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We have investigated the quantum phase transition employing the quantum renormalization-group method
while, in most of the previous literature, entanglement (concurrence) has been barely demonstrated. However,
it is now well known that entanglement is not the only signature of quantum correlations and a variety of
computable measures have been developed to characterize quantum correlations in the composite systems. As an
illustration, two cases are elaborated: a one-dimensional anisotropic (i) XXZ model and (ii) an XY model, with
various measures of quantum correlations, including quantum discord, geometric discord, measurement-induced
disturbance, measurement-induced nonlocality, and violation of Bell inequalities [e.g., Clauser-Horne-Shimony-
Holt (CHSH) inequality]. We have proved that all of these correlation measures can effectively detect the
quantum critical points associated with quantum phase transitions after several iterations of the renormalization
in both cases. Nonetheless, it is shown that some of their dynamical behaviors are not totally similar with
entanglement and, even when concurrence vanishes, there still exists some kind of quantum correlation which
is not captured by entanglement. Intriguingly, CHSH inequality can never be violated in the whole iteration
procedure, which indicates that block-block entanglement cannot revealed by the CHSH inequality. Moreover,
the nonanalytic and scaling behaviors of Bell violation have also been discussed in detail. As a by-product, we
verify that measurement-induced disturbance is exactly equal to the quantum discord measured by σz for general
X-structured states.
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I. INTRODUCTION

The origin of quantum correlation research or, more
precisely, quantum entanglement can date back to a paper
[1] in 1935, and nowadays there is no doubt that quantum
entanglement is one of the most significant concepts in
quantum information processing [2]. It has already been
recognized as the fundamental feature of quantum mechanics
and utilized as a crucial resource for communication and
computation. However, entanglement should not be viewed
as a unique measure of quantum correlations since there exist
other types of nonclassical correlations which are not captured
by entanglement. Recently, many authors have proposed a
variety of computable measures to characterize quantum
correlations in the composite states: quantum discord (QD)
[3,4], geometric discord (GD) [5,6], measurement-induced
disturbance (MID) [7], measurement-induced nonlocality
(MIN) [8], ameliorated MID [9], and so on. Within such
a quantum-classical framework, a great deal of concern has
been raised by quantum discord and discord-like correlation
measures in the past few years (for review, see Ref. [10] and
references therein).

In particular, as an important application in quantum
phase transition (QPT) [11], entanglement can be exploited
to determine the critical points (CP) for spin chains at zero
temperature [12–16]. Meanwhile, since quantum discord (and
other discord-like measures) is introduced as an information-
theoretical tool to qualify and quantify quantum correlations,
it is natural for us to clarify the role played by quantum discord
in QPT. Several studies concerning such a relationship have
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already appeared in Ref. [17–19]. These recent observations
demonstrate that the CP information provided by QD is just
in agreement with that of entanglement, and even at finite
temperature QD still works fine [19].

Instead of resorting to two-point spin-spin correlation
functions, which is usually done in most of the previous
literature, the quantum renormalization-group (QRG) method
[20,21] is introduced to investigate the quantum information
properties of critical systems. Invoking such a method, surveys
regarding Ising and Heisenberg models have been carried
out in several works [22–27] and it has been shown that
implementation of the QRG method is valuable in detecting
the nonanalytic behavior of entanglement (concurrence) and
the scaling behavior in the vicinity of CPs. Nevertheless, as
mentioned above, entanglement is not sufficient to account
for all the correlation contained in quantum systems, so this
motivates us to apply other correlation witnesses to study their
dynamic behaviors combining with QRG method. To serve as
a further comparison, the violation of Bell inequalities [28,29]
is also taken into consideration.

The outline of this paper is as follows. In Sec. II and Sec. III,
we investigate a one-dimensional anisotropic XXZ model
and XY model respectively, using several kinds of correlation
indicators under the method of QRG. In Sec. IV, we discuss
the scaling behavior of these quantifiers when close to CPs.
Section V is devoted to the discussion and conclusion. Finally,
some technical points are clarified in the Appendix.

II. CORRELATION ANALYSIS IN THE
ANISOTROPIC X X Z MODEL

First, we recall the QRG method and its application
in the one-dimensional anisotropic XXZ model. In fact,
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renormalization group refers to a mathematical tool that allows
systematic investigation of the changes of a physical system
as viewed at different distance scales. The key point to QRG
scheme lies in reducing the effective degrees of freedom of
the system through a recursive procedure until a mathemat-
ically tractable situation is reached. Following Kadanoff’s
approach (the “block-spin” renormalization group), the (one-
dimensional) lattice is split into blocks. The Hamiltonian
of each block is diagonalized exactly to obtain the low-
lying eigenstates (project operator) to construct the basis for
renormalized Hilbert space. Finally, the full Hamiltonian is
projected onto the renormalized space to achieve an effective
Hamiltonian H eff . Here we can summarize the QRG method
as the following steps:

(1) Decomposing the Hamiltonian into the intrablock and
interblock parts: H = HB + HBB , where HB is the block
Hamiltonian, and the interblock interaction is denoted as HBB .

(2) Diagonalization of HB : this procedure is aiming to
obtain the low-lying eigenstates and build the projection
operator P0 onto the the low-energy subspace.

(3) Renormalization of HB and HBB : by virtue of pertur-
bative expansion (see Ref. [30]), the effective (renormalized)
Hamiltonian up to the first-order correction is H eff = H eff

0 +
H eff

1 , where H eff
0 = P0H

BP0 and H eff
1 = P0H

BBP0.
(4) Iteration: repeat (1) ⇒ (3) to arrive at the final man-

ageable situation. For more details, we refer the readers to
Refs. [30–32].
Kargarian et al. introduced the notion of “renormalization
of concurrence” [22], and they found that this notion truly
captures the nonanalytic behavior of the derivative of en-
tanglement (concurrence) close to the critical point. As a
warmup, we, first, review the renormalization of entanglement
in the one-dimensional anisotropic XXZ model [23]. The
Hamiltonian of spin 1/2 XXZ model on a periodic chain
of N sites is

H (J,�) = J

4

N∑
i

(
σx

i σ x
i+1 + σ

y

i σ
y

i+1 + �σz
i σ z

i+1

)
, (1)

where J is exchange constant, � is the anisotropy parameter,
and J,� > 0. σα

i (α = x,y,z) are standard Pauli matrices at site
i. This model is known to be exactly solvable by Bethe Ansatz
and critical (gapless) while 0 � � � 1. The Ising regime is
� > 1 and a maximum of concurrence can be reached between
two nearest-neighbouring spins at the transition point � = 1
[33,34].

To construct a renormalized form for the Hamiltonian (1),
we shall choose a decomposition of three-site blocks. Note
that this is requisite in the sense that it is a guarantee of self-
similarity after each iterative step. Reference [23] gives the
degenerate ground states of the block Hamiltonian as follows

|φ0〉 = 1√
2 + q2

(|↑↑↓〉 + q|↑↓↑〉 + |↓↑↑〉), (2)

|φ′
0〉 = 1√

2 + q2
(|↑↓↓〉 + q|↓↑↓〉 + |↓↓↑〉), (3)

where |↑〉,|↓〉 are the eigenstates of σz and

q = − 1
2 (� + √

�2 + 8). (4)

The effective Hamiltonian of the renormalized chain then can
be cast into the form

H eff = J ′

4

N/3∑
i

(
σx

i σ x
i+1 + σ

y

i σ
y

i+1 + �′σ z
i σ z

i+1

)
, (5)

where the iterative relationship is

J ′ = J

(
2q

2 + q2

)2

, �′ = �
q2

4
. (6)

The most important information given in the QRG method
are its fixed points. By solving equation �′ = �, we obtain
the trivial fixed point � = 0 and also the nontrivial fixed point
� = 1. It is worth noticing that, as was stated previously, XXZ

model is critical for all 0 � � � 1 while QRG method only
indicates the single points. Indeed, if appropriate boundary
terms are implemented in the QRG method, then it predicts
correctly a line of critical models in the range 0 � � � 1 [35].

In order to calculate quantum discord and other correlation
quantities, we consider one of the degenerate ground states.
Correspondingly, the density matrix is defined as

ρ123 = |φ0〉〈φ0|, (7)

with |φ0〉 referring to Eq. (2) (choosing |φ′
0〉 will yield the

same results). Since we are focusing on pairwise correlation
functions, without loss of generality, we trace over site 2 to
obtain the reduced density matrix between sites 1 and 3,

ρ13 = 1

2 + q2

⎛
⎜⎝

q2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎞
⎟⎠ . (8)

It is straightforward to compute the concurrence [36] of ρ13,

C13 = 2

2 + q2
. (9)

It is shown that the concurrence between two blocks exhibits an
explicit signature of the quantum phase transitions at � = 1.
Meanwhile, we notice that some other entanglement measures
in the literature, such as von Neumann entropy or the averaged
bipartite entanglement, are shown to be good indicators of the
quantum phase transition. However, to our best knowledge,
there is no study of analyzing other correlation witnesses
beyond entanglement in QRG framework. In the below section,
we will analytically derive these quantities in detail to see
whether they can be proved helpful in predicting critical
phenomenon.

A. Quantum discord and measurement-induced disturbance

Quantum discord is introduced in Ref. [3] aiming to
characterize all the nonclassical correlations present in a
bipartite state. It originates from the inequivalence of two
expressions of mutual information in the quantum realm.
Consider a composite bipartite system ρAB , where the quantum
mutual information is defined as

I(ρAB) := S(ρA) + S(ρB ) − S(ρAB), (10)

where S(ρ) = −Tr(ρ log2 ρ) is the von Neumann entropy and
ρA(B) = TrB(A)(ρAB) denote the reduced density operator of
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subsystem A(B). On the other hand, if a complete set of von
Neumann measurements {�A

k } (or, more generally, POVMs)
performed on subsystem A, an alternative version of quantum
mutual information conditioned on this measurement yields

I
(
ρ
∣∣{�A

k

})
:= S(ρB) − S

(
ρ
∣∣{�A

k

})
, (11)

= S(ρB ) −
∑

k

pkS
(
ρB

k

)
, (12)

with pk = Tr(�A
k ρAB) and ρB

k = TrA(�A
k ρAB)/pk . To elimi-

nate the dependence on specific measurement, one takes the
optimization procedure to obtain

J (ρ) := max
{�A

k }
I
(
ρ
∣∣{�A

k

})
, (13)

which has been suggested by Henderson and Vedral [4] as
a measure to quantify the purely classical part of correla-
tions. The discrepancy between the original quantum mutual
information I and the measurement-induced quantum mutual
information J is defined as the so-called quantum discord

DA(ρ) : = I(ρ) − J (ρ), (14)

= S(ρA) − S(ρAB) + min
{�A

k }

∑
k

pkS
(
ρB

k

)
. (15)

Now we are going to deal with the situation that we come
across. The density matrix defined in Eq. (8) is a two-qubit
X-shaped state. A general X state look like this:

ρχ =

⎛
⎜⎝

ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ∗

23 ρ33 0
ρ∗

14 0 0 ρ44

⎞
⎟⎠ , (16)

which has seven real parameters. However, up to local unitary
equivalence, we can assume ρ14 and ρ23 are also real and, in
fact, there are only five independent parameters (note that QD
is invariant under local unitary transformations). Alternatively,
if we represent the X state in Bloch decomposition, then the
five characterizing parameters can be expressed as

x = Tr
(
σA

z ρχ
) = ρ11 + ρ22 − ρ33 − ρ44,

y = Tr
(
σB

z ρχ
) = ρ11 − ρ22 + ρ33 − ρ44,

t1 = Tr
(
σA

x σB
x ρχ

) = 2ρ14 + 2ρ23, (17)

t2 = Tr
(
σA

y σB
y ρχ

) = −2ρ14 + 2ρ23,

t3 = Tr
(
σA

z σB
z ρχ

) = ρ11 − ρ22 − ρ33 + ρ44.

Except for some numerical evaluations for a restricted subset
of two-qubit X states [37,38], Ref. [39] presented an algorithm
to calculate QD for general two-qubit X states, where the
optimal measurement is in a universal finite set {σx,σy,σz} (see
also Refs. [40,41]). Nonetheless, a counterexample is given by
Ref. [42] to disprove the algorithm and this fact elucidates
the state dependence in the optimization for general X states.
Furthermore, recent progress toward this problem has been
made by Ref. [40,41], which identifies a large class of X states
whose QD can be derived analytically from the measurement
strategy described above.

Keeping these technical preparations in mind, let us turn
to density matrix (8), the spectrum of which is λ(ρ13) =

{0,0, 2
2+q2 ,

q2

2+q2 }. First, we note that ρ22 = ρ33 and then

S(ρA) = S(ρB) = 1

2 + q2

(
1 + q2 0

0 1

)
, (18)

which meansDA(ρ) = DB(ρ) [4] (here A and B denotes sites 1
and 3, respectively). According to the theorem in Ref. [40], it is
easy to check that the optimal observable for state (8) is not σz

but σx . For a reason that will be clear later, we also give discord
measured by σz (for brevity, we put the general formulas in
the Appendix), which is actually equal to the concurrence

Dσz

A = 2

2 + q2
. (19)

When the optimal measurement { 1
2 (I ± σA

x )} is performed on
A, we directly acquire the QD of state (8),

Dσx

A = −1 + q2

2 + q2
log2

(
1 + q2

2 + q2

)
− 1

2 + q2
log2

(
1

2 + q2

)

+ 2

2 + q2
log2

(
2

2 + q2

)
+ q2

2 + q2
log2

(
q2

2 + q2

)

+ f

[
4 + q4

(2 + q2)2

]
, (20)

where f (z) := − 1+√
z

2 log2
1+√

z

2 − 1−√
z

2 log2
1−√

z

2 . Numeri-
cal evaluation shows DA = Dσx

A is strictly less than Dσz

A , as we
expect.

Based on the definition introduced by Luo [7],
measurement-induced disturbance (MID) is defined as the
difference of quantum mutual information before and after
measurement

MID(ρAB) = I (ρAB) − I (�(ρAB)). (21)

The measurement � = {�A
i ⊗ �B

j } is induced by the spectral
decompositions of the reduced states, ρA = 
ipiρ

A
i and ρB =


ipiρ
B
i , which leaves the marginal information invariant.

By taking �A
i = |i〉〈i| and �B

j = |j 〉〈j | (which is unique

in our case), we have �(ρAB) = 1
2+q2 diag{q2,1,1,0} and,

consequently,

MID = S(�(ρAB)) − S(ρAB) = 2

2 + q2
. (22)

So MID of state (8) coincides with Dσz

A and the concurrence.
However, this is not a coincidence. In the Appendix we will
prove that MID is exactly equal to the QD measured by σz for
general X-structured states.

In Fig. 1, we illustrate the evolution of QD versus � for
different QRG steps. Notice that the iterative relationship we
adopt here and later in the calculation is Eqs. (4) and (6). The
plots of QD cross each other at the critical point � = 1. In
comparison with the concurrence demonstrated in Ref. [23],
QD also develops two saturated values, which are associated
with the two different phases, the spin-liquid and Néel phases.
Note that after enough iteration steps for 0 � � < 1, DA ≈
0.412154 < C = 0.5, while for � > 1, DA → 0. In addition,
since MID is exactly equal to the concurrence, the MID can
obviously exhibit a QPT at � = 1.
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FIG. 1. (Color online) The evolution of the quantum discord
versus � in terms of QRG iteration steps in the XXZ model.

B. Geometric discord and measurement-induced nonlocality

In this subsection, we calculate GD and MIN. Recently,
Dakić et al. introduced the following geometric measure of
quantum discord based on the Hilbert-Schmidt norm [5]

DG
A (ρ) := min

χ∈�
‖ρ − χ‖2, (23)

where � denotes the set of zero-discord states and ‖ρ − χ‖2 =
Tr(ρ − χ )2 is the square of the Hilbert-Schmidt norm. For the
two-qubit case, a closed form of the expression for geometric
discord can be achieved,

DG
A (ρ) = 1

4 (‖�x‖2 + ‖T ‖2 − λmax), (24)

where xi = Tr(σA
i ρ) are components of the local Bloch vector

for subsystem A, Tij = Tr(σA
i σB

j ρ) are components of the
correlation matrix, and �x := (x1,x2,x3)t , T := (Tij ), λmax is
the largest eigenvalue of the matrix K = �x �xt + T T t (here the
superscript t denotes transpose). It is worth emphasizing that
Luo and Fu presented an equivalent but simplified version of
the geometric discord [6]

DG
A (ρ) = min

�A
||ρ − �A(ρ)||2, (25)

where the minimum is over all von Neumann measurements
�A = {�A

k } on subsystem A. Intuitively, in some sense
corresponding to GD, another measure quantifying the non-
local effect caused by locally invariant measurements was
introduced Luo and Fu [8]

MINA(ρ) = max
�A

||ρ − �A(ρ)||2, (26)

with an extra constraint that von Neumann measurements
�A = {�A

k } do not disturb ρA locally, which means ρA =∑
k �A

k ρA�A
k .

For the X state and its characterizing parameters defined
in Eqs. (17), we have �x = (0,0,x)t and T = diag{t1,t2,t3} and
GD of the X state reads

DG
A (ρχ ) = 1

4

(
t2
1 + t2

2 + t2
3 + x2 − max

{
t2
1 ,t2

2 ,t2
3 + x2

})
, (27)

In addition, using theorem 3 in Ref. [8], MIN can be obtained
for two-qubit X states

MINA(ρχ ) =
{

1
4

(
t2
1 + t2

2

)
, if x �= 0

1
4

(
t2
1 + t2

2 + t2
3 − λmin

)
, if x = 0

,

(28)
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FIG. 2. (Color online) The evolution of the geometric discord and
measurement-induced nonlocality versus � in terms of QRG iteration
steps in the XXZ model.

with λmin = min{t2
1 ,t2

2 ,t2
3 }. Applying these formulas to the state

(8), we obtain

DG
A = MINA = 1

4

(
t2
1 + t2

2

) = 2

(2 + q2)2
= 1

2
C2, (29)

by noting that t2
3 + x3 = ( q2−2

2+q2 )2 + ( q2

2+q2 )2 � ( 2
2+q2 )2 = t2

1 =
t2
2 and x �= 0 since |q| �

√
2 for � � 0. The variation of GD

and MIN versus � has been plotted in Fig. 2. It is no surprise
that they can indicate the precise location of the critical point
� = 1 since DG

A = MINA = 1
2C2.

C. Bell violation

Quantum nonlocality, as revealed by the violation of Bell-
type inequalities, refers to many-system measurement corre-
lations that cannot be simulated by any local hidden variable
theory. In particular, for two-qubit pure states, the presence
of entanglement guarantees violation of a Bell inequality
(Gisin’s theorem) [43]. However, for mixed stares the situation
becomes more complicated [44]. Here we restrict ourselves
to the Clauser-Horne-Shimony-Holt (CHSH) inequality. The
Bell operator corresponding to CHSH inequality can be
formulated in the following form:

BCHSH = a · σ ⊗ (b + b′) · σ + a′ · σ ⊗ (b − b′) · σ , (30)

where a, a′, b, b′ are the unit vectors inR3 and σ = (σx,σy,σz).
Thee well-known CHSH inequality then is expressed as

B = |〈BCHSH〉ρ | = |Tr(ρBCHSH)| � 2. (31)

According to the Horodecki criterion [45], the maximum
violation of CHSH inequality is given by

Bmax
CHSH = max

a,a′,b,b′ Tr(ρBCHSH),

= 2
√

max
i<j

(ui + uj ), (32)

where ui , i = 1,2,3 are the eigenvalues of U = T tT .
As for X states, the matrix T is diagonal and T tT =

diag{t2
1 ,t2

2 ,t2
3 }. Therefore, the maximal violation of the CHSH

inequality for X states can be simplified to

Bmax
CHSH(ρχ ) = 2

√√√√ 3∑
i=1

t2
i − λmin, (33)
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FIG. 3. (Color online) The evolution of the violation of CHSH
inequality versus � in terms of QRG iteration steps in the XXZ

model.

with λmin = min{t2
1 ,t2

2 ,t2
3 }. Thus, the (maximal) Bell violation

of state (8) is obtained,

Bmax = 2

√
max

{
8

(2 + q2)2
,
(q2 − 2)2 + 4

(2 + q2)2

}
. (34)

The value of maximum Bell violation under QRG iterations
is displayed in Fig. 3. Interestingly, we can observe that the
block-block correlations never violate the CHSH inequality
but still evidently exhibit a QPT. At the critical point � = 1,
the (maximum) Bell violation is a fixed nonzero constant Bc =
2
√

2/3 ≈ 0.942809, irrespective of the iterative steps. What
is more, beyond the critical point, Bell violation also develops
two saturated values: one is B = √

2 for 0 � � < 1 and one
is B = 2 for � > 1, which is in sharp contrast to the behavior
of concurrence.

III. CORRELATION ANALYSIS IN
THE ANISOTROPIC XY MODEL

In this section we embark on studying the relationship
between the QPT and quantum correlation witnesses in the
spin-1/2 XY model with the QRG method. The Hamiltonian
of the XY model on a periodic chain with N sites reads

H (J,γ ) = J

4

N∑
i

[
(1 + γ )σx

i σ x
i+1 + (1 − γ )σy

i σ
y

i+1

]
, (35)

where J is the exchange coupling constant and γ is the
anisotropy parameter. The XY model reduces to the XX model
for γ = 0 or the Ising model for γ = 1. In the parameter
range 0 < γ � 1, it falls into the Ising universality class. To
implement the QRG method, we still choose three sites as a
block. In Ref. [26], Ma et al. obtained two doubly degenerate
eigenvalues of the block Hamiltonian as below

|
0〉 = 1

2
√

1 + γ 2
(−

√
1 + γ 2|↑↑↓〉 +

√
2|↑↓↑〉

−
√

1 + γ 2|↓↑↑〉 +
√

2γ |↓↓↓〉), (36)

|
′
0〉 = 1

2
√

1 + γ 2
(−

√
2γ |↑↑↑〉 +

√
1 + γ 2|↓↑↑〉

−
√

2|↓↑↓〉 +
√

1 + γ 2|↓↓↑〉). (37)

After projection onto the renormalized subspace, the effective
Hamiltonian can be written as

H eff = J ′

4

N∑
i

[
(1 + γ ′)σx

i σ x
i+1 + (1 − γ ′)σy

i σ
y

i+1

]
, (38)

with the iterative relationship

J ′ = J
3γ 2 + 1

2(1 + γ 2)
, γ ′ = γ 3 + 3γ

3γ 2 + 1
. (39)

Naturally, we are most concerned with the CP information.
The stable and unstable fixed points can be gotten by solving
γ ′ = γ . The stable fixed points locate at γ = ±1, and the
unstable fixed point is γ = 0, which separates the spin-fluid
phase (γ = 0) from the the Néel phase (0 < |γ | � 1).

Similarly, we consider one of the degeneracy ground states
to construct the pure-state density matrix,

�123 = |
0〉〈
0|. (40)

The result of choosing |
′
0〉 will be the same. By tracing out

site 2, we arrive at the reduced density matrix

�13 = 1

4(γ 2 + 1)

⎛
⎜⎜⎝

2 0 0 2γ

0 γ 2 + 1 γ 2 + 1 0
0 γ 2 + 1 γ 2 + 1 0

2γ 0 0 2γ 2

⎞
⎟⎟⎠ . (41)

The concurrence between the sites 1 and 3 is given as

C13 = 1

2
− |γ |

1 + γ 2
. (42)

A. Quantum discord and measurement-induced disturbance

Before calculating QD and other correlation quantities, we
regard all these measures as a function of g, where

g = 1 + γ

1 − γ
. (43)

The reason is twofold: bringing in such a variable is not
only convenient for us to compare the results with that of
Ref. [26] but also useful in the derivation process. According
to Refs. [40,41], it can be verified that σz is not the optimal
observable and the choose of optimal observable depends on
the value of γ or, more accurately, the sign of γ : The optimal
observable to measure is σx if γ � 0 (which is equivalent to
t1 � t2 or |g| � 1) and σy if γ < 0 (|g| < 1). In spite of this
fact, we still provide the discord measured by σz here

Dσz = − 1

2(γ 2 + 1)
log2

1

2(γ 2 + 1)

− γ 2

2(γ 2 + 1)
log2

γ 2

2(γ 2 + 1)
. (44)

We again remark that �22 = �33 for the density matrix (41)
and, thus,

S(ρA) = S(ρB ) = 1

4(γ 2 + 1)

(
γ 2 + 3 0

0 3γ 2 + 1

)
. (45)

So we do not need to specify on which subsystem
the measurement is performed. The spectrum of (41) is
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FIG. 4. (Color online) The evolution of quantum discord and
measurement-induced disturbance versus � in terms of QRG iteration
steps in the XY model.

λ(�) = {1/2,1/2,0,0}, irrespective of the value of γ . After
some lengthy but standard algebra, one finally gets

D = S(�A) − S(�AB) + f
(
y2 + max

{
t2
1,2

})
= − γ 2 + 3

4(γ 2 + 1)
log2

γ 2 + 3

4(γ 2 + 1)
− 3γ 2 + 1

4(γ 2 + 1)
log2

3γ 2 + 1

4(γ 2 + 1)

− 1 + f

[
(|γ | + 1)2

2(γ 2 + 1)

]
, (46)

with y,t1,t2, and function f (·) defined as above.
From the proof in the Appendix, we already know that

MID is exactly equal to Dσz . The QD and MID between
site 1 and 3 have been plotted in Fig. 4 [recall that for this
model the iterative relationship is just Eq. (39)]. The dynamic
behavior of QD in each iteration step is analogous to that of
the concurrence but not totally the same. At the critical point
g = 1, QD reaches a nonzero constant D ≈ 0.412154, which
once again indicates that the spin-fluid phase contains quantum
correlations as already shown in the XXZ model. In contrast
to QD, MID also shows the nonanalytic property; however,
for 0 � g < 1 and g > 1 MID does not fall to zero but gets to
another nonzero constant MID = 1.

B. Geometric discord, measurement-induced nonlocality,
and Bell violation

In Sec. II we have obtained the analytic formulas for
GD, MIN, and Bell violation. Employing Eqs. (27), (28),
and (33), the GD, MIN and Bell violation for state (41) are
listed as follows (in the derivation note that γ � 0 and γ < 0
correspond to |g| � 1 and |g| < 1, respectively):

DG = 1

4

(
1

2
− |γ |

1 + γ 2

)
= 1

4
C, (47)

MIN = γ 4 + 6γ 2 + 1

8(γ 2 + 1)2
, (48)
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FIG. 5. (Color online) The evolution of the violation of CHSH
inequality versus � in terms of QRG iteration steps in the XY model.

Bmax =
√

2γ 4 + 12γ 2 + 2

γ 2 + 1
= 4

√
MIN. (49)

Here the Bell violation versus g changing for different
iterations is depicted in Fig. 5. It is clearly seen that in the XY

model the block-block correlation is still not strong enough to
violate the CHSH inequality although Bell violation displays
the nonanalytic behavior at g = 1 (γ = 0).

IV. NONANALYTIC AND SCALING BEHAVIOR

So far, we have employed the QRG method to investigate
the block-block correlations of one-dimensional XXZ and XY

spin models. As we have described in the QRG approach, the
size of a large system (N = 3n+1) can be effectively rescaled
to three sites with the renormalized couplings of the nth RG
iteration. Therefore, the quantum correlations between the two
renormalized sites represent the correlations between two parts
of the system, each effectively containing N/3 sites. In this
sense, we can refer to these quantities considered in this work
as block-block correlations. It has been demonstrated that the
first derivative of all these correlation measures shows a nonan-
alytic behavior in the vicinity of the critical point. Furthermore,
the scaling property of entanglement has also been observed
in Refs. [23,26], which is related to the divergence of the
correlation length as the critical point is approached.

Aiming to compare with the previous results concerning en-
tanglement, we explicitly show the nonanalytic phenomenon
and scaling behavior of other correlation witnesses. Here, we

2 4 6 8 10 12

2

4

6

8

10

ln N

ln
dB

dg
m

dB dg max N0.99

FIG. 6. (Color online) The logarithm of the absolute value of
minimum, ln(|dB/dg|m), versus the logarithm of chain size, ln(N ),
which is linear and displays a scaling behavior (B is the Bell violation
in the XY model).
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FIG. 7. (Color online) The scaling behavior of gmax in terms of
system size N , where gmax is the position of the minimum derivative
of Bell violation in the XY model.

focus on the dynamic property of nonlocality, that is, the
maximal violation of the Bell-CHSH inequality, since our
results display that quantum discord behaves more similarly
to entanglement (see Figs. 1 and 4). First, we have analyzed
the scaling behavior of y = |dB/dg|gm

versus the size of the
system N in the XY model where gm is the position of the
minimum of dB/dg. We have plotted ln(y) versus ln(N ) in
Fig. 6, which shows a linear behavior. Numerical calculation
tells us that the exponent for this behavior is |dB/dg|gm

∼
N0.99. As a companion, our analysis also reveals that the
position of the minimum gm of dB/dg gradually tends to the
critical point gc = 1, as shown in Fig. 7 (the numerical relation
is gm = gc − N−1.00). These results convince us that the Bell
violation truly signifies the criticality of the spin system.

V. DISCUSSION AND CONCLUSION

In this paper, we have investigated the performance of
various correlation measures in the quantum phase transition,
exploiting the quantum renormalization-group method. In
most of the previous literature, only entanglement (concur-
rence) has been utilized as an information-theoretic tool to
evaluate the critical properties of the spin systems. However,
it is now well known that entanglement cannot account for
all aspects of quantum correlations, which, in turn, motivates
us to clarify whether other correlations (including Bell-CHSH
violation) are useful in such a circumstance. Indeed, there
are several points that deserve our attention: (i) The quantum
discord and other discordlike measures turn out to be as
good as entanglement to detect the quantum phase transition
in the anisotropic XXZ and XY models. Nevertheless, it is
apparent that the dynamic processes of these quantities are not
totally similar with entanglement and even when concurrence
vanishes there still exists some kind of quantum correlation
which is not captured by entanglement. (ii) Interestingly, our
result shows that CHSH inequality can never be violated in
the entire iteration procedure, which indicates the block-block
entanglement cannot be revealed by the CHSH inequality.
Moreover, the nonanalytic and scaling behaviors of Bell
violation have been justified by numerical calculations.

On the other hand, the two cases handled in this work
can be regard as perfect examples to apply the QD algorithm
raised in Refs. [40,41], where the optimal measurements

to achieve QD can be exactly determined. In addition, we
are convinced that the whole analysis in this paper can be
extended to many other spin models, since the reduced density
matrices are usually highly symmetric and can be cast into
X-shaped states [24,25,27,31,32]. Very recently, it has been
reported that Bell inequality is able to signal QPT and it can
never be violated in the corresponding spin models [46,47].
In these works, the nearest-neighboring spin-spin correlation
functions are invoked to compute the Bell violation, which
is usually complex and lengthy. However, we resort to the
QRG framework and also illustrate that no violation can be
discovered in each iteration step, which implies some intrinsic
feature of long-scale corrections. The connection between
these observations will be attractive and may need further
investigation. Finally, we would like to mention that it might
be interesting to apply the same approach to high-dimensional
systems, where a straightforward numerical analysis could be
performed for some measures of quantum correlations.
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APPENDIX A: ANALYTIC PROOF OF MID = Dσz

FOR GENERAL X STATES

Here we show that measurement-induced disturbance is
exactly equal to the quantum discord measured by σz for
general X-structured states. The expressions of QD and MID
are formulated as follows:

DA(ρ) = S(ρA) − S(ρ) + min
{�A

k }

∑
k

pkS
(
ρB

k

)
, (A1)

MID(ρ) = I (ρ) − I (�(ρ)) = S(�(ρ)) − S(ρ). (A2)

Note that the two-sided measurements � = {�A
i ⊗ �B

j } em-
ploying in MID depend on the spectral decompositions of the
reduced states. Since we only consider the discord measured
by σz, that is, { 1

2 (I ± σz)} = {|0〉〈0|,|1〉〈1|}, the conditional
states for general X states (16) can be obtained,

ρB
0 = 1

ρ11 + ρ22

(
ρ11 0

0 ρ22

)
,

(A3)

ρB
1 = 1

ρ33 + ρ44

(
ρ33 0

0 ρ44

)
,

with p0 = ρ11 + ρ22 and p1 = ρ33 + ρ44. The reduced states
are all diagonal states,

ρA =
(

ρ11 + ρ22 0

0 ρ33 + ρ44

)
,

(A4)

ρB =
(

ρ11 + ρ33 0

0 ρ22 + ρ44

)
.

Therefore, we can take �A
i = |i〉〈i|, �B

j = |j 〉〈j | (i,j =
0,1). To prove MID = Dσz , all we need is to verify
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S(ρA) + ∑
k pkS(ρB

k ) = S(�(ρ)). In fact, it is easy to
find

S(ρA) +
∑

k

pkS
(
ρB

k

) = −
∑
ii

ρii log2(ρii)

= S(�(ρ)) (A5)

with ii = 11,22,33,44. Moreover, when the measurement σz

is performed on subsystem B, the situation is the same. To
sum up, we arrive at the relationship Dσz

A = Dσz

B = MID for
X states.

APPENDIX B: ANALYTIC FORMULA OF Dσx (Dσ y )
FOR GENERAL X STATES

By definition, we need to evaluate the conditional state ρB
k

and the corresponding probability pk , since S(ρA) and S(ρAB)
are easy to compute. Let {�A

k = 1
2 (I ± σx)} (k = ±) be the

local measurement for subsystem A, then

ρB
± = 1

p±
TrA(�A

± ⊗ IBρ�A
± ⊗ IB),

=
[

ρ11 + ρ33 ±(ρ14 + ρ23)

±(ρ14 + ρ23) ρ22 + ρ44

]
,

= 1

2

(
1 + y ±t1

±t1 1 − y

)
, (B1)

with pk = Tr(�A
± ⊗ IBρ�A

± ⊗ IB) = 1
2 , k = ±, and y, t1

defined in Eqs. (17). In addition, ρB
± have exactly the same

spectrum,

λ(ρk) = 1
2

(
1 ±

√
y2 + t2

1

)
. (B2)

Therefore, ∑
k

pkS
(
ρB

k

) = S(ρB
+) = S(ρB

−),

= f
(
y2 + t2

1

)
. (B3)

where f (z) := − 1+√
z

2 log2
1+√

z

2 − 1−√
z

2 log2
1−√

z

2 . If we
choose {�A

k = 1
2 (I ± σy)} as the local measurement on A,

an analogous expression can be achieved,∑
k

pkS
(
ρB

k

) = f
(
y2 + t2

2

)
. (B4)

According to Ref. [40,41], as long as

|√ρ11ρ44 − √
ρ22ρ33| � |ρ14| + |ρ23| (B5)

holds, the optimal observable is σx if t1 � t2 and σy otherwise.
Consequently,

DA(ρ) = S(ρA) − S(ρAB) + f
(
y2 + max

{
t2
1,2

})
. (B6)

Note that S(ρA) and S(ρAB) can also be represented by
parameters defined in Eqs. (17) (see Eq. (8) in Ref. [41]).
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