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Detection efficiency in the loophole-free violation of Svetlichny’s inequality
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Svetlichny’s inequality (SI) is a Bell-like inequality, the violation of which can be used to confirm the
existence of genuine multipartite correlations. However, poor detector efficiency can possibly cause a so-called
detection loophole in actual Svetlichny experiments. We derive an alternative SI to deal with this loophole. If the
experimental data can violate this SI, it must result in loophole-free violation of the original SI. We show that
the minimum detection efficiency needed for a loophole-free violation of the tripartite SI is about 0.97. For the
general case of n particles, we give the analytic expression of the needed detection efficiency, and find that its
value monotonically and rapidly approaches 1 as the number of particles increases.
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I. INTRODUCTION

A ubiquitous problem in physics is to understand the corre-
lation which is observed among different events, and quantum
theory opened a new world of nonclassical correlations. Bell
[1] demonstrated that quantum theory predicts that separated
systems can produce outcomes whose correlation cannot be
explained by any local-hidden-variable theory. A more general
version of the Bell inequality for two qubits was given by
Clauser, Horne, Shimony, and Holt [2] (the CHSH inequality).
Since then the experimental confirmation of Bell’s prediction
has been one of the fundamental challenges of modern
physics [3–7]. In addition to causation and reality assumptions,
the derivation of Bell’s inequality requires three additional
assumptions (or conditions): (i) The observer’s measurement
choices are not correlated with each other or with hidden
variables, and these choices are random [8–10]; (ii) different
observers’ measurement events are spacelike separated;
(iii) fair sampling is assumed, i.e., the detected data
are representative of all those emitted from the source.
So an incontrovertible experimental confirmation must
simultaneously satisfy these three conditions, or one cannot
say that the experimental violation of Bell’s inequality
demonstrates the downfall of local realistic theories. If any
of the above three conditions is not satisfied, there exist
loopholes in the experimental confirmation. In particular, the
third condition of fair sampling is unsatisfactory; why should
not the data recorded by detectors be special? Actually soon
after the discovery of Bell’s inequality, Pearle [11] pointed out
that if the detectors’ efficiency is not perfect then it is possible
to devise a local-hidden-variable model which can also
produce violation of the Bell inequality. So if we abandon the
fair sampling assumption and at the same time the detection
efficiency is too low, a so-called detection loophole arises.

The detection efficiency is defined as the ratio between
the numbers of detected particles and the particles actually
emitted by the source. The minimum detection efficiency
which is required to close the detection loophole is called
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the threshold efficiency ηcrit. It is an interesting question as to
what the threshold efficiency ηcrit is for any given scenario.
The value of ηcrit is now known for many scenarios [12–25].
The value of ηcrit for a loophole-free experiment based on
Hardy’s approach has also been deduced [26,27]. In practice,
one usually adopts photons for Bell experiments. Although
photon experiments are able to close the locality loophole
[28], the optical detection efficiencies are still too low to
close the detection loophole. Since the detection efficiency
is the product of the transmission efficiency and the detector
efficiency, the loss of photons in the transmission from the
source to the observers’ locations can greatly reduce the
detection efficiency. Recently, a precertification technique
has been proposed [29,30]; the aim of the technique is to
boost the transmission efficiency to 1. There are some other
proposals for closing the experimental detection loophole in
Refs. [31,32].

This paper focuses on the issue of the threshold detection
efficiency in actual Svetlichny experiments. Svetlichny’s in-
equality (SI) [33,34] is a Bell-like inequality, the violation
of which can be used to confirm the existence of genuine
multipartite correlations. We will derive an alternative SI to
deal with the detection loophole in Svetlichny experiments. If
the experimental data can violate this SI, it must result in the
loophole-free violation of the original SI. At the same time,
we will give the threshold efficiency which is required for a
loophole-free violation of SI. The general case of n particles
is also addressed.

II. THRESHOLD DETECTION EFFICIENCY
FOR THREE-PARTICLE SI

The three-particle SI [33] can be used to confirm the
existence of genuine three-particle correlations which are
essentially different from two-particle correlations. This
means that one can find a violation of SI only if there
exist genuine three-particle correlations in a three-particle
setting. Consider three observers Alice, Bob, and Carol, who
share three entangled qubits. Each of them can choose to
measure one of two dichotomous observables. We denote by
A1 and A2 Alice’s measurement results when she performs
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measurements a1 and a2, respectively, and similarly B2, B2,
b1, and b2 (C1, C2, c1, and c2) for Bob’s (Carol’s) results, and
the measurement results of all observables can be −1 or +1.
Then SI is expressed as [33]

|E(A1B1C1) + E(A1B1C2) + E(A1B2C1)

+E(A2B1C1) − E(A1B2C2) − E(A2B1C2)

−E(A2B2C1) − E(A2B2C2)| � 4, (1)

where the E(AiBjCk)’s represent the expectation values of the
product of the measurement outcomes of the observables. The
SI of Eq. (1) applies to the ideal case in which all experimental
settings of the three observers give results, and only in the
ideal case can one assert that the violation of SI of Eq. (1)
confirms the existence of genuine three-particle correlations.
So in order to obtain a loophole-free violation of SI of Eq. (1),
we should get a violation of the following inequality:

|E(A1B1C1|�0) + E(A1B1C2|�0)

+E(A1B2C1|�0) + E(A2B1C1|�0)

−E(A1B2C2|�0) − E(A2B1C2|�0)

−E(A2B2C1|�0) − E(A2B2C2|�0)| � 4, (2)

where �0 represents the ensemble where all measurements
successfully give results, and E(AiBjCk|�0) denotes the ex-
pectation value of the product of AiBjCk in the ensemble �0.
The violation of Eq. (2) is a (detection) loophole-free confir-
mation of the existence of genuine three-particle correlations.

However, E(AiBjCk|�0) is inaccessible in actual experi-
ments. The usual approach is to disregard these “not detected”
events: only the coincident events contribute to the estimation
of E(AiBjCk). A coincident event is one where Alice, Bob,
and Carol all successfully obtain a measurement result in
one trial. This approach is the same as saying that if a
measurement fails one will get the value 0 as the measurement
result. So in actual experiments one essentially calculates the
conditional correlations E(AiBjCk|�AiBj Ck

), where �AiBj Ck

represents the ensemble where all measurements ai , bj , and ck

successfully give results −1 or 1.
Here for convenience we define all notations which will

be used frequently in the following text; these notations are
taken from Ref. [24]. We use �Ai

to denote the ensemble
where Alice’s measurement setting ai successfully gives the
result −1 or 1, and similarly for �Bj

and �Ck
; we use

�AiBj
to denote the ensemble where measurements setting ai

and bj both give results −1 or1, and similarly for �AiBj Ck
,

etc. Following these notations, the ensemble �0 can be
expressed as �A1A2B1B2C1C2 . P (�Ai

) denotes the probability
of Ai �= 0, and P (�AiBj

) denotes the probability that both
Ai and Bj are nonzero, and similarly for P (�AiBj Ck

), etc.;
P (�Ai

|�Bj
) denotes the conditional probability that Ai �= 0

given that Bj �= 0.
Proposition 1. If we define

δ3 = min
ijk

P
(
�0

∣∣�AiBj Ck

)
, (3)

where minijk is taken over all measurements settings from
Eqs. (2) and (3) we can obtain the inequality∣∣E(

A1B1C1

∣∣�A1B1C1

) + E
(
A1B1C2

∣∣�A1B1C2

)
+E

(
A1B2C1

∣∣�A1B2C1

) + E
(
A2B1C1

∣∣�A2B1C1

)

−E
(
A1B2C2

∣∣�A1B2C2

) − E
(
A2B1C2

∣∣�A2B1C2

)
−E

(
A2B2C1

∣∣�A2B2C1

) − E
(
A2B2C2

∣∣�A2B2C2

)∣∣
� 4(2 − δ3). (4)

Proof. It is obvious that �0 ⊂ �AiBj Ck
, and the ensemble

�AiBj Ck
can be split into two disjointed subensembles �0 and

its complement �c
0 = �AiBj Ck

\�0. We get

E
(
AiBjCk

∣∣�AiBj Ck

) − δ3E(AiBjCk|�0)

�
∣∣P (

�c
0

∣∣�AiBj Ck

)
E

(
AiBjCk

∣∣�c
0

)∣∣
+ ∣∣P (

�0

∣∣�AiBj Ck

)
E(AiBjCk|�0) − δ3E(AiBjCk|�0)

∣∣
= P

(
�c

0

∣∣�AiBj Ck

)∣∣E(
AiBjCk

∣∣�c
0

)∣∣
+ [

P
(
�0

∣∣�AiBj Ck

) − δ3
]|E(AiBjCk|�0)|

� P
(
�c

0

∣∣�AiBj Ck

)
E

(|AiBjCk||�c
0

)
+ [

P
(
�0

∣∣�AiBj Ck

) − δ3
]
E(|AiBjCk||�0) = 1 − δ3.

(5)

Combining Eqs. (2) and (5), we obtain

[Left-hand side of Eq.(4)]

� δ3 × [left-hand side of Eq. (2)] + 8(1 − δ3)

� 4δ3 + 8(1 − δ3)

� 4(2 − δ3). (6)

Hence the proof. �
In order to obtain the threshold detection efficiency required

for loophole-free violation of SI, we must get the relation
between δ3 and the detection efficiency. For simplicity, we
assume that the detection efficiencies of the three observers are
equal and independent of each other; this means that P (�Ai

) =
P (�Bj

) = P (�Ai
|�Bj

) = η.
Proposition 2. δ3 � 13 − 12

η
.

Proof. First, it is obvious that P (�Ai
|�AiBj Ck

) =
P (�Bj

|�AiBj Ck
) = P (�Ck

|�AiBj Ck
) = 1. For i

′ �= i,

P
(
�A

i
′
∣∣�AiBj Ck

) = P
(
�A

i
′ Ai

∣∣�Bj Ck

)
P

(
�Ai

∣∣�Bj Ck

)

= P
(
�A

i
′
∣∣�Bj Ck

) + P
(
�Ai

∣∣�Bj Ck

)
P

(
�Ai

∣∣�Bj Ck

)

− P
(
�Ai

∪ �A
i
′
∣∣�Bj Ck

)
P

(
�Ai

∣∣�Bj Ck

)
� 2η − 1

η
. (7)

In Eq. (7) we used that P (�A
i
′ |�Bj Ck

) = P (�Ai
|�Bj Ck

) = η.
Now consider the general P (�A

i
′ B

j
′ C

k
′ |�AiBj Ck

). We find

that if all equations i
′ = i, j

′ = j, k
′ = k are available,

P (�A
i
′ B

j
′ C

k
′ |�AiBj Ck

) = 1. If two of the three equations are

available, P (�A
i
′ B

j
′ C

k
′ |�AiBj Ck

) � 2η−1
η

. For example,

P
(
�A2B2C3

∣∣�A1B2C3

)
= P

(
�A2

∣∣�A1B2C3

) + P
(
�B2C3

∣∣�A1B2C3

)
−P

(
�A2 ∪ �B2C3

∣∣�A1B2C3

)
� P

(
�A2

∣∣�A1B2C3

)
� 2η − 1

η
. (8)
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If one of the three equations of i
′ = i, j

′ = j, k
′ = k is

available, P (�A
i
′ B

j
′ C

k
′ |�AiBj Ck

) � 3 − 2
η
. For example,

P
(
�A2B1C3

∣∣�A1B2C3

)
= P

(
�A2

∣∣�A1B2C3

) + P
(
�B1C3

∣∣�A1B2C3

)
−P

(
�A2 ∪ �B1C3

∣∣�A1B2C3

)
� P

(
�A2

∣∣�A1B2C3

) + P
(
�B1C3

∣∣�A1B2C3

) − 1

� P
(
�A2

∣∣�A1B2C3

) + P
(
�B1

∣∣�A1B2C3

) − 1 � 3 − 2

η
. (9)

In the case of i
′ �= i, j

′ �= j , and k
′ �= k,

P (�A
i
′ B

j
′ C

k
′ |�AiBj Ck

) � 4 − 3
η
, since

P
(
�A

i
′ B

j
′ C

k
′
∣∣�AiBj Ck

)
� P

(
�A

i
′
∣∣�AiBj Ck

) + P
(
�B

j
′ C

k
′
∣∣�AiBj Ck

) − 1

� 3
2η − 1

η
− 2 = 4 − 3

η
. (10)

Finally we calculate P (�0|�AiBj Ck
):

P
(
�0

∣∣�AiBj Ck

)
= P

( ∩{i ′ j ′
k

′ } �A
i
′ B

j
′ C

k
′
∣∣�AiBj Ck

)
�

∑
{i ′ j ′

k
′ }
P

(
�A

i
′ B

j
′ C

k
′
∣∣�AiBj Ck

) − 7

�
[

1 + 3

(
2 − 1

η

)
+ 3

(
3 − 2

η

)
+

(
4 − 3

η

)]
− 7

= 13 − 12

η
. (11)

From Eqs. (3) and (11), we prove the proposition. �
Combining Proposition 1 with Proposition 2, we finally get

a SI which can be directly compared with experimental data:∣∣E(
A1B1C1

∣∣�A1B1C1

) + E
(
A1B1C2y

∣∣�A1B1C2

)
+E

(
A1B2C1

∣∣�A1B2C1

) + E
(
A2B1C1

∣∣�A2B1C1

)
−E

(
A1B2C2

∣∣�A1B2C2

) − E
(
A2B1C2

∣∣�A2B1C2

)
−E

(
A2B2C1

∣∣�A2B2C1

) − E
(
A2B2C2

∣∣�A2B2C2

)∣∣
� 4

(
12

η
− 11

)
. (12)

From the derivation of Eq. (12), we know that if the experi-
mental data can violate this SI, it must result in the violation
of the SI of Eq. (2), which is a loophole-free violation of the
original SI. It was shown by Svetlichny [33] that the maximum
value of the left-hand side of Eq. (12) allowed in quantum
mechanics is 4

√
2. So in order to get the violation of Eq. (12)

the detection efficiency must satisfy η � 12
11+√

2
≈ 0.9666. We

call this minimum efficiency (0.9666) required for the violation
the threshold efficiency ηcrit.

III. THRESHOLD DETECTION EFFICIENCY
FOR n-PARTICLE SI

Suppose n players share n particles, and each one of the
players performs dichotomous measurements on each of the
n particles. The measurement settings are represented by

x1,x2, . . . ,xn, with possible values 0 and 1, and the correspond-
ing measurement results are represented by Ax1 ,Ax2 . . . ,Axn

,
respectively, with possible values −1 and 1. Then the n-particle
SI can be expressed as [34]∣∣∣∣∣

∑
{xi }

v(x1,x2, . . . ,xn)E
(
Ax1Ax2 · · · Axn

)∣∣∣∣∣ � 2n−1, (13)

where {xi} stands for an n-tuple x1, . . . ,xn, E(Ax1Ax2 . . . Axn
)

represents the expectation value of the product of the
measurement outcomes of observables x1,x2, . . . ,xn, and
v(x1,x2, . . . ,xn) is a sign function given by

v(x1,x2, . . . ,xn) = (−1)[k(k−1)/2], (14)

where k is the number of times the index 1 appears in
(x1,x2, . . . ,xn).

Similarly to the case of three particles, only in the ideal case
can we assert that the violation of Eq. (13) is a confirmation
of the existence of genuine n-particle correlations. So in order
to obtain a loophole-free violation of the SI of Eq. (13), we
should get a violation of the following inequality:∣∣∣∣∣

∑
{xi }

v(x1,x2, . . . ,xn)E
(
Ax1Ax2 . . . Axn

∣∣�0
)∣∣∣∣∣ � 2n−1, (15)

where �0 represents the ensemble where all measurements
successfully give results. The violation of Eq. (15) is
a loophole-free confirmation of the existence of genuine
n-particle correlations.

Similarly to Propositions 1 and 2, we can obtain the
following two propositions for the case of n particles.

Proposition 3. If we define

δn = min
{xi }

P
(
�0

∣∣�Ax1 Ax2 ...Axn

)
, (16)

where min{xi } is taken over all measurement settings
(x1,x2, . . . ,xn), from Eqs. (15) and (16) we can obtain the
inequality∣∣∣∣∣

∑
{xi }

v(x1,x2, . . . ,xn)E
(
Ax1Ax2 . . . Axn

∣∣�Ax1 Ax2 ...Axn

)∣∣∣∣∣
� 2n−1(2 − δn). (17)

Proof. Similar to the proof of Proposition 1.
Proposition 4. δn � 1 + n(2 − 1

η
) + ∑n

k=2( n
k )[k(2 − 1

η
) −

(k − 1)] − (2n − 1).
Proof. Similar to the proof of Proposition 2:

P
(
�0

∣∣�Ax1 Ax2 ...Axn

)
= P

(
∩{x ′

i } �A
x
′
1
A

x
′
2
...A

x
′
n

∣∣∣�Ax1 Ax2 ...Axn

)

�
∑
{x ′

i }
P

(
�A

x
′
1
A

x
′
2
...A

x
′
n

∣∣∣�Ax1 Ax2 ...Axn

)
− (2n − 1)

� 1 + n

(
2 − 1

η

)

+
n∑

k=2

(
n

k

)[
k

(
2 − 1

η

)
− (k − 1)

]
− (2n − 1). (18)

From Eqs. (16) and (18), we prove the proposition. �
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FIG. 1. (Color online) The threshold efficiency ηcrit for the cases
of n ranging from 3 to 15. The value of ηcrit monotonically and rapidly
approaches 1 as the value of n increases.

The maximum value of the left-hand side of Eq. (17)
allowed in quantum mecahnics is 2n−1

√
2 [34]. Combining this

with Proposition 4 we can obtain the threshold efficiency ηcrit

for the loophole-free confirmation of the existence of genuine
n-particle correlations for any n. We depict ηcrit for the cases
of n ranging from 3 to 15 in Fig. 1. We find that as the value
of n increases the value of ηcrit monotonically and rapidly
approaches 1.

IV. CONCLUSION

The imperfection of detector efficiency possibly causes the
so-called detection loophole in actual Svetlichny experiments.
We derive an alternative SI to deal with this detection
loophole. If the experimental data can violate this SI, it must
result in the loophole-free violation of the original SI. We
give the threshold detection efficiency which is required for a
loophole-free violation of SI for the general case of n particles.
There is a remarkable contrast between our result for the
SI and the case of Mermin inequalities, where the threshold
detection efficiency is 0.75 for three parties and decreases to
0.5 as the number of parties tends to infinity [23]. The reason,
we think, is that quantum mechanics allows a violation of
Mermin inequalities that grows exponentially as the number
of parties increases, while the increase of the number of
parties does not contribute to magnifying the violation of SI.
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A. Cabello, arXiv:1206.2290v1.
[31] C. Simon and W. T. M. Irvine, Phys. Rev. Lett. 91, 110405

(2003).
[32] R. Garcia-Patron et al., Phys. Rev. Lett. 93, 130409 (2004).
[33] G. Svetlichny, Phys. Rev. D 35, 3066 (1987).
[34] M. Seevinck and G. Svetlichny, Phys. Rev. Lett. 89, 060401

(2002).

034102-4

http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1103/PhysRevLett.49.1804
http://dx.doi.org/10.1103/PhysRevLett.49.1804
http://dx.doi.org/10.1103/PhysRevLett.81.3563
http://dx.doi.org/10.1103/PhysRevLett.81.3563
http://dx.doi.org/10.1103/PhysRevLett.81.5039
http://dx.doi.org/10.1038/35057215
http://dx.doi.org/10.1103/PhysRevLett.100.150404
http://dx.doi.org/10.1103/PhysRevLett.106.100406
http://dx.doi.org/10.1103/PhysRevLett.106.100406
http://dx.doi.org/10.1103/PhysRevLett.105.250404
http://dx.doi.org/10.1103/PhysRevA.84.022102
http://dx.doi.org/10.1103/PhysRevD.2.1418
http://dx.doi.org/10.1103/PhysRevD.35.3831
http://dx.doi.org/10.1103/PhysRevA.47.R747
http://dx.doi.org/10.1103/PhysRevA.57.R3145
http://dx.doi.org/10.1103/PhysRevA.59.4801
http://dx.doi.org/10.1103/PhysRevA.57.3304
http://dx.doi.org/10.1103/PhysRevA.63.022117
http://dx.doi.org/10.1103/PhysRevA.63.022117
http://dx.doi.org/10.1103/PhysRevLett.98.220402
http://dx.doi.org/10.1103/PhysRevLett.98.220402
http://dx.doi.org/10.1103/PhysRevLett.98.220403
http://dx.doi.org/10.1103/PhysRevLett.98.220403
http://dx.doi.org/10.1103/PhysRevA.65.032121
http://dx.doi.org/10.1103/PhysRevA.68.062102
http://dx.doi.org/10.1103/PhysRevA.68.062109
http://dx.doi.org/10.1103/PhysRevLett.101.120402
http://dx.doi.org/10.1103/PhysRevLett.101.120402
http://dx.doi.org/10.1103/PhysRevA.79.062109
http://dx.doi.org/10.1103/PhysRevA.79.062109
http://dx.doi.org/10.1103/PhysRevA.83.032123
http://dx.doi.org/10.1103/PhysRevA.52.2535
http://dx.doi.org/10.1103/PhysRevA.81.032106
http://dx.doi.org/10.1016/j.physrep.2005.03.003
http://dx.doi.org/10.1103/PhysRevX.2.021010
http://arXiv.org/abs/1206.2290v1
http://dx.doi.org/10.1103/PhysRevLett.91.110405
http://dx.doi.org/10.1103/PhysRevLett.91.110405
http://dx.doi.org/10.1103/PhysRevLett.93.130409
http://dx.doi.org/10.1103/PhysRevD.35.3066
http://dx.doi.org/10.1103/PhysRevLett.89.060401
http://dx.doi.org/10.1103/PhysRevLett.89.060401



