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Shifts due to distant neighboring resonances for laser measurements
of 2 3S1-to-2 3PJ transitions of helium
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Quantum-mechanical interference between transitions from the metastable 2 3S1mJ = 0 state to 2 3P1mJ = ±1
and to 2 3P2mJ = ±1 is shown to cause shifts in these resonances, despite the fact that the resonances are
separated by more than 1000 natural widths. The 2 3P1-to-2 3P2 fine-structure interval can be determined from
the difference of these laser transitions, and a comparison between experiment and theory for this interval allows
for precise tests of the quantum-electrodynamic (QED) theory used to calculate the interval. The shifts described
here are large enough to be important for this test of QED and therefore to affect the continuing program
of determining the fine-structure constant from comparison between accurate experimental measurements and
theoretical calculations of the helium 2 3P energy intervals.
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Analytic calculations in simple three- and four-level sys-
tems indicate that distant neighboring resonances can cause
shifts [1] in observed resonances for atoms experiencing a field
of constant amplitude and frequency. Here, distant neighboring
resonance refers to the case in which the nearest resonance is
separated by many natural widths from the main resonance
being considered. These simplified calculations set a scale
for the expected shifts, but are not directly applicable to
more complicated (and more realistic) situations, in which
a larger set of states allows for additional atomic processes
and time-dependent amplitudes are present. In a recent work
[2], the analysis was extended to a multilevel atomic system
and shifts for the atomic helium 2 3P1-to-2 3P2 and 2 3P1-to-
2 3P0 microwave transitions were calculated. The shifts were
calculated for both experiments which use a single pulse of
microwaves and which use the Ramsey technique of separated
oscillatory fields. The shifts found in that work were too
small to be of concern for currently completed microwave
measurements [3,4], but will be of importance for improved
measurements that are presently being performed.

Here we calculate the shifts for laser transitions from
the metastable 2 3S1mJ = 0 state to 2 3P1mJ = ±1 and to
2 3P2mJ = ±1 (see Fig. 1). The 2 3P1-to-2 3P2 fine-structure
interval can be determined from the difference between the
resonant frequencies for these laser transitions. A comparison
between experiment and theory for this 2 3P fine-structure
interval provides an important test of quantum-electrodynamic
(QED) theory.

A comparison between theory and experiment for the larger
2 3P2-to-2 3P0 (or 2 3P1-to-2 3P0) interval of Fig. 1 allows for
a precise determination of α. A similar comparison of the
smaller 2 3P2-to-2 3P1 interval (at a similar absolute accuracy)
is, because of the smaller interval size, not a good candidate for
determining α, but serves instead to provide an independent
test of the theory necessary for the α determination. This
program for determining α has been ongoing for almost 50
years [5], with extensive theoretical [6–12] and experimental
[3,4,13–18] contributions, and a determination of α to better
than a part per billion may soon be possible.
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The shifts found in this work lead to a correction to
a measurement [15] of the 2 3P1-to-2 3P2 interval that is
larger than the experimental uncertainty and is significant for
comparisons between experimental results and theory for this
interval and for the ongoing program of determining α from
the helium fine-structure intervals.

For the present work, we follow the experimental technique
used in Ref. [15] and assume that the metastable 2 3S1mJ = 0
state (denoted |1〉 in Fig. 1) is initially populated (i.e., in terms
of the density matrix, ρ11 = 1) and a 1083 nm circularly
polarized laser with either σ− or σ+ polarization drives
2 3S-to-2 3P transitions. For σ± polarization, the 2 3S1mJ =
0-to-2 3P1mJ = ±1 transition (the solid arrows from |1〉 to
|2〉 in Fig. 1) and the 2 3S1mJ = 0-to-2 3P2mJ = ±1 transition
(the dashed arrows from |1〉 to |3〉) can be driven, and, in
each case (that is, for each of the two circular polarizations),
the energy spacing between the 2 3P1 and 2 3P2 levels can
be determined from the differences between the observed
resonant frequencies.

When the laser is nearly resonant with the |1〉 → |2〉 transi-
tion, there are shifts (that are significant for a 1 kHz accuracy
measurement of this 1.63 MHz natural-width resonance) due
to interference with the distant |1〉 → |3〉 transition, despite the
fact that the transitions are separated by 1400 natural widths.
Similarly, when the laser field that is nearly resonant with
the |1〉 → |3〉 transition, there are shifts due to the distant
|1〉 → |2〉 transition. The purpose of this work is to calculate
these interference shifts.

Figure 2 shows the timing diagram being considered here
for a metastable atom passing through a laser beam. The atom
is assumed to start in |1〉 at a time ti before it enters the laser
beam. The time profile of the laser intensity is Gaussian, with
1/e width TL, which is determined by the speed of the atom and
the waist of the laser beam, and with the maximum intensity I0,
which is determined by the power of the laser beam, the laser
beam waist, and the atom’s trajectory through the laser beam.
The atoms that end up in |0〉 are detected at a later time tf
after the atom has traversed the laser beam and after sufficient
time has passed for the 2 3P excited-state atoms to radiatively
decay back to the 2 3S metastable states.

In the electric-dipole approximation, U (t) = e�r · �E(t)
couples |1〉 to both |2〉 and |3〉. For σ± polarization,
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FIG. 1. (Color online) The n = 2 triplet energy levels of helium.
Population starts in |1〉 and interacts with a circularly polarized
laser field. For σ−, the states on the left (|0〉 to |4〉 in blue) can be
populated. Quantum-mechanical interference between the |1〉 → |2〉
(solid arrow) and |1〉 → |3〉 (dashed arrow) transitions causes shifts in
the measured resonances. Similar transitions with positive mJ result
from σ+, as shown at the right in red. The cycling transition (dotted
arrow) and the allowed radiative decay paths are also shown.

�E(t) = E0g(t)[x̂ cos (ωt + φ) − ŷ cos (ωt + φ ± π/2)]/
√

2,
with g(t) = exp [−2(t − tL)2/TL

2]. We use the rotating-wave
approximation, in which the nonresonant exp (−iωt − iθ )
part of cos (ωt + θ ) is ignored. As shown in Fig. 1, |2〉 and
|3〉 both have rates for radiative decay down to |1〉 and |0〉.
U (t) also couples |0〉 to the 2 3P2mJ = 2 state (|4〉 in Fig. 1).
However, since |4〉 always decays back to |0〉, any atom that
makes it into |0〉 can only cycle between |0〉 and |4〉 and,
by time tf (after sufficient time for radiative decay), will
necessarily be found in |0〉.

The density matrix equations for determining the popula-
tion in |1〉, |2〉, and |3〉 for a laser frequency ω = 2πf that
is nearly in resonance with the |1〉 → |2〉 transition in Fig. 1,
are [1,19]
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2
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2
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2
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3
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FIG. 2. (Color online) Timing for the atom traveling through a
Gaussian laser beam with peak intensity I0. The atom starts in |1〉 of
Fig. 1 at a time ti before the atom enters the laser beam, and the final
population of |0〉 is determined at a time tf after it has left the laser
beam, and after the 2 3P atoms have had time to decay back to the
2 3S states.
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2
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2
(ρ23 + ρ32), (1c)
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3
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2

2
ρ23

−
(

γ3

2
+ i(�2 + ω23)

)
ρ13, (1d)

ρ̇23 = i	∗
3

2
ρ21 − γ23

2
(ρ22 + ρ33) − i	2

2
ρ13

−
(

γ2 + γ3

2
+ iω23

)
ρ23, (1e)

ρ̇33 = i	∗
3

2
ρ31 − i	3

2
ρ13 − γ3ρ33 − γ23

2
(ρ23 + ρ32), (1f)

where 	k = 	k(t) = 1√
2
eE0g(t)eiφ〈1|x ∓ iy|k〉/h̄ are time-

dependent Rabi frequencies, 	∗
k are their complex conjugates,

�2 = ω − ω21 is the amount by which the laser is detuned from
the |1〉 → |2〉 transition, and h̄ω21 and h̄ω23 are the energy
differences shown in Fig. 1. From the ratio of the electric-
dipole matrix elements, 	2 and 	3 are related by 	2 = ±	3

(for σ± polarization). The radiative decay rates γ2, γ3, and
γ23 can be written in terms of the partial decay rates γ2 =
γ2→1 + γ2→0, γ3 = γ3→1 + γ3→0, and γ23 = γ23→1 + γ23→0

where, in the electric-dipole approximation,

γi→j = 4e2|ωji |3
3h̄c3

〈i|�r |j 〉 · 〈j |�r |i〉,
(2)

γ23→j = 4e2|ωj2|3
3h̄c3

〈2|�r |j 〉 · 〈j |�r |3〉.

Since ω12 	 ω23 (as shown in Fig. 1), γ2 = γ3, and both
are equal to γ = 1/τ , where τ = 97.9 ns. From the electric
dipole matrix elements, the partial rates are γ2→1 = γ3→1 =
γ2→0 = γ3→0 = γ /2, γ23→1 = ±γ /2, and γ23→0 = ∓γ /2 (for
σ± polarization). The nonzero γ23→1 term in Eq. (1) results
directly from quantum mechanical interference of the radiative
decay and leads to the shifts discussed in this work. The
opposite signs of γ23→0 and γ23→1 lead to γ23 = 0.

Since the population starts in |1〉 and the |1〉 → |3〉
transition is far out of resonance, very little population is
excited to |3〉. As in Ref. [1], we introduce a small ordering
parameter η and, in terms of this parameter, ρ33 � η2. For this
to occur, it is necessary that γ2→1, γ2→0, γ3→1, γ3→0, |γ23→1|,
|γ23→0|, |�2|, |	2|, |	3|, and 2π/T all be smaller (by one
order of η) than ω23. Here, γ2→1 = γ2→0 = γ3→1 = γ3→0 =
|γ23→1| = |γ23→0| = γ /2 = 5.11 MHz, and |	2| = |	3| and
2π/T must be �γ to avoid substantial broadening of the
observed resonance. Furthermore, as the laser frequency is
tuned across the resonance, |�2| also takes on values � the
width of the resonance (i.e., also of order γ ). All of these
values are a factor of >1000 less than ω23 = 2π (2291 MHz),
which justifies the use of the ordering parameter η. The density
matrix elements ρ13, ρ31, ρ23, and ρ32 will also be an order of
η smaller than the dominant elements: ρ11, ρ12, ρ21, and ρ22.

Taking linear combinations of Eqs. 1(a) through 1(e) (and
their complex conjugates) allows one to eliminate (to order
η) the ρ13, ρ31, ρ23, and ρ32 terms in Eqs. 1(a) through 1(c),
yielding differential equations that include all corrections up
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to first order in η [1]:

ρ̇11 =
(
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4ω23
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2
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2 (t)

2
ρ21 − i	2 (t)

2
ρ12 − γρ22, (3)

where

�′
2 (t) = �2 + |	3 (t) |2

4ω23
. (4)

The difference between �′
2 and �2 leads to a shift in the

resonance, but this shift is just the usual ac Stark shift for the
interval, and is too small to be of concern for the intensities I0

considered here. Equation (3) is valid for both σ+ and σ−, with
the sign differences from 	3 = ±	2 and from γ23→1 = ±γ /2
having canceled out. The ω23

−1 terms result from the nonzero
value of γ23→1, and these interference terms lead to a shift in
the resonance line center, which, unlike the ac Stark shift, does
not extrapolate to zero as the laser intensity goes to zero.

To obtain the final population in |0〉, one can numerically
integrate Eq. (3) from ti to tf . Since all of the population
has radiatively decayed to either |0〉 or |1〉 by time tf , the
detection signal ρ00(tf ) is given by 1 − ρ11(tf ). The numerical
integration is repeated for a set of laser frequencies near the
resonance, leading to a calculated resonance line shape, an
example of which is shown in Fig. 3(a). The difference between
this line shape and the line shape that would result if γ23→1 =
0 is shown in Fig. 3(c). This difference is due to quantum-
mechanical interference with the distant |1〉 → |3〉 resonance
and, because it is not symmetric about the line center, it results
in a shift in the observed resonance.

A similar derivation can be made for frequencies ω = 2πf

that are nearly in resonance with the |1〉 → |3〉 transition,
leading to a set of equations similar to Eq. (3), but with |2〉 and
|3〉 interchanged. Since ω32 = −ω23 and |	2|2 = |	3|2, the
interference shifts for the |1〉 → |2〉 and |1〉 → |3〉 resonances
are equal in magnitude and opposite in sign, as can be seen in
Fig. 3(d). The effect on the deduced 2 3P1-to-2 3P2 interval is
therefore twice the shift for each of the laser transitions.
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FIG. 3. (Color online) Line shapes of the |1〉 → |2〉 (a) and |1〉 →
|3〉 (b) resonances of Fig. 1 obtained from numerical integration
of Eq. (3) for the laser beam of Fig. 2 with TL = 4 μs and I0 =
10 μW/cm2. The differences, (c) and (d), between these line shapes
and those that would result if γ23→1 = 0 are due to the interference
effects calculated in this work.
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FIG. 4. (Color online) Contour plot of the shift (in kHz) for the
2 3P1-to-2 3P2 interval. The shift is in addition to a small ac shift of
Eq. (4) and results from quantum-mechanical interference. The region
below the dashed line has a FWHM of the resonance <1.8 MHz.

The shifts of the resonances can be obtained from the
numerical calculation of the signal S(f ) using

shift = 1

2
[S (�f ) − S (−�f )]

/∣∣∣∣dS

df

∣∣∣∣
�f

, (5)

where ±�f are symmetric points around the line center that
are near half maximum. Our calculated shifts depend on I0

and TL of Fig. 2, and a contour plot of the shifts versus these
two variables is shown in Fig. 4. Also shown on this plot is
the region of interest for precision measurements in which the
full width at half maximum (FWHM) of the laser resonances
is less than 1.8 MHz (1.1 times the 1.63 MHz natural width).
The measurement of Ref. [15] occurs within this region, as
can be seen from the linewidth shown in that work. Note that
the shift within this region is approximately constant.

In Ref. [15], the line center was determined using Eq. (5),
with most of the data taken at two symmetric half maximum
points. Some data was taken at other choices of �f (that is,
at two symmetric points that are not at half maximum), and
since the quantum-mechanical interference causes an effect
that depends on frequency [Figs. 3(c) and 3(d)], the shift
observed [Eq. (5)] will depend on the choice of �f . The
measured values of the fine-structure interval as a function of
�f are shown in Fig. 5(a). After each data point is corrected for
the interference effect calculated here, the intervals determined
using different �f become consistent with each other. Of note
is the point at �f = 1.5 MHz, which had a 3.2σ discrepancy
without the interference correction, which is larger at this �f

due to the small dS/df of Eq. (5). The final corrected value for
the interval [dashed line of Fig. 5(a)] is 2 291 177.1 ± 1.0 kHz,
which includes an average correction of 1.2 ± 0.1 kHz (cf.
Fig. 4).

Figure 5(b) compares this corrected value to other ex-
periments and theory. The other laser measurement of this
interval [17] may also be subject to an interference effect, but
that experiment uses a more complicated saturated absorption
technique, which involves two laser beams in an rf discharge
cell, and which also involves a substantial magnetic field. The
analysis of the interference shift for that experiment is beyond
the scope of the present work. The most accurate determination
of the interval comes from a microwave separated-oscillatory-
field measurement [4]. That measurement has smaller
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FIG. 5. (Color online) (a) Fine-structure interval inferred from
signals at ±�f . The diamonds and uncertainties are from Ref. [15],
and the solid line is the final result presented in that work. The
squares are corrected for interference shifts calculated in this work.
(b) A comparison of measurements and theory for the 2 3P1-to-2 3P2

interval. The measurement of Ref. [15] is shown along with the
corrected result from this work. The measurement of Ref. [17] may
also be subject to interference corrections, but that calculation is
beyond the scope of this work. The microwave measurement of
Ref. [4] has only a small interference correction [2]. The QED
theory [12] is also shown.

interference shifts (less than 10% of its uncertainty [2])
because the nearest-neighboring resonance is 27.3 GHz away

(compared to 2.3 GHz for the resonances studied here) and be-
cause the Ramsey method of separated oscillatory fields leads
to reduced interference shifts. The corrected value of Ref. [15]
and the microwave measurement [4] are in good agreement
with each other and with the precise QED calculations
of Ref. [12].

In summary, we have calculated corrections due to quantum
mechanical interference from distant neighboring resonances
for laser transitions for the 2 3S-to-2 3P transitions of atomic
helium. The calculated corrections are larger than the experi-
mental uncertainties for the measurements, and their inclusion
is a necessary step towards the program of obtaining a
part-per-billion determination of α from helium 2 3P fine
structure.

Similar interference shifts can also be expected to be signif-
icant for laser transitions in other precision measurements, and
calculations similar to those presented here should be applied
to these other measurements to ensure that this systematic
correction is properly applied.

This work is supported by NSERC, CRC, ORF, CFI, and
NIST, with computations done using SHARCNET.
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