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Optimality for indecomposable entanglement witnesses
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We examine various notions related to the optimality for entanglement witnesses arising from Choi-type
positive linear maps. We found examples of optimal entanglement witnesses which are nondecomposable but are
not “nondecomposable optimal entanglement witnesses” in the sense of Lewenstein, Kraus, Cirac, and Horodecki
[Phys. Rev. A 62, 052310 (2000)]. We suggest using the terms PPTES witness and optimal PPTES witness in
place of “nondecomposable entanglement witness” and “nondecomposable optimal entanglement witnesses” in
order to avoid possible confusion. Here, PPTES refers entangled states with positive partial transposes. We also
found examples of nonextremal optimal entanglement witnesses which are indecomposable.
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I. INTRODUCTION

Quantum entanglement is now considered the main key
resource for applications to quantum information and quantum
computation theory. One of the major research topics in
the theory of entanglement is, of course, how to distinguish
entanglement from separable states. For this purpose, positive
linear maps are known to be the most complete tools [1]
among various criteria. This criterion for separability using
positive maps is equivalent to the duality theory [2] between the
positivity of linear maps and the separability of block matrices,
through the Jamiołkowski-Choi isomorphism [3,4]. In this
sense, we need a positive linear map to detect entanglement.
This is formulated as the notion of an entanglement witness [5]
that is just a positive linear map which is not completely
positive under the isomorphism. We refer to Refs. [6,7] for
systematic approaches to the duality using the Jamiołkowski-
Choi isomorphism.

An entanglement witness which detects a maximal set of en-
tanglement is said to be optimal, as was introduced in Ref. [8].
The notion of optimality may be explained in terms of the facial
structures of the convex coneP1 consisting of all positive linear
maps between matrix algebras. In fact, it was shown [9] that
a positive map φ is an optimal entanglement witness if and
only if the smallest face of P1 containing φ has no completely
positive linear map. See also Ref. [10]. Therefore, the most
natural candidates for optimal entanglement witnesses are
extremal positive maps which are not completely positive.
In spite of its importance, the facial structure of cone P1 is
very far from being understood even in the low-dimensional
cases. For the case where both the domain and the range
have the 2 × 2 matrix algebra, all extreme points of the
convex set consisting of unital positive maps were found in
the 1960s [11]. All the facial structures of this convex set
are completely understood [12]. See also Ref. [13]. Another
sufficient condition for optimality is the notion of the spanning
property, as was introduced in Ref. [8]. This is very useful
because the spanning property is much easier to verify than
the optimality itself. It turns out [14] that a positive map φ has
the spanning property if and only if the smallest exposed face
of cone P1 containing φ has no completely positive map.

Recall that a convex subset F of a convex set C is said to be
a face if the following condition holds: If a convex combination

of two points x,y ∈ C belongs to F , then x and y themselves
belong to F . A face F of C is said to be an exposed face if
it is the intersection of C and a hyperplane. We will give an
example of a face which is not exposed through the discussion.
See Fig. 1.

For the decomposable case, several necessary and/or
sufficient conditions for optimality are known, and there are
processes to characterize optimal decomposable entanglement
witnesses. See Refs. [9,15,16] for examples. In the case of
indecomposable entanglement witnesses, a condition for opti-
mality has been found recently [17], and examples of optimal
entanglement witnesses without the spanning property were
given. Nevertheless, we still have a few kinds of examples for
optimal entanglement witnesses arising from indecomposable
maps. We note that the Choi-type positive maps are one of
the main resources for indecomposable positive maps. The
primary purpose of this Brief Report is to analyze those
maps between 3 × 3 matrix algebras and examine the relations
between extremeness, spanning property, and optimality.

We note that a positive map φ detects entanglement with
positive partial transposes if and only if it is indecomposable.
An indecomposable positive map φ is said to be a nondecom-
posable optimal entanglement witness (nd-OEW) in Ref. [8] if
it detects a maximal set of PPTES. But it is not clear at all that
an optimal entanglement witness which is nondecomposable is
really nd-OEW in the sense of Ref. [8]. We found that this is not
the case. In order to avoid such confusion, we use the following
terminology in this Brief Report. A positive linear map φ is
said (i) to be co-optimal if the smallest face of P1 containing φ

has no completely copositive map, (ii) to be bi-optimal if it is
optimal and co-optimal, (iii) to have the cospanning property if
the smallest exposed face ofP1 containing φ has no completely
copositive map, and (iv) to have the bispanning property if it
has both the spanning and cospanning properties. It is clear
that φ is co-optimal (has the cospanning property) if and only
if the composition φ ◦ t with the transpose map t is optimal
(has the spanning property). If we use the Jamiołkowski-Choi
isomorphism, then a self-adjoint block matrix W is co-optimal
(has the co-spanning property) if and only if the partial
transpose W� is optimal (has the spanning property). It is
also clear that φ is bi-optimal (has the bispanning property)
if and only if the smallest face (the smallest exposed face)
of P1 containing φ has no decomposable map. Therefore,
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φ is an nd-OEW in the sense of Ref. [8] if and only if
it is bi-optimal. We note that if φ is bi-optimal then it is
automatically indecomposable. We will present examples of
indecomposable optimal positive linear maps which are not bi-
optimal. Since an optimal decomposable entanglement witness

is completely copositive, it is never co-optimal. Therefore, the
notions of co-optimality and cospanning are useful only for
indecomposable entanglement witnesses.

For nonnegative real numbers a,b, and c, the Choi-type
map is given by

�[a,b,c](X) =
⎛
⎝ ax11 + bx22 + cx33 −x12 −x13

−x21 cx11 + ax22 + bx33 −x23

−x31 −x32 bx11 + cx22 + ax33

⎞
⎠

for X = [xij ] ∈ M3, where M3 denotes the C∗ algebra of all
3 × 3 matrices over the complex field C. Choi [18] showed
that the map �[1,2,2] is a two-positive linear map which
is not completely positive. This is the first known example
to distinguish n-positivities for different n = 2,3, . . . The
map �[1,0,μ] with μ � 1 is also the first example of an
indecomposable positive linear map [19] in the literature,
and the map �[1,0,1] is extremal [20], that is, generates an
extremal ray of the cone P1. Later, it was shown [21] that
this map �[1,0,1] is not the sum of a two-positive map and a
two-copositive map. See also Ref. [22]. The map �[1,0,1]
is usually called the Choi map. The maps �[a,b,c] have
been considered in Ref. [23] to distinguish various notions
of positivity. See also [17,21,24–33] for another variation of
the Choi map. It is known [23] that the map �[a,b,c] is positive
if and only if the condition

a + b + c � 2, 0 � a � 1 =⇒ bc � (1 − a)2 (1)

holds. Note that �[1,0,1] is optimal by the extremeness. It
is also well known that �[1,0,1] does not have the spanning

v 2,0,0

v 1,1,0
v 1,0,1

eabeac

ea

eb
ec v a t , b t , c t

v 0, t, 1 t

et

0

1

2

3

a

0

1

2

3

b

0
1

2
3 c

FIG. 1. Part of the convex body determined by Eq. (1). The
smallest face containing v(1,1,0) is itself, but the smallest exposed
face containing it is eab. The straight lines containing faces ea, eb, ec,
and et meet each other at the point (1,0,0), which is not in the convex
body.

property, as was observed in Ref. [34]. See also Ref. [35]. It is
also known to have the cospanning property [36]. Recently, we
[37] have shown that if 0 < a < 1 and the equalities hold in the
both inequalities in Eq. (1), then �[a,b,c] has the bispanning
property. We note that the Choi matrix C� = ∑2

i,j=0 |i〉〈j | ⊗
�(|i〉〈j |) of the map �[a,b,c] is given by

W [a,b,c] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a · · · −1 · · · −1
· c · · · · · · ·
· · b · · · · · ·
· · · b · · · · ·

−1 · · · a · · · −1
· · · · · c · · ·
· · · · · · c · ·
· · · · · · · b ·

−1 · · · −1 · · · a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2)

In the next section, we examine the above-mentioned prop-
erties for boundary points of the convex body determined by
condition (1), and we discuss the result in the final section.

II. FACIAL STRUCTURES AND OPTIMALITY

Before going further, we note that the six properties,
optimal, co-optimal, bi-optimal, spanning, cospanning, and
bispanning, are properties depending on the faces: If φ1 and
φ2 determine the same smallest face containing them, then
they are interior points of a common face and share each
property because the properties are described in terms of faces.
Therefore, we can say that a face itself has one of six properties
without confusion, and this means that every interior point of
the face satisfies the property. It is also clear that if a face has a
property, then every subface also has the same property. Hence,
if a point φ does not have a property, then every interior point in
the face containing φ does not have the property. Therefore, we
need to clarify the facial structures of the three-dimensional
convex body determined by Eq. (1). It should be noted that
the face of the convex body need not give rise to a real face of
the convex cone P1. Nevertheless, an interior point of a face
of the convex body gives rise to an interior point of the face of
the cone P1 determined by the corresponding map.

First of all, the convex body has the following four
two-dimensional faces: (i) fab = {(a,b,c) : c = 0, a + b �
2, a � 1}, (ii) fac = {(a,b,c) : b = 0, a + c � 2, a � 1},
(iii) fbc = {(a,b,c) : a = 0, bc � 1}, and (iv) fabc =
{(a,b,c) : a + b + c = 2,0 � a � 1 =⇒ bc � (1 − a)2}. We
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note [23] that �[a,b,c] is completely positive if and only if
a � 2, and it is completely copositive if and only if bc � 1.
Therefore, face fabc has the completely positive map �[2,0,0]
and the completely copositive map �[0,1,1], and so fabc is
neither optimal nor co-optimal. It is also easy to examine the
optimality for the first three cases. For example, if a > 2, then
the map �[a,0,0] is written by

�[a,0,0] = �[2,0,0] + (a − 2)D,

where D is the diagonal map which sends [xij ] to the diagonal
matrix with the diagonal entries (x11,x22,x33). Map D is both
completely positive and completely copositive. This means
that the map �[a,0,0] never satisfies optimality and co-
optimality. Therefore, no interior point in the two-dimensional
faces fac and fab ever satisfy the above properties. By the same
argument, this is also the case for face fbc.

We note that the convex body has also the following five
one-dimensional faces which are on the a axis, ab plane, or
ac plane: (i) ea = {(a,0,0) : a � 2}, (ii) eb = {(1,b,0) : b �
1}, (iii) ec = {(1,0,c) : c � 1}, (iv) eab = {(a,b,0) : a + b =
2, 1 � a � 2}, and (v) eac = {(a,0,c) : a + c = 2, 1 � a �
2}. Among them, we have already seen that face ea is neither
optimal nor co-optimal. This is also the case for eb and ec

since it is possible to subtract a map which is both completely
positive and completely copositive. It is also clear that neither
eab nor eac is optimal. In order to find other one-dimensional
faces, we note that the parametrization

(a(t), b(t), c(t)) = 1

1 − t + t2
((1 − t)2, t2, 1), 0 < t < ∞

satisfies the condition

a(t) + b(t) + c(t) = 2, 0 � a(t) � 1,

b(t)c(t) = [1 − a(t)]2,

as was considered in Ref. [37]. For each fixed positive number
t > 0 with t 
= 1, the line segment given by

et = {(1 − s, st, s/t) : t/(t2 − t + 1) � s � 1}
lies on the surface bc = (1 − a)2 for 0 � a < 1 and connects
the point (a(t), b(t), c(t)) to the point (0,t,1/t). This gives us
one-dimensional faces et for each t > 0 with t 
= 1. Note that
�[0,t,1/t] is completely copositive for each t > 0, and so it
is clear that et is not co-optimal.

It remains to list the zero-dimensional faces as follows:
(i) v(2,0,0), v(1,0,1), v(1,1,0), (ii) v(a(t),b(t),c(t)) for t > 0 and t 
= 1,
and (iii) v(0,t,1/t) for t > 0.

So far, we have seen that faces fab, fac, fbc, fabc, ea, eb, and
ec are neither optimal nor co-optimal. Therefore, they have
neither the spanning property nor the cospanning property. We
test the other faces. First of all, we show that et and v(0,t,1/t)

have the spanning properties. To do this, it suffices to consider
the case when (a,b,c) satisfies the condition

0 � a < 1, bc = (1 − a)2, a + b + c > 2. (3)

We recall [14] (see also Ref. [8]) that φ ∈ P1 has the
spanning property if and only if the set

P [φ] := {ξ ⊗ η ∈ Cm ⊗ Cn : 〈ξ ⊗ η|Cφ|ξ ⊗ η〉 = 0}
spans the whole space Cm ⊗ Cn, where Cφ is the Choi matrix
of φ. We define vectors in C3 as follows:∣∣ξ 0

θ,σ

〉 = eiθb1/4|1〉 + eiσ c1/4|2〉,∣∣ξ 1
θ,σ

〉 = eiθb1/4|2〉 + eiσ c1/4|0〉,∣∣ξ 2
θ,σ

〉 = eiθb1/4|0〉 + eiσ c1/4|1〉,∣∣η0
θ,σ

〉 = e−iθ (bc)1/4|1〉 + e−iσ b1/2|2〉,∣∣η1
θ,σ

〉 = e−iθ (bc)1/4|2〉 + e−iσ b1/2|0〉,∣∣η2
θ,σ

〉 = e−iθ (bc)1/4|0〉 + e−iσ b1/2|1〉. (4)

Then, it is easy to check that〈
ξk
θ,σ ⊗ ηk

θ,σ

∣∣C�

∣∣ξk
θ,σ ⊗ ηk

θ,σ

〉
= 〈

ξk
θ,σ ⊗ ηk

θ,σ

∣∣W [a,b,c]
∣∣ξk

θ,σ ⊗ ηk
θ,σ

〉
= −2(1 − a)bc1/2 + 2b3/2c

for all k = 1,2,3 and 〈ξk
θ,σ ⊗ ηk

θ,σ |C�|ξk
θ,σ ⊗ ηk

θ,σ 〉 = 0 when-
ever condition (3) holds. Therefore, the vectors |ξk

θ,σ ⊗ ηk
θ,σ 〉

belong to P [�[a,b,c]] for all k = 1,2,3 whenever condition
(3) holds. We take σ1 = 0, σ2 = π/2, and σ3 = π and consider
the 9 × 9 matrix whose columns are nine vectors |ξk

0,σ

⊗ ηk

0,σ

〉

for k, 
 = 1,2,3. Then the determinant of M is given by

| det M| = 128 b
9
2 c

9
4

which is nonzero. This shows that et and v(0,t,1/t) have the
spanning properties.

Next, we consider the zero-dimensional face v(2,0,0). We
see that the smallest exposed face F containing v(1,0,1) already
contains v(2,0,0) in Fig. 1 (see Ref. [14] for a more general
approach). We have seen [36] that �[1,0,1] has the cospanning
property, and so F has no completely copositive map. This
show that v(2,0,0) has the cospanning property, and so eab and
eac also have the cospanning properties.

TABLE I. Summary of (co-)optimality and (co)spanning property for faces of the convex body illustrated in Fig. 1. Span., spanning; Opt.,
optimality.

(Co)spanning property (Co-)optimality

Faces Span. Co-span. Bi-span. Opt. Co-opt. Bi-opt.

fab,fac,fbc,fabc,ea,eb,ec N N N N N N
eab,eac,v(2,0,0) N Y N N Y N
et ,v(0,t,1/t) Y N N Y N N
v(1,0,1),v(1,1,0) N Y N Y Y Y
v(a(t),b(t),c(t)) Y Y Y Y Y Y
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We summarize the result in Table I. We note [23] that the
map �[a,b,c] is decomposable if and only if the condition

0 � a � 2 =⇒ bc �
(

2 − a

2

)2

holds. Therefore, we see that interior points of the faces
eb, ec, eab, eac, et , v(1,0,1), v(1,1,0), v(a(t),b(t),c(t)) give rise to in-
decomposable positive maps. We note that every interior point
of face et gives rise to an example of an indecomposable
optimal entanglement witness which is not bi-optimal. So this
is not nd-OEW in the sense of Ref. [8]. If we consider the
composition of the transpose map, then faces eab and eac

play the exact same role. They also provide us examples
of nonextremal entanglement witnesses with the spanning
property. On the other hand, the Choi maps v(1,0,1) and v(1,1,0)

are extremal entanglement witnesses without the spanning
property. Therefore, we see that two sufficient conditions,
extremeness and spanning property, for the optimality are
logically independent.

III. CONCLUSIONS

In this Brief Report, we considered Choi-type positive
maps between 3 × 3 matrices and determined their optimality,
co-optimality, spanning property, and cospanning property. We

have seen that even though a nondecomposable entanglement
witness is optimal, it need not to be a nondecomposable
optimal entanglement witness in the sense of Ref. [8].
Because a positive map detects a PPTES if and only if it
is indecomposable, we suggest using the term PPTES witness
in place of nondecomposable entanglement witness and using
the term optimal PPTES witness in place of nd-OEW. In other
words, we say that a positive map is an optimal PPTES witness
when it is bi-optimal. This is very natural since a positive map
detects a maximal set of PPTES if and only if it is bi-optimal.

Optimality is not very easy to determine for a given positive
linear map because we do not know all the facial structures
of the convex cone P1 consisting of all positive maps. The
spanning property is stronger than optimality and relatively
easy to check. Another sufficient condition for optimality is
extremeness. We also showed that the spanning property and
extremeness are logically independent.
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