.

Using (B7), expression (C1) can also be written as

Eout(ρ,φ,z) =
∫ π

0
sin(θk)dθk

∫ 2π

0
dφ[gs(θk,φk)R(θk,φk)

× ( − iŷ exp(ik · r))

+ gp(θk,φk)R(θk,φk)(−x̂ exp(ik · r))], (C3)

where

gs(θk,φk) = t s(θk)( ŝ0,φk
· Einc(f sin(θk),φk)),

(C4)
gp(θk,φk) = tp(θk)( p̂0,φk

· Einc(f sin(θk),φk)).

As seen in Appendix B, in order to apply the operator Jz to the
output focused beam in (C3), we need to take the partial deriva-
tive of its coordinates (gs(θk,φk),gp(θk,φk)) with respect to φk

and divide by i. Equation (C4) relates (gs(θk,φk),gp(θk,φk)) to
the input beam. Note that the effect of the lens, which is given
by the transmittivities t s(θk),tp(θk), does not add any azimuthal
dependence to gs(θk,φk) and gp(θk,φk). Thus, with this model,
the lens will not affect the azimuthal dependence of the input
beam, hence keeping the angular momentum constant. More
explicitly, since vectors ŝ0,φk

,̂p0,φk
are proportional to the

azimuthal and radial polarization vectors defined as

φ̂ =

⎛⎜⎝− sin φk

cos φk

0

⎞⎟⎠, ρ̂ =

⎛⎜⎝ cos φk

sin φk

0

⎞⎟⎠, (C5)

the focalized field angular spectrum coordinates at point
(θk,φk), (gs(θk,φk),gp(θk,φk)), are the real space azimuthal

E
φ̂

inc and radial E
ρ̂

inc components of the input field at point ρ =
f sin(θk),φ = φk . In order to compute the angular momentum
of the focused field we need to take the partial derivatives of
the radial and azimuthal components of the input field with
respect to φk = φ and divide by i. Let us now find explicit

expressions for E
φ̂

inc and E
ρ̂

inc.
The collimated input beam can be expanded in the plane

z = z0 into modes of the types (17) and (18) with kρ

k
→ 0,

which we rewrite here after the change of basis r̂ = 1√
2
(ρ̂ −

iφ̂) exp(−iφ), l̂ = 1√
2
(ρ̂ + iφ̂) exp(iφ):

Cnkρ
(ρ,φ,z = z0)

≈
√

kρ

π
in+1 exp(ikzz0)Jn+1(kρρ) exp(iφn)

1√
2

(ρ̂ + iφ̂),
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Dnkρ
(ρ,φ,z = z0)

≈
√

kρ

π
in+1 exp(ikzz0)Jn−1(kρρ) exp(iφn)

1√
2

(ρ̂ − iφ̂).

(C6)

Note that in order to avoid confusion with θk , the letter for
the input beam coordinate angle arctan(y,x) is now φ, instead
of the original letter θ in expressions (17) and (18).

The sum and subtraction of the above modes result in
approximately pure radially and azimuthally polarized modes,
which separates the radial and azimuthal components of the
field:

Ankρ
(ρ,φ,z = z0)

≈
√

2kρ

π
in+1 exp(ikzz0)[Jn+1(kρρ) + Jn+1(kρρ)]

× exp(iφn)
1√
2
ρ̂ = A

ρ̂

nkρ
(ρ,φ,z0)ρ̂,

Bnkρ
(ρ,φ,z = z0)

≈ −
√

2kρ

π
in+2 exp(ikzz0)[Jn+1(kρρ) − Jn+1(kρρ)]

× exp(iφn)
1√
2
φ̂ = B

φ̂

nkρ
(ρ,φ,z0)φ̂, (C7)

which means that (C4) is explicitly

gs(θk,φk) = t s(θk)Eφ̂

inc = t s(θk)Bφ̂

nkρ
(f sin(θk),φk,z0),

(C8)
gp(θk,φk) = tp(θk)Eρ̂

inc = tp(θk)Aρ̂

nkρ
(f sin(θk),φk,z0).

Then, we need to take the partial derivative of the azimuthal

and radial input field components B
φ̂

nkρ
(f sin(θk),φk,z = z0)

and A
ρ̂

nkρ
(f sin(θk),φk,z = z0) with respect to φk and divide

by i. Let us now assume that the input is a field with definite
angular momentum Jz = n. Inspection of (C7) reveals that
such operation will leave those components invariant except
for a multiplicative factor equal to n. So, the output field
is also a field with definite angular momentum equal to n.
We have just proved that the aplanatic lens model transfers
the Jz value of the input beam to the output beam without
changing it.

We now study the behavior of the model with respect to
helicity. From (C4), it becomes clear that the TE and TM
content of the output field are independently determined by
the real azimuthal and radial components (C7) of the input
field, respectively. Having taken linear combinations of modes
with defined helicity, and using the results in Appendix A, it
follows that the modes in (C7) are also pure TE and TM modes,
respectively. Using the results from Sec. IV C about helicity
preservation in the TE-TM basis, we now see that, since there is
no crosstalk between the TE and TM components of the input
and focalized fields, the key condition for helicity preservation
in the aplanatic lens model is

ts(θk) = tp(θk) ∀ θk. (C9)

In real manufacturing of microscope objectives, this condi-
tion is related to the coating of the lens surfaces [36], that is, a
property of the materials and not the geometry of the system.

Let us assume for a moment a more general dependence of
the transmission coefficients ts(θk,φk),tp(θk,φk). The new φk

dependence could destroy the Jz preservation since now more
terms will be involved in the partial derivatives of gs(θk,φk) and
gp(θk,φk). On the other hand, as long as gs(θk,φk) = gp(θk,φk)
for all (θk,φk), helicity will be preserved. This is another
example of the independence of the conservation laws of Jz

and �.
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[31] R. Jáuregui, Phys. Rev. A 70, 033415 (2004).
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