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Quantifying the limits of unidirectional ultrashort optical pulse propagation
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In this paper we explore the limits of the unidirectional pulse propagation equation (UPPE) in general nonlinear
media. Our main aim is to investigate under which physical conditions two-way propagation becomes significant,
and leads to a breakdown of the unidirectional approximation. Using a spectral constraint appearing in the
derivation of UPPE we derive a first correction which renormalizes the forward-propagating amplitude. This
correction is the main result of our paper and we investigate its effects through numerical simulations.
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I. INTRODUCTION

In numerical simulation of ultrashort, high-power optical
pulses propagating in dispersive nonlinear media, it is not
feasible to solve Maxwell equations directly. Instead, they are
replaced by a pulse-propagation equation which is designed to
take advantage of the well-defined direction of propagation in
a laser pulse. There is a number of different pulse evolution
equations published in the literature (see, e.g., Ref. [1],
and references therein), and they differ from each other
in the specific assumptions and approximations adopted in
each derivation. However, there is one approximation which
pertains to all equations which treat the optical field as
propagating in one direction. It is the assumption that the
nonlinear response of the medium, say polarization PNL,
can be approximated by the response calculated from the
forward-propagating portion of the optical field, i.e.,

PNL(Etotal) ≈ PNL(Eforward). (1)

It is obvious that every method which does not account for the
electromagnetic field in its entirety, but only models the portion
which propagates “forward,” is relying on this assumption
whether it is stated explicitly or not. Replacement (1) is what
we call the unidirectional approximation. The first derivation to
invoke this explicitly was the unidirectional pulse propagation
equation (UPPE) [2,3]. In fact, (1) is the only approximation
necessary to reduce Maxwell equations to a single UPPE.

Relatively little attention was devoted to clarifying when
it is actually possible to assume that a given situation can
be treated within the unidirectional approximation. Notable
exceptions are the works by Kinsler [4] and Baruch, Fibich, and
Tsynkov [5]. Baruch et al. demonstrated that nonparaxiality
and backscattering can arrest a self-focusing collapse in the
monochromatic Helmholtz equation. Kinsler explored the lim-
its to unidirectional propagation in a one-dimensional model,
and showed that the existence of the backward-propagating
wave “renormalizes” the nonlinear response in the forward-
going wave component. Applicability of the unidirectional
approximation was shown to depend on the nonlinearity and
field strengths [4].

So far there is no universally applicable tool to assess the
degree to which unidirectionality is satisfied in practically
important situations involving ultrashort pulses which undergo
complex spatiotemporal reshaping. Various pulse-propagation

equations have been used for years with a silent assumption
that the backward-propagating field is negligible. While we
may base this belief on the lack of experimental evidence to the
contrary, the assumption is in fact stronger than one may think.
It is because the possibility alone of the backward-propagating
wave gives rise to a correction of the forward-going wave. This
correction, while formally belonging to the backward wave is
dragged together with the forward wave [6]. One could say
that it behaves as a forced oscillator driven far off-resonance:
it will obey, and follow the driving frequency (which is the
analog of the forward wave number in an optical pulse) but
it will do so with a correspondingly small amplitude. Thus,
using one-way pulse-propagation equations in reality requires
one to assume that not only the backward-scattered field can
be neglected, but also that this renormalization of the forward
amplitude is small.

The main result of this paper is a derivation of a correction
to the unidirectional pulse evolution equations, which origi-
nates in the existence of backward-propagating modes, and
renormalizes the forward-propagating wave amplitude. We
also describe how this modification can be straightforwardly
adopted in an arbitrary solver. Our results represent a practical
tool to answer the long-standing question of applicability of
the unidirectional approximation in arbitrary situations. We
show that, as expected, the unidirectional approximation is
very accurate for naturally occurring femtosecond filaments
in gases [7]. In condensed media, the interaction with the
backward-propagating waves gives rise to small modifications
of the forward-propagated wave forms, but these are still too
weak to be of any concern when comparing simulation results
with experiments. However, the explicit form of the correction
makes it evident that it becomes important for sufficiently long
wavelengths. For example, it suggests that the unidirectional
approximation may not be applicable at all in the terahertz
regime.

II. THE MODIFIED UPPE PROPAGATION MODEL

Our basic model equations in this paper are the Maxwell
equation including a general linear dispersion and an additional
nonlinear polarization response. We introduce the usual beam
propagation geometry with the z axis pointing in the propaga-
tion direction. Having in mind applications to filamentation,
where spot sizes are much larger than wavelength, we will

035801-11050-2947/2012/86(3)/035801(4) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.035801


BRIEF REPORTS PHYSICAL REVIEW A 86, 035801 (2012)

work with the notationally simpler scalar case. Nevertheless,
the main result can be straightforwardly generalized to the full
vectorial case. We start from the wave equation

∂zzE = −∇2
⊥E + 1

c2
∂tt (1 + L)E + μ0∂ttPNL (2)

where we have introduced the dispersion operator L =∫ t

−∞ dt ′ χ (t − t ′). We will now rewrite this system in the spec-
tral domain. From this formulation the UPPE approximation
is easily described and corrections to the UPPE can be derived
in a natural way. The key step here is to find all the modes of
the linearized system

∂zzE = −∇2
⊥E + 1

c2
∂tt (1 + L)E.

This is easy to do since the system is homogeneous in space and
time. We find the two types of modes e±iβ(ω,ξ )zei(ξ ·x−ωt), where
x = (x,y), β(ω,ξ )=

√
ω2n2(ω)/c2 − ξ 2 is the propagation

constant, and where ξ is the transverse wave number. For
positive frequencies ω > 0, these are left and right traveling
modes, respectively.

Because of completeness, any function and, in particular,
any solution to the wave equation (2), can be expanded in terms
of the modes of the linearized system

E(z,t,x) = 1

8π3

∫
dω dξ{A+(z,ω,ξ )eiβ(ω,ξ )z

+A−(z,ω,ξ )e−iβ(ω,ξ )z}ei(ξ ·x−ωt).

In order to ensure reality of the electric field we must
pose the condition A−(z,ω,ξ ) = A∗

+(z, − ω, − ξ ). In other
words, spectral amplitudes at ω < 0 are determined by those
at positive frequencies. We can thus restrict the ω integration
above to ω > 0, and take the real part of the integral, which
then represents what is called the analytic signal of the electric
field. Next, it is important to realize that by allowing A± to vary
with z, we represent a single function as a combination of two
functions. Also note that the variation of A± could be so fast
that it completely overrides the exponential factors e±iβ(ω,ξ )z

that accompany them. In effect, we have introduced artificial
degrees of freedom and doubled the number of variables
needed to represent the electric field. We take advantage of
this redundancy to simplify our equations.

We are now going to insert the mode expansion into the
wave equation (2), and we can simplify resulting expressions
considerably by imposing the constraint

∂zA+eiβz + ∂zA−e−iβz = 0. (3)

Note that this relation arises automatically in the original
derivation of UPPE equations [3]. Here we have chosen a
different approach to emphasize that our result is not specific
to the UPPE, but applies to all pulse-propagation solvers which
neglect backward-propagating waves. This relation is also
completely analogous to the variation-of-constants method
for ODEs: Indeed, observe that because of the constraints (3)
the expressions for ∂zzE contain only first derivatives of the
amplitudes with respect to z. Inserting this expression for E

and its derivative into the wave equation (2) gives after some

manipulations the system

∂zA+(z,ω,ξ ) = +e−iβz

2iβ
N̂L(z,ω,ξ ), (4)

∂zA−(z,ω,ξ ) = −e+iβz

2iβ
N̂L

∗
(z,−ω,−ξ ) (5)

for the spectral amplitudes (of course, this is nothing but a
pair of coupled UPPEs [3]). In these equations, because of
the condition A−(z,ω,ξ ) = A∗

+(z, − ω, − ξ ), we can restrict
to ω > 0. The nonlinear term is defined by NL = μ0∂ttPNL,
and the hat denotes the Fourier transform.

The unidirectional approximation consists in assuming that
the positive frequency content of the amplitude A− is exactly
zero at z = z0 corresponding to the assumption that there are
only right traveling waves at z = z0 and any positive frequency
spectral content of A− that might be generated during the
numerical propagation of the amplitudes is disregarded.
The success of the unidirectional approximation depends on
whether or not the positive frequency content in A− that
is generated by the actual system is small compared to the
positive frequency content of A+. In order to get a handle on
this we can use the constraint (3). Integrating between two
points w < z we get

A−(z,ω,ξ ) = A−(w,ω,ξ ) −
∫ z

w

dz′ ∂zA+(z′,ω,ξ )e2iβz′
. (6)

Unless the amplitude ∂zA+(z,ω,ξ ) varies on the same scale as
the phase factor e2iβz, we can integrate (6) once by parts and
truncate the remainder. This gives the expression

A−(z,ω,ξ ) − A−(w,ω,ξ )

= 1

2iβ
∂zA+(w,ω,ξ )e2iβw − 1

2iβ
∂zA+(z,ω,ξ )e2iβz,

which is correct to O( 1
β2 ). This identity holds for all z and

w and is in fact an equation for the unknown amplitude
A−(z,ω,ξ ). The following expression solves this equation:

A−(z,ω,ξ ) = − 1

2iβ
∂zA+(z,ω,ξ )e2iβz. (7)

Thus, the corrected UPPE will have the same form as before,
namely (to keep notation simple, we use the same generic name
for the spectral amplitudes A+ of approximate solutions),

∂zA+(z,ω,ξ ) = e−iβz

2iβ
N̂L(z,ω,ξ ),

but the nonlinear terms should be evaluated using the following
approximation to the mode expansion:

E(z,t,x) = 1

8π3

∫
dω dξ

{
A+ − 1

2iβ
∂zA+

}
eiβzei(ξ ·x−ωt).

(8)

∂zA+ in this formula is actually the right-hand side of the
conventional UPPE and thus the very quantity which a pulse-
propagation solver requires to advance a solution along the z

axis. So, as written, this correction is of little use because it is
implicit. Fortunately, the following iterative procedure works
well: As a first step we evaluate ∂zA+ as usual. Then we correct
the spectral amplitude as in Eq. (8), A+ → A+ + i/2β∂zA+,
and from it we calculate a corrected value of ∂zA+. This is
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repeated until convergence is achieved, which usually happens
after only one or two iterations. It is obvious that this method
can be applied in any pulse-propagation solver.

It is evident from the mode expansion for the electric field
(8) that at this level of approximation E has no actual left
propagation component. The fact that the approximation (7)
to the spectral amplitude A− is nonzero is not a contradiction
to this because the interpretation of A− as the amplitude of left
propagating waves actually depends on an assumption that A−
vary slowly on the scale 1/iβ and this is not the case here.

III. DISCUSSION

In this section we discuss the magnitude of the correction
to unidirectionality. First, note that if we require that the
correction is small, i.e., |A+(z,ω,ξ )| 	 |∂zA+(z,ω,ξ )| /2β,
we ask for the spectral amplitude to change little on the length
scale of the wavelength (for all relevant ω!). This condition
is also known as the slowly evolving wave approximation
(SEWA) [8]. We thus see that our correction can only become
significant once SEWA starts to break, which in turn means
that pulse reshaping occurs over very short distances.

One can apply the above inequality to a naturally occurring
femtosecond filament in a gaseous medium to see that this
correction is most likely unimportant. Indeed, we know, both
from simulations and experiments, that a typical longitudinal
propagation scale for nonlinear reshaping of the optical pulse
is centimeters and longer. Compared to the micron-scale
wavelength content of the pulse, this implies rather slow
evolution, and the relative strength of the correction is typically
of the order of 10−4. To confirm this, we have compared
simulations with and without the correction in several typical
single-filamentation scenarios in air. Not surprisingly, we
found that the correction is virtually undetectable on the
background of the simulated solution.

The situation changes in condensed media, where the
characteristic length over which the self-focusing collapse
occurs is only hundreds of microns or less. Then the relative
correction strength can be of the order of 10−2. In a favorable
situation (i.e., combination of power and focusing geometry),
the resulting deviations can accumulate during the propagation
and result in a detectable effect. This is illustrated next.

Long wavelengths have attracted more and more interest
recently (see, e.g., Ref. [9]), and it motivates our illustrative
example. We have simulated a 35-fs duration pulse with a
wavelength of 3 μm, collimated at the facet of an yttrium
aluminum garnet sample. The latter is characterized in our
model by the nonlinear index n2 = 7.0 × 10−20 W/m2 [10],
and by a multiphoton ionization rate calculated from a Keldysh
formula for condensed media given in Ref. [11]. The chromatic
dispersion was based on the refractive index data for YAG
obtained from Ref. [12].

It turns out that the iterative procedure to evaluate the
corrected nonlinear response of the medium converges almost
instantly. In the data presented here, we have only used a
single iteration—on the scale of Fig. 1, the differences between
results obtained with different numbers of iterations are not
discernible.

A comparison of results obtained with uncorrected and
corrected propagation is depicted in Fig. 1. It shows filament
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FIG. 1. (Color online) Corrected vs uncorrected pulse-
propagation simulations. On-axis intensity evolution is shown for
filaments created by a 3-μm wavelength, 35-fs duration pulse in
YAG. Upper panel: Beam collimated to 50 μm exhibits correction-
induced shift of the collapse-onset distance. Lower panel: Intensity
modification for the initial beam size of 25 μm.

formation in a YAG sample with the excitation pulse energy
just above the threshold. The correction shows up clearly,
and manifests itself as a shift of the filament onset. In
other instances, we have seen intensity modifications of up
to 5% at this wavelength (an example shown in the lower
panel). However, this is still small for all practical purposes;
because a truly quantitative comparison with experiments is
not yet possible, corrections at this level are difficult to verify
experimentally.

We thus come to see that in the filamentation regimes
studied to date, it is not necessary to include any corrections
beyond the unidirectional approximation. While this is indeed
an expected result, we have found that deviations due to the
correction to unidirectional propagation increase from utterly
negligible at short wavelengths, to clearly observable at mid-
infrared wavelengths. This suggests that it may be necessary
to account for these effects in future experiments with even
longer-wavelength pulses. Moreover, it is evident from the
formula in Eq. (8) that the correction to unidirectionality
becomes significant at terahertz frequencies generated in the
femtosecond filaments: there, the length scale of the second
term in Eq. (8) is governed by the length of the filament onset
which in turn is controlled by the infrared driver pulse. Thus,
the rate of change of the spectral amplitude at terahertz fre-
quency may become comparable to its wavelength. However,
it is known that the terahertz radiation is generated in all
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directions from a filament, and this means that most likely the
whole concept of the unidirectional propagation model is not
applicable.

IV. SUMMARY

We have analyzed the mutual interaction between forward-
and backward-propagating wave components in optical pulses
propagating through nonlinear dispersive media. We have
identified a contribution to the forward-propagating amplitude
which originates in the backward-propagating field modes, but
which is dragged in the direction of the main pulse. An approx-
imate local condition was found, which makes it possible to
implement a correction to unidirectional propagation regime
in any pulse-propagation solver. It is expressed as a correction
to the field that enters in the evaluation of the nonlinear
response. We have proposed and tested an iterative scheme to
evaluate the latter, and implemented the method in our UPPE
solver. Computer simulations confirmed that in the normal
filamentation regimes, the corrections to unidirectionality are

not important. However, they become observable in principle
at the wavelength of a few microns, and we expect that they
become progressively stronger at yet longer wavelengths. In
summary, after years that the nonlinear optics community used
various one-way propagation equations in the computer-aided
explorations of filamentation and other highly nonlinear ef-
fects, we have devised a straightforward, practically applicable
method to evaluate the accuracy of the approximation that
underpins all these numerical pulse-propagation experiments.
Our method makes it possible to use unidirectional techniques
even in situations when coupling to back-propagating modes
occurs, and this approach is applicable irrespectively of details
of a particular pulse-propagation solver.
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