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Problem with geometric discord
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We argue that the geometric discord introduced by Dakić, Vedral, and Brukner [Phys. Rev. Lett. 105, 190502
(2010)] is not a good measure for the quantumness of correlations, as it can increase even under trivial local
reversible operations of the party whose classicality or nonclassicality is not tested. On the other hand it is known
that the standard, mutual-information-based discord does not suffer this problem; a simplified proof of such a
fact is given.
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The geometric measure of quantum discord was introduced
in [1] as a parameter of the quantumness of correlations. In
particular it is meant to quantify the distance—in Hilbert-
Schmidt norm—of a bipartite quantum state from the set
of classical-quantum states ρ

CQ
AB = ∑

i pi |i〉〈i|A ⊗ ρi
B , with

{|i〉} orthonormal states and pi probabilities; as such it is
asymmetric with respect to the two subsystems A and B. Its
definition (up to an irrelevant factor) is

DG(B|A)ρAB
:= inf

�A

‖ρAB − �A(ρAB)‖2
2, (1)

with ‖X‖2 =
√

Tr(X†X) the Hilbert-Schmidt norm, and the
infimum—for finite-dimensional A, a minimum—running
over complete von Neumann projections on A, i.e., �A(X) =∑

i |i〉〈i|X|i〉〈i| for some orthonormal basis {|i〉} of A. The
geometric measure has found widespread application because
of its ease of use, in particular, when A is a qubit. It has been
linked to the performance of remote state preparation [2,3] and
has attracted interest in its direct experimental quantification
[4–6]. While it might be that in certain cases the geometric dis-
cord is a useful parameter of the quantumness of correlations,
we will point out that arguably it cannot be anything more
than that. Indeed, we will see that it can change arbitrarily and
reversibly through actions of Bob [the unmeasured party in
(1)]. As such, it is hard to imagine that it might have any
deep meaning—e.g., in an information-theoretic sense—or
any fundamental operational interpretation.1 With this in mind,
with this Brief Report we would like to draw the attention of the
community on the potential risk of using the geometric discord
as a basic quantifier of the quantumness of the correlations
and in the analysis of the role of quantum correlations in
fundamental tasks.

It is well known that measures of the quantumness of
correlations [7], contrary to entanglement measures [8], can
increase under local actions of the parties. This is true, in
particular, for the original discord measure defined in [9,10]:

D(B|A)ρAB
= inf

�A

[I (A : B)ρAB
− I (A : B)�A(ρAB )], (2)

with I (A : B)τAB
:= S(τA) + S(τB ) − S(τAB) the mutual in-

formation and S(ξ ) = −Tr(ξ log2 ξ ) the von Neumann

1It might still happen that within some restricted framework, like
that of [10] there is a connection with some specific task; here we
refer to something more abstract and general operational meaning.

entropy. Both the discord D and the geometric discord DG van-
ish only for classical-quantum states. That means, for example,
that an operation on A can readily create discord: for example,
for a channel (a completely positive trace-preserving map) �

acting as �[|0〉〈0|] = |0〉〈0|, �[|1〉〈1|] = |+〉〈+|, with |+〉 =
(|0〉 + |1〉)/√2, one has that the classical-classical—hence
with zero discord—state (|0〉〈0| ⊗ |0〉〈0| + |1〉〈1| ⊗ |1〉〈1|)/2
is mapped into the state (|0〉〈0| ⊗ |0〉〈0| + |+〉〈+| ⊗ |1〉〈1|)/2
with nonzero discord by the action of �A. While this fact
might already be considered bothersome by some, it is not
totally unreasonable: the creation of quantumness is done at
the price of some loss of total correlations, as measured, for
example, by mutual information, and it might be interpreted
as the impossibility of treating the remaining correlations as
fully classical from an information-theoretic point of view
(see, e.g., [11]). Moreover, the creation of quantumness takes
place via an action on the system whose classicality is tested
in the definition of the discord quantities. In particular, in [12]
(see [13] and [14] for related results) it was proved that the
discord D cannot increase under actions of B. Here we give
an alternative and simple proof of the same fact that is based
solely on the monotonicity mutual information and may be
of independent interest; the proof applies to any discord-like
quantitiy—not necessarily meant to capture the quantumness
of correlations—of the form

DT (B|A)ρAB
:= inf

�A∈T
[I (A : B)ρAB

− I (A : B)�A(ρAB )], (3)

where the infimum is over some class T of channels �A on A.
If such a class T is that of complete projective measurements,
one recovers the discord D of Eq. (2); considering instead
arbitrary measurements, i.e., �(X) = ∑

i Tr(MiX)|i〉〈i|, with
{Mi}i a POVM and {|i〉} orthonormal states,2 one obtains the
other—POVM-based, rather than projection-based—standard
version of quantum discord.

Our proof is based on rewriting the right-hand side of (3)
as

I (A : B)ρAB
− I (A : B)�A(ρAB )

= I (A′C : B)ρA′BC
− I (A′ : B)ρA′BC

= I (B : C|A′)ρA′BC
.

2The orthonormal states may span a much larger space than that of
A, depending on the number of outcomes of the measurement.
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Here, we have used the fact that any channel from A to A′ can
be written as an isometry V from A to a composite system
A′C followed by the discarding of C, and we have made use
of the definition ρA′BC = VρABV †. Thus, the first equality is
due to the fact that mutual information is invariant under local
isometries and to the fact that �A(ρAB) = TrC(ρA′BC). The
second equality is simply the definition of the conditional
mutual information I (B : C|A′) := I (A′C : B) − I (A′ : B).
The claim then follows from the monotonicity of conditional
mutual information under channels on B.3

The monotonicity of D under operations on B is com-
forting, since the definitions (1) and (2) are meant to capture
the quantumness of correlations as due to the quantumness
of the subsystem A. The problem with the geometric discord
DG is that it does not have the just mentioned properties: It
can increase under the action of the unmeasured party, and
at no cost for total correlations, actually in a fully reversible
way. At a more technical level, the source of the problem
can be identified in the fact that the geometric discord DG of
Eq. (1) is based on a norm—the Hilbert-Schmidt norm—that
is not monotonic under quantum evolutions (the application of
channels), as pointed out, for example,4 in Ref. [15]. In this
Brief Report we provide a simple case where monotonicity
is violated, and use it to question the general validity of the
geometric discord as a conceptually meaningful (rather than
useful) parameter of quantumness.

Consider the simple channel �σ : X → X ⊗ σ , i.e., the
channel that introduced a noisy ancillary state. Under such an
operation

‖X‖2 → ‖�σX‖2 = ‖X‖2‖σ‖2 = ‖X‖2

√
Tr(σ 2),

since the Hilbert-Schmidt norm is multiplicative on tensor
products. It is then easy to see that

DG(B|A)�σ
B (ρAB ) = DG(B|A)ρAB

Tr(σ 2),

since the optimization on the projective measurement on A is
unaffected by the presence of a factorized ancillary state on B.
Thus, adding or removing a factorized local ancilla—a local
and reversible operation—adds or removes a factor equal to the

3Such monotonicity is simply the monotonicity of mutual informa-
tion, since I (B : C|A′) can be rewritten as I (B : C|A′) = I (A′B :
C) − I (A′ : C), with B appearing only in the first term.

4Reference [15] was motivated exactly by the need to clarify that the
Hilbert-Schmidt distance was not an appropriate choice as the basis
for the construction of a good distance-based entanglement measure.

purity of the ancillary state. Notice that one can even imagine
the ancilla as always present, with only its state modified by
�σ . In particular, making the state of the uncorrelated ancilla
purer—e.g., by just discarding the ancilla and preparing a new
one in a purer state—increases the geometric discord.

A possible fix to prevent the geometric measure from
increasing under local operations on B is to trivially redefine
it, for example, as

D̃G(B|A)ρAB
:= sup

�B

DG(B|A)�B (ρAB ), (4)

where the supremum is over channels on B (not necessarily
with output dimension equal to the input dimension). While
this fixes by definition the problem of the increase of the
measure under operations on B, it makes the (modified)
geometric discord in principle much more difficult to calculate,
making the advantage of using a simple-to-calculate parameter
of nonclassicality disappear. Also, since D̃G(B|A) would still
be based on the nonmonotonous Hilbert-Schmidt distance, it is
to be expected that D̃G(B|A) could still present some unwanted
issues from an operational—besides from a mathematical—
point of view.

We conclude that the geometric discord based on the
geometry induced by the Hilbert-Schmidt norm is arguably
not the best conceptual and operational choice to quantify the
quantumness of correlations, even if in some case it might be
an interesting parameter to consider [2,3].

Note added. Recently, it was pointed out to us that the
observation that the geometric discord is not monotonic under
operations on the unmeasured side was already made in [16],
and further commented upon in Ref. [3]. In [16] a specific one-
parameter example of such an occurrence is given. We believe
that the construction in this Brief Report emphasizes even more
strongly the undesirable features of the geometric discord. It
is worth pointing out that in [16] the natural requirement that
a one-sided measure of quantumness based on the test of the
quantumness of A should not increase under channels on B is
stressed and imposed as a prerequisite for a good quantumness
measure. All in all, we believe it is still worth dragging more
focused attention on the issue, so that steps can be taken by
the community towards a critical analysis, definition, and use
of quantumness measures.

Acknowledgments. We thank G. Adesso for discussions and
for pointing out relevant and related points raised in Refs. [16]
and [3]. This Brief Report was in large part completed during
a visit to the National Quantum Information Centre (KCIK)
in Gdańsk, whose hospitality is gratefully acknowledged. This
work has been supported by CIFAR and NSERC.
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P. Walther, Nature Physics 8, 666 (2012).

[3] T. Tufarelli, D. Girolami, R. Vasile, S. Bose, and G. Adesso,
arXiv:1205.0251.

[4] J.-s. Jin, F.-y. Zhang, C.-s. Yu, and H.-s. Song, J. Phys. A: Math.
Theor. 45, 115308 (2012).

[5] G. Passante, O. Moussa, and R. Laflamme, Phys. Rev. A 85,
032325 (2012).

[6] D. Girolami and G. Adesso, Phys. Rev. Lett. 108, 150403
(2012).

[7] K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral,
arXiv:1112.6238 [Rev. Mod Phys. (to be published)].

[8] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Rev. Mod. Phys. 81, 865 (2009).

[9] W. H. Zurek, Ann. Phys. 9, 855 (2000).

034101-2

http://dx.doi.org/10.1103/PhysRevLett.105.190502
http://dx.doi.org/10.1103/PhysRevLett.105.190502
http://dx.doi.org/10.1038/nphys2377
http://arXiv.org/abs/arXiv:1205.0251
http://dx.doi.org/10.1088/1751-8113/45/11/115308
http://dx.doi.org/10.1088/1751-8113/45/11/115308
http://dx.doi.org/10.1103/PhysRevA.85.032325
http://dx.doi.org/10.1103/PhysRevA.85.032325
http://dx.doi.org/10.1103/PhysRevLett.108.150403
http://dx.doi.org/10.1103/PhysRevLett.108.150403
http://arXiv.org/abs/arXiv:1112.6238
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1002/1521-3889(200011)9:11/12<855::AID-ANDP855>3.0.CO;2-K


BRIEF REPORTS PHYSICAL REVIEW A 86, 034101 (2012)

[10] H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2001).
[11] M. Piani, P. Horodecki, and R. Horodecki, Phys. Rev. Lett. 100,

090502 (2008).
[12] A. Streltsov, H. Kampermann, and D. Bruß, Phys. Rev. Lett.

106, 160401 (2011).

[13] M. Piani, S. Gharibian, G. Adesso, J. Calsamiglia, P. Horodecki,
and A. Winter, Phys. Rev. Lett. 106, 220403 (2011).

[14] M. Piani and G. Adesso, Phys. Rev. A 85, 040301 (2012).
[15] M. Ozawa, Phys. Lett. A 268, 158 (2000).
[16] X. Hu, H. Fan, D. Zhou, and W. Liu, arXiv:1203.6149.

034101-3

http://dx.doi.org/10.1103/PhysRevLett.88.017901
http://dx.doi.org/10.1103/PhysRevLett.100.090502
http://dx.doi.org/10.1103/PhysRevLett.100.090502
http://dx.doi.org/10.1103/PhysRevLett.106.160401
http://dx.doi.org/10.1103/PhysRevLett.106.160401
http://dx.doi.org/10.1103/PhysRevLett.106.220403
http://dx.doi.org/10.1103/PhysRevA.85.040301
http://dx.doi.org/10.1016/S0375-9601(00)00171-7
http://arXiv.org/abs/arXiv:1203.6149



