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Local exchange theory for trapped dipolar gases
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We develop a practical Hartree-Fock theory for trapped Bose and Fermi gases that interact with dipole-dipole
interactions. This theory is applicable at zero and finite temperature. Our approach is based on the introduction
of local momentum distortion fields that characterize the exchange effects in terms of a local effective potential.
We validate our theory against existing theories, finding excellent agreement with full Hartree-Fock calculations.
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Introduction. Phenomenal progress in the production of
ultracold quantum gases with magnetic [1] and electric [2]
dipoles has opened up an important new many-body system
[3]. The key feature of these gases is that the constituent
particles interact via a dipole-dipole interaction (DDI) that
is long ranged and anisotropic.

There has been considerable success in the development
of theory for dipolar Bose-Einstein condensates, in which
all the atoms occupy a single mode that is described by
the mean-field Gross-Pitaevskii equation [4]. However, in
situations where many modes are occupied (i.e., a Bose gas at
finite temperature or a Fermi gas) the mean-field treatment of
the nonlocal exchange interaction is technically challenging.
This issue is most pronounced in the experimentally relevant
case of trapped samples where both direct and exchange
effects contribute. To date, calculations including exchange
have been performed by two groups for normal Bose and Fermi
gases within the Hartree-Fock (HF) approximation [5–8],
and for small quasi-two-dimensional condensates [9] within
the HF-Bogoliubov-Popov approach. These calculations are
numerically intensive and are only practical in cases where the
dimensionality is reduced, either through cylindrical symmetry
or by tight confinement. Some simple variational [10] and
phenomenological [11] treatments of exchange have been in-
vestigated (see comparisons to HF calculations in Refs. [5–8]).
We also note the application of beyond-mean-field Monte
Carlo methods to two-dimensional gases [12].

Exchange effects are predicted to cause dipolar gases to
undergo momentum space magnetostriction [8], and have
a significant role in mechanical stability [5,6]. A number
of studies of homogeneous Fermi systems have shown the
importance of exchange for various phase transitions and other
phenomena [13], but extending these predictions to the trapped
system remains an outstanding problem.

Here we report on the development of a tractable Hartree
local-Fock (HLF) theory for normal trapped dipolar gases that
accurately describes both direct and exchange interactions.
Our motivation for the present work is to enable quantitative
modeling of emerging experiments in this field. Our theory
is based on the semiclassical HF approximation (avoiding
the need to diagonalize for modes), a theory that has been
extensively applied to gases with contact interactions [14],
and provides a good description of experiments (e.g., see
Ref. [15]). Mean-field theories have shown good agreement
with experiment for dilute dipolar gases [16] and HLF theory
will allow modeling of the exchange interaction for dilute
gases at finite temperature. Experiments in the high-density

limit are lacking, however, progress is imminent [2] and HLF
theory will be important in identifying correlation effects in
this regime. The HLF theory is derived by introducing a pair of
momentum distortion fields that simplify the exchange term
to a local potential. This approach provides insight into the
manifestation of exchange interactions in the dipolar gas,
and opens a path for developing mean-field theories in the
superfluid regime.

We validate the HLF theory against HF and Hartree
calculations for Bose and Fermi systems at zero and finite
temperature. The HLF theory is vastly faster and more resource
efficient: A HF calculation taking 40 h is reduced to 2 s with
HLF.1

System. We consider a gas of spin-polarized particles that
interact by a DDI of the form

Udd(r) = Cdd

4π

1 − 3 cos2 θ

|r|3 , (1)

where Cdd = μ0μ
2
m for magnetic dipoles of strength μm and

d2/ε0 for electric dipoles of strength d, and θ is the angle
between the dipole separation r and the polarization axis,
which we take to be the z direction. The particles also
interact via a contact interaction of strength g (note g = 0 for
spin-polarized fermions) and are taken to be confined within a
trap Utr(x) of arbitrary geometry.

HLF theory. The single-particle Wigner distribution func-
tion, within the semiclassical approximation, is given by

W (x,k) = 1

eβ[ε(x,k)−μ] − η
, (2)

where η = 1 for bosons and η = −1 for fermions, μ is the
chemical potential, and β = 1/kBT is the inverse temperature.
The HLF theory is based on a trial dispersion relation

ε(x,k) = h̄2

2m

[
κρ(x)k2

ρ + κz(x)k2
z

] + Veff(x), (3)

where kρ =
√

k2
x + k2

y , and the effective potential Veff(x),
as we show below, includes the influence of trap, direct,

1Assuming a cylindrically symmetric trap to make HF calculations
feasible, with (Nρ,Nz) grid points in (radial, axial) directions (both
momentum and spatial directions for HF and just spatial directions
for HLF), for HF calculations the slow step is calculating 	E(x,k),
which is O[(NρNz)3], and for HLF the slow step is calculating δ(x),
which is O(NρNz). The example times given are for fixed μ with
Nρ = Nz = 100.
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and exchange interactions. We have also introduced local
momentum distortion fields κρ(x) and κz(x), which describe
a spatially varying anisotropy of the momentum distribution
with respect to the z axis (i.e., direction of dipole polarization).
Because the momentum distortion determines the anisotropy
of the pair correlation function [8], these fields parametrize
the exchange interaction within the HLF theory. We note that
the cylindrical symmetry of the DDI (1) allows us to make the
decomposition into κρ(x) and κz(x) fields, irrespective of the
trap geometry.

Using the trial dispersion the position density is given by

n(x) =
∫

dk
(2π )3

W (x,k) = ζ
η

3/2(eβ[μ−Veff (x)])

λ3
dB(x)

, (4)

where λdB(x) ≡
√

2πβh̄2/m∗(x) is the thermal de Broglie
wavelength with spatially dependent effective mass m∗(x) =
m/[κρ(x)2κz(x)]1/3, and ζ η

ν (z) = ∑∞
k=1 ηk−1zk/kν is the poly-

logarithm function.
By applying a variational principle to the free energy, we

derive the equations for the local momentum distortion fields
and the effective potential which define the HLF theory. The
exact equilibrium (grand) free energy �ex satisfies [17]

�ex � �HLF ≡ �0 − E0 + 〈Ĥ 〉0, (5)

where �HLF is the HLF free energy and

�0 =
∫

dx dk
β(2π )3

η ln(1 − ηeβ[μ−ε(x,k)]) = −
∫

dx
2

3
K(x),

(6)

E0 =
∫

dx dk
(2π )3

ε(x,k)W (x,k), (7)

=
∫

dx[K(x) + Veff(x)n(x)], (8)

are the free energy and single-particle energy, respectively,
with

K(x) ≡ 3

2

kBT

λ3
dB(x)

ζ
η

5/2(eβ[μ−Veff (x)]). (9)

The quantity 〈Ĥ 〉0 = EK + EV + EC + ED + EE is the HLF
expectation of the Hamiltonian [6,7] with

EK =
∫

dx dk
(2π )3

h̄2k2

2m
W (x,k), (10)

EV =
∫

dx Utr(x)n(x), (11)

EC = g

∫
dx n2(x), (12)

ED = 1

2

∫
dx 	D(x)n(x), (13)

EE = η

2

∫
dx dk
(2π )3

	E(x,k)W (x,k). (14)

The contributions to 〈Ĥ 〉0 are the kinetic energy (EK ), the
trap energy (EV ), the combined direct and exchange contact
interaction term (EC), the direct dipolar term (ED), with
	D(x) = ∫

dx′ Udd(x − x′)n(x′), and the dipolar exchange

interaction (EE), where

	E(x,k) =
∫

dk′

(2π )3
Ũdd(k − k′)W (x,k′), (15)

with Ũdd(k) = Cdd(cos2 θk − 1
3 ) the Fourier transform of

Udd(r). The expressions for the interaction terms, (12)–(14),
are obtained using HF factorization to decompose second-
order correlation functions into products of single-particle
correlation functions [17], which can be expressed in terms of
the Wigner function. Evaluating the above expressions within
the HLF ansatz yields

〈Ĥ 〉0 =
∫

dx
{[

2

3κρ(x)
+ 1

3κz(x)

]
K(x) (16a)

+
[
Utr(x) + gn(x) + 1

2
	D(x) + η

2
	E(x)

]
n(x)

}
,

(16b)

with the local exchange term 	E(x) obtained from

	E(x)n(x) =
∫

dk
(2π )3

	E(x,k)W (x,k). (17)

In addition to being local in position space, 	E(x) has the
simple analytic form

	E(x) ≡ CddJ [δ(x)]n(x), (18)

where δ(x) ≡ κz(x)/κρ(x) − 1 is the relative distortion of the
momentum distribution and2

J (u) = [
√

1 + u (sinh−1 √
u)/

√
u − 1]/u − 1

3 (19)

is a monotonically decreasing function of u with J (0) = 0.
Result (18) shows that the effective exchange potential depends
on the density and is only nonzero when the local momentum
distribution is distorted from spherical symmetry [taking
δ(x) = 0, 	E(x) and EE are zero and HLF reduces to Hartree
theory]. The exchange potential appears with a prefactor of
η in Eq. (16b) and we find that δ(x) > 0 for bosons and
δ(x) < 0 for fermions so that EE is always negative. The
local form of exchange (18) we have arrived at is the central
result that allows us to formulate a tractable and flexible
theory. It is worth pausing to briefly compare to the HF
treatment in which the full Wigner function needs to be
evaluated and then convolved with the interaction potential
to obtain the exchange potential (15) (e.g., see Refs. [6,7]). In
contrast, HLF theory does not require evaluating the Wigner
function or convolving to obtain the exchange potential, yet
contains the momentum dependence of the exchange term
parametrized by our two position-dependent distortion fields
{κρ(x),κz(x)} [or equivalently {m∗(x),δ(x)}, related by κρ(x) =
[1 + δ(x)]−1/3m/m∗(x) and κz(x) = [1 + δ(x)]2/3m/m∗(x)].

HLF equations. By requiring that �HLF (5) is stationary
with respect to arbitrary variations of Veff(x), κρ(x) and κz(x),

2We note that (sinh−1 √
u)/

√
u is real for u � −1, that our J (u) =

I [(1 + u)1/3]/6 where I is given in Ref. [18], and that J (u) is easily
differentiated for use in (22) (see Ref. [8]).
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we find

Veff(x) = Utr(x) + 2gn(x) + 	D(x) + η	E(x), (20)

m

m∗(x)
= 1 + 2

3δ(x)

[1 + δ(x)]2/3
, (21)

δ(x) = −9ηCdd

4

n2(x)

K(x)

[
1 + 2

3
δ(x)

]
[1 + δ(x)]J ′[δ(x)]. (22)

Equation (20) for the effective potential includes the local
exchange potential. The relative momentum distortion field
δ(x) is determined by solving the transcendental Eq. (22),
and from this the effective mass is immediately given using
Eq. (21). We note that Eq. (21) ensures that the local kinetic
energy is K(x) [i.e., the prefactor of K(x) in Eq. (16a) is unity].

Equations (20)–(22), in conjunction with Eqs. (4) and (9),
form the core set of equations of our theory that must be
solved self-consistently. The direct potential 	D(x) can be
efficiently computed using the convolution theorem. We note
that a number of accurate and efficient techniques for doing
this have been developed for the purpose of solving the Gross-
Pitaevskii equation with DDIs (e.g., see Ref. [19]).

HGF equations. We can develop a simplified version of
HLF by setting a single global distortion, implemented by
ignoring the x dependence of the momentum distortion fields.
Minimizing the free energy we find Eqs. (18), (20), and (21)
(without position dependence of δ or m∗) and

δ = −9ηCdd

4

∫
dx n2(x)∫
dx K(x)

(
1 + 2

3
δ

)
(1 + δ)J ′(δ), (23)

which we refer to as the Hartree global-Fock (HGF) theory.
The HGF theory captures the average exchange effects, and
thus provides a good description of quantities such as the po-
sition and momentum distributions. For many predictions the
HGF theory will be inaccurate because the relevant properties
are determined by local properties, e.g., mechanical stability
is determined by the densest part of the gas near trap center,
where local exchange effects are largest and drive the collapse
to occur at lower dipole strengths. Similar considerations will
be important in predicting phase transitions. HLF is just as
easy to implement as HGF and calculation times are similar,
with HGF approximately twice as fast as HLF calculations.

Results. We validate the HLF theory by comparison to HF
and Hartree calculations for a system in the harmonic trap
Utr(x) = 1

2mω2
ρ(x2 + y2 + λ2z2), with λ = ωz/ωρ . The HF

and Hartree theories are detailed in Refs. [7,8]. To simplify
our presentation we only discuss HGF calculations in cases
that help illuminate its differences from HLF.

For given μ and T we find that the HLF free energy is above,
but close to, the full HF value, and appreciably lower than the
Hartree value. In Fig. 1 we compare the kinetic and dipolar-
exchange energy (both give important contributions to �) for
Bose and Fermi systems with a fixed mean number of particles
N . For the kinetic energy we find that HF and HLF calculations
are in excellent agreement, and discernibly different to the
Hartree results. This difference, which is both positive and
negative, arises directly from the momentum distortion as well
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FIG. 1. (Color online) Comparison of energies for pure (g = 0)
dipolar theories showing HF (crosses), HLF (solid curves), Hartree
(dotted curves, zero for EE not shown), for aspect ratio λ = 0.1 (blue,
dark gray), 1 (green, light gray), 10 (red, gray). (a) Kinetic energy
EK , (b) dipolar exchange energy EE . Main figures are for fermions
with Dt = 1 and insets are for a Bose gas at T = 1.5T 0

c . Dipole
strength is parametrized in terms of Dt = CddN

1/6/(4πh̄ωa3
ho), where

aho = √
h̄/mω and ω = 3

√
ω2

ρωz, with T 0
c = 3

√
N/ζ (3)h̄ω/kB and

T 0
F = 3

√
6Nh̄ω/kB the ideal gas Bose-Einstein condensation and

Fermi temperature, respectively. Results in the insets terminate at
finite Dt due to approaching instability [20].

as from the self-consistent effects of interactions changing the
chemical potential.3

The exchange energy EE is zero for the Hartree theory
and Fig. 1(b) shows the predictions of HF and HLF theories,
again revealing excellent agreement. In the T → 0 limit of the
Fermi gas4 the direct and exchange contributions are of similar

3At fixed μ and T , the Hartree value for EK is less than HF and
HLF.

4For T → 0 fermions in HLF we use n →
√

2
3π2 {m∗[μ − Veff ]}3/2/h̄3,

and K →
√

2
5π2 (m∗)3/2[μ − Veff ]5/2/h̄3. This limit is difficult to realize

in HF calculations where the sharp Fermi surface in W (x,k) (e.g., see
Ref. [5]) is smeared by the numerical grid resolution, revealing an
additional advantage of HLF.
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FIG. 2. (Color online) Comparison of pure (g = 0) dipolar
theories showing HF (crosses), HLF (solid curves), HGF (dashed
lines), and Hartree (dotted curves) in the radial (blue, dark gray) and
axial (red, gray) directions. (a) δ(x) (Hartree results are not shown,
being all zero) with λ = 1 and Dt = 1 for bosons at T = 1.2T 0

c

(upper curves) and fermions at T = 0.1T 0
F (lower curves). (b) n(x)

and (c) momentum density ñ(k) = ∫
dx

(2π )3 W (x,k) for fermions at

T = 0.02T 0
F with λ = 10 and Dt = 2. The HGF agreement in (b)

and (c) is reasonable and is not shown.

magnitude (i.e., |EE| ≈ |ED|) for spherically symmetric traps
(λ = 1), and |EE| is about an order of magnitude smaller
than |ED| for the anisotropic cases with λ = 10 and 0.1.
This is because when the trap distorts the spatial distribution
away from being nearly spherical the direct interaction (13) is
strongly enhanced, while |EE| remains roughly the same size.

The field δ(x), which is a key element of the HLF theory, is
a measure of a local quadrupolar moment (i.e., distortion) of
the momentum distribution, given by

δ(x) ≡ γkx
(x)

γkz
(x)

− 1, γν(x) ≡
∫

dk
(2π )3

ν2W (x,k), (24)

where {γkx
(x),γkz

(x)} are the local momentum moments. We
can use (24) to evaluate δ(x) from the full HF solutions [recall
δ(x) = 0 in the Hartree theory]. In Fig. 2(a) we show the local
momentum distortion for Bose and Fermi systems. Our results
demonstrate that the momentum distortion varies spatially,
with the largest distortion occurring at trap center (i.e., where
density is highest), and that this effect is accurately captured
by HLF theory. We also show HGF results which demonstrate
that this approach predicts a reasonable average distortion, but
fails to capture its spatial dependence.

Both the Bose and Fermi systems exhibit similar behavior
in their position-space distortion effects, i.e., the density
elongates along the polarization (z) direction to reduce ED .
The momentum space distortion [8] is distinctive: To reduce
EE the Fermi system elongates along the kz direction whereas
the Bose system reduces its kz extent to instead expand in
the radial momentum plane. This behavior is also apparent
in the short-range correlations between particles (e.g., see the
discussion in Ref. [8]) and should be verifiable in current
experiments [21]. Density profiles in position and momentum
space in Figs. 2(b) and 2(c), respectively, show that while
the Hartree position density is in reasonable agreement
with HF and HLF, the Hartree theory fails to capture the
difference between the momentum density in radial and axial
directions.

Conclusion and outlook. In this Rapid Communication we
have introduced a variational ansatz that converts the HF theory
of dipolar Bose and Fermi gases to a local-density-dependent
theory, with negligible error compared to the full HF solutions.
The resulting calculations are practical to undertake with a
dramatic reduction in required computing resources compared
to HF and should support this burgeoning field of dipolar
quantum gases. This approach also provides insight into the
manifestation of exchange effects in the dipolar gas, such as
local and global momentum distortion, that could be verified
in current experiments. In future work we will extend this
approach to superfluid Bose and Fermi gases.
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