
PHYSICAL REVIEW A 86, 033838 (2012)
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We theoretically investigate properties of individual bright spatial solitons and their interaction in nonlocal
media with competing focusing and defocusing nonlinearities. We consider the general case with both nonlinear
responses characterized by different strengths and degrees of nonlocality. We employ a variational approach
to analytically describe soliton properties. In particular, we prove analytically that the interplay of focusing
and defocusing nonlocal nonlinearities leads to attraction or repulsion of solitons depending on their separation
distance. We then study the propagation and interaction of solitons using numerical simulations of the full model
of beam propagation. The numerical simulations fully confirm our analytical results.
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I. INTRODUCTION

Solitons, i.e., nondiffracting localized wave structures,
are formed thanks to an interplay between linear spreading
(dispersion or diffraction), which tends to spread the wave
and the self-induced nonlinear response (such as refractive
index change) of the medium, which focuses the wave. In
the stationary regime, these two processes are exactly in
equilibrium, leading to wave self-trapping and its propagation
as a soliton. Solitons are generic for a wide variety of nonlinear
systems. They have been identified in nonlinear optical media,
transmission lines, water waves, biological systems, cold
matter, and many others. For instance, bright optical solitons
propagate as finite-size self-trapped beams [1,2]. On the other
hand, solitons in Bose-Einstein condensates represent coherent
atomic structures formed due to competition between spread-
ing caused by its kinetic energy and attracting interaction
potential [3,4].

The uniqueness of solitons lies in the fact that they are robust
objects exhibiting particlelike properties in collisions [1,2,5].
In particular, solitons originating from integrable nonlinear
models, collide elastically [6]. On the other hand, those
governed by nonintegrable models, such as optical solitons
in media with saturable nonlinearity, collide inelastically and
may either experience fission or fusion upon collision [7].
Most of the studies of soliton interaction dealt with so-called
local media where the nonlinearity in every point is determined
solely by the wave intensity in that very point. However, it ap-
pears that in many nonlinear systems, the nonlinear response is
spatially nonlocal. This means that the wave-induced nonlinear
response in a particular location depends on the wave intensity
in a certain neighborhood of this location [8]. In the case of
highly nonlocal media, the nonlinear response is no longer a
function of the beam intensity, but rather its total power [9]. The
nonlocality of nonlinearity may be caused by either transport
processes, such as heat conduction [10] or ballistic atomic
transport [11] and diffusion [12], charge separation [13], or
long-range particle interaction, as in dipolar Bose-Einstein
condensates [14–16] or nematic liquid crystals [17–19]. It
has also been demonstrated that a parametric nonlinear wave
interaction, such as second-harmonic generation, is in fact
well described by a nonlocal nonlinearity, which has enabled

accurate descriptions of quadratic solitons [20], modulational
instability [21], and soliton pulse compression [22–24] in
quadratic nonlinear materials.

Apart from profoundly modifying properties of individual
localized waves and solitons, e.g., collapse arrest of finite
beams [8,25,26] and stabilization of complex soliton structures
such as the vortex [27–31], the nonlocal character of the non-
linearity has been shown to dramatically affect the interaction
of solitons. In particular, nonlocality provides an attractive
force between even remote solitons [9,32–36], leading to, e.g.,
attraction of otherwise repelling solitons and the formation of
bound states of bright and dark solitons [37–42].

The nonlocal nonlinear response also appears in media
with the so-called synthetic nonlinearities. Those are media
where the nonlinearity results from two or more competing
processes or effects, such as the cubic quintic response
in generalized Kerr media [43,44]. A nonlocal competing
nonlinear response occurs naturally in Bose-Einstein con-
densates with the simultaneous presence of local (contact)
and nonlocal (dipole-dipole) nonlinear interaction potentials
with their relative strengths and signs (repulsive or attractive)
controlled by the experimental conditions [16,45–47].

Given the nonlocal nature of a parametric wave interaction
[20], quadratic media, such as ferroelectric crystals, actually
inherently constitute a system of competing nonlinearities as
they simultaneously support local (Kerr) and nonlocal (χ (2))
nonlinear responses. Early works have found, for example, that
competition between those nonlinearities arrests collapse [48]
and stabilizes solitons [49]. This has an important application
in the compression of large-energy femtosecond pulses, since
the dominating self-defocusing nonlinearity ensures that the
input pulse energy can be scaled to arbitrarily large values,
and therefore the energy limit of standard self-focusing
compressors is removed [50,51].

Competing nonlinearities can also be realized in nematic
liquid crystals where they involve both thermal and ori-
entational nonlinear responses to the presence of a light
beam [52]. The combination of fast local and slow nonlocal
nonlinearities has been recently proposed as a way to create
stable optical bullets [53]. Few recent works have analyzed the
effect of competing nonlocal nonlinearities on the existence

033838-11050-2947/2012/86(3)/033838(12) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.033838


B. K. ESBENSEN, M. BACHE, O. BANG, AND W. KROLIKOWSKI PHYSICAL REVIEW A 86, 033838 (2012)

and stability of solitons. It has been shown recently that the
simultaneous presence of nonlocal nonlinearities of opposite
sign leads to stabilization of complex soliton structures, which
are otherwise unstable in a medium with one type of nonlocal
nonlinearity [54–56].

In their recent work, Du et al. have demonstrated numeri-
cally that competing nonlocal nonlinearities may drastically
influence the character of soliton interaction. Namely, it
appears that for a certain range of nonlinearity parameters,
two in-phase bright solitons, which would normally attract,
exhibit repulsion instead [57,58].

In this work, we study the effect of competing nonlocal
nonlinearity on the interaction of bright solitons. We employ
a variational approach to demonstrate analytically that the
competition of nonlocal focusing and defocusing with different
spatial scales leads to anomalous repulsion of in-phase and
incoherent bright solitons. We confirm our analytical results
in numerical simulations.

II. MODEL

Here we will consider propagation of a one-dimensional
beam with the slowly varying amplitude u(x,z), where x and
z are transverse and longitudinal coordinates, respectively.
The evolution of this beam in media with the self-induced
nonlinear refractive index change �n(x) is described by
the following dimensionless nonlocal nonlinear Schrödinger
(NLS) equation:

i
∂u

∂z
+ ∂2u

∂x2
+ �nu = 0. (1)

We will represent the nonlinear refractive index change of
the medium using the following phenomenological model of
competing focusing and defocusing nonlocal nonlinearities:

�n(x) = α1�n1(x,I ) + α2�n2(x,I )

= α1

∫
R1(x − x ′)I (x ′,z)dx ′

+α2

∫
R2(x − x ′)I (x ′,z)dx ′. (2)

Here α1 and α2 represent the strength and the sign of the two
nonlinear contributions, respectively, and I = |u(x,z)|2 is the
wave intensity. Here we will assume that α1 > 0 and α2 < 0,
so they correspond to self-focusing and self-defocusing
nonlinearities, respectively. The nonlocal response function
R1,2(x) defines the nonlocal character of the nonlinearity. The
actual form of this function is determined by the physics
of the process responsible for the nonlocal response. In
particular, Ri(x) = σ−1

i exp (−|x|/σi) describes the nonlocal
nonlinearity of nematic liquid crystals in one transverse
dimension [18,19]. Here σi (i = 1,2) defines the width of the
respective nonlocal response.

For the sake of analytical simplicity, in this work we
will use a Gaussian nonlocal response function Ri(x) =
1/

√
πσi exp(−|x|2/σ 2

i ). However, our results are applicable
to other types of nonlocal response.

In typical media with a single nonlocal nonlinearity, the
nonlocal response function is symmetric, exhibiting a single
peak and decaying monotonically to zero. The sign of the
function does not change with x. However, in the presence of

FIG. 1. (Color online) Various profiles of the nonlocal response
function R(x) as a function of material parameters: (a) α1 = 20,
α2 = −1, σ1 = 2, and σ2 = 1; (b) α1 = 2, α2 = −1, σ1 = 1, and
σ2 = 2; (c) α1 = 2, α2 = −2, σ1 = 1, and σ2 = 3; and (d) α1 = 2,
α2 = −1, σ1 = 10, and σ2 = 1.

competing nonlocal nonlinearities, the shape of the response
function will depend strongly on the relative strength of the
medium parameters α1, α2, σ1, and σ2. The graphs in Fig. 1
illustrate possible profiles of the nonlocal response function
as the medium parameters are varied. The response function
still decays monotonically for a large value of the spatial
coordinate, but in general it can have a rather complex shape.
It does not necessarily have extremum in the center and may
no longer be sign definite. Since the nonlinear refractive index
is determined by convolution of the response function and
the beam intensity, the different response functions will affect
properties of individual solitons and, more importantly, their
interaction.

III. STATIONARY SOLITONS OF COMPETING
NONLOCAL NONLINEARITIES

We begin with an analytical description of individual
solitons in media with competing nonlocal nonlinearities. The
nonlocal propagation equation (1) cannot be solved exactly.
Instead, we will use an approximation, i.e., the so-called
variational technique [59,60], which, although it is only
approximate, allows one to obtain an analytical description
and physical insight into the properties of the solutions.

Equation (1) can be considered as the Euler-Lagrange
variational equation corresponding to the Lagrangian density,

L(u,u∗,uz,u
∗
z ,ux,u

∗
x)

= i

2
{u∗∂zu − u∂zu

∗} − |∂xu|2 + |u|2
2

�n(I ), (3)
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with the asterisk denoting a complex conjugate. To find the
stationary soliton solutions to Eq. (1) with the variational
method, we will use the following Gaussian ansatz:

u(x,z) = A exp

[
− (x)2

2W 2

]
exp [iβz] , (4)

where A is the amplitude of the beam, W is the width, and β

is the propagation constant.
Now, evaluation of the Lagrangian density [Eq. (3)] with

the trial function and integration over x yields the reduced
Lagrangian,

L̃ = −√
πA2W

{
β + 1

2

1

W 2
− 1

2
α1

A2W√
2W 2 + σ 2

1

−1

2
α2

A2W√
2W 2 + σ 2

2

}
. (5)

The corresponding equations for soliton parameters are
obtained from the Euler-Lagrange equations. In particular, we
can derive the following second-order differential equation for
soliton width W :

d2W

dz2
+ 4

PW√
π

{
α1(

2W 2+σ 2
1

)3/2 + α2(
2W 2+σ 2

2

)3/2

}
− 4

W 3

= 0, (6)

where P = √
πA2W is the soliton power.

Integrating once, we arrive at(
dW

dz

)2

+ V (W ) = E, (7)

where

V (W ) = −4
P√
π

{
α1√

2W 2 + σ 2
1

+ α2√
2W 2 + σ 2

2

}
+ 4

W 2
.

(8)

The resulting equation is the equation for an effective particle
moving in a potential V . Here E is a constant with respect to z

and the soliton width W plays the role of the coordinate of an
effective particle. The stationary soliton solution, if it exists,
corresponds to the particle being located at the bottom of the
potential well.

For a stationary solution to exist, the potential must have a
local minimum. A simple analysis of Eq. (8) shows that the
potential will either decay monotonically or have one or two
extrema, depending on the medium parameters.

If it has just one extremum, then this will be a global
minimum. If it has two extrema, then the first of them will
be the minimum and the second will be a local maximum. In
order for the potential to have two extrema, α1 must be less
than |α2|.

In Fig. 2, we depict two examples of an effective potential
[Eq. (8)] for a given power and two sets of medium parameters.
In the first case, the V (x) has just a single minimum, while
in the second, it features a minimum as well as a local

FIG. 2. (Color online) Effective potential [Eq. (8)] for the beam
power P = 100 and material parameters corresponding to (a) α1 = 2,
α2 = −1, σ1 = 1, and σ2 = 2 and (b) α1 = 2, α2 = −2, σ1 = 1, and
σ2 = 3.

maximum. We observe that initially the potential decreases
with increasing W , signifying that a very narrow beam will
broaden due to diffraction. The potential reaches a minimum
at the stationary width, where the effects of diffraction
and nonlinearity exactly cancel each other. It then increases
again because the (self-focusing) nonlinearity will dominate
diffraction at large widths and focus the beam.

The width of the stationary solution is found from the
condition dV /dW = 0 as the smaller root of the polynomial

PW 4
s√

π

{
α1(

2W 2
s + σ 2

1

)3/2 + α2(
2W 2

s + σ 2
2

)3/2

}
= 1. (9)

Equivalently, the power of the stationary solitons, i.e., the
power necessary to have a stationary soliton of width Ws ,
is given by

P =
√

π

W 4
s

{
α1(

2W 2
s + σ 2

1

)3/2 + α2(
2W 2

s + σ 2
2

)3/2

}−1

. (10)

The analysis of Eq. (9) reveals that the stationary solution
always exists if α1 > |α2|, independently of the power and
degree of nonlocality of the constituent nonlinearities. This, of
course, means that in media with only a self-focusing nonlocal
nonlinearity, a stationary solution always exists. If σ1 � σ2,
then one must have α1 > |α2| in order to have a solution to Eq.
(9). On the other hand, if σ2 > σ1, then a stationary solution
may exist even with |α2| > α1. In this case, a necessary, but
not sufficient, condition to have a stationary solution is that
α1/σ

3
1 > |α2|/σ 3

2 . In order for the stationary solution to exist,
the power must be sufficiently high.

In local media where σ1 = σ2 = 0, Eq. (9) reduces to

Ws = 23/2√π

Pα
, (11)

where α = α1 + α2. So the stationary width is inversely
proportional to the product between the power and nonlinear
parameter, i.e., a higher power will lead to a narrower
stationary soliton. This is a general property that also holds
in the nonlocal case.
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For the stationary solution with W = Ws and A = As , the
propagation constant β is given by the relation

β = B2 + A2
sWs

{
α1√

2W 2
s + σ 2

1

+ α2√
2W 2

s + σ 2
2

}

− 1

2
A2

sW
3
s

{
α1(

2W 2
s + σ 2

1

)3/2 + α2(
2W 2

s + σ 2
2

)3/2

}
.

(12)

In the local case, Eq. (12) reduces to

β = (α1 + α2)A2

(
1√
2

− 1

25/2

)
∼= 0.53(α1 + α2)A2, (13)

which is in fairly good agreement with the exact formula
dθ/dz = 1/2(α1 + α2)A2 [2].

The important aspect of the stationary solitons is their
stability. The shape of the potential V (x) indicates that while
the stationary solution which corresponds to a minimum of
the potential should be stable, that which corresponds to
its maximum should be unstable. Indeed, one can show by
using Eqs. (10) and (12) that this conjecture agrees with
the well-known Vakhitov-Kolokolov criterion, which relates
soliton stability with the relation between soliton power and
its propagation constant P (β). According to this criterion,
solitons are stable (unstable) when ∂P/∂β > 0 (< 0) [61]. To
test the stability of variational soliton solutions, we resorted
to numerical simulations of the the nonlocal Schrödinger
equation Eq. (1). For given sets of medium parameters (αj ,σj )
(j = 1,2) and power P , Eq. (9) is solved, and the stationary
width Ws as well as the stationary amplitude As are found.
The approximate soliton solution given by Eq. (4) is then used
as the initial condition in Eq. (1), and is propagated using a
split-step Fourier scheme.

Our simulations confirmed that all stationary solitons
corresponding to a minimum of effective potential V (x)
are indeed stable. Figure 3(a) shows the propagation of
the stationary solution with power P = 100 corresponding
to the medium parameters α1 = 2, α2 = −1, σ1 = 1, and
σ2 = 2. The width of the stationary solution is Ws ≈ 0.34. The
soliton is propagated over 20 diffraction lengths, LD = W 2/2.
The input intensity and nonlinearity-induced refractive index
profiles are shown in Fig. 3(b). In the plots, the transverse
coordinate x is normalized to the initial width of the soliton.

FIG. 3. (Color online) (a) Normalized intensity of stationary
soliton with power P = 100 propagated stably over 20 diffraction
lengths. (b) Intensity (blue) and nonlinearity-induced index (red)
profiles. The medium parameters are α1 = 2, α2 = −1, σ1 = 1, and
σ2 = 2.

FIG. 4. (Color online) (a), (b) Evolution of beam width: the initial
beam width W exceeding the value corresponding to the maximum
of an effective potential in Fig. 2(b); (b) zoom of graph (a). (c) Initial
and (d) final transverse intensity and refractive index profiles. Here
the initial power of the beam P = 100. The medium parameters are
α1 = 2, α2 = −2, σ1 = 1, and σ2 = 3.

The form of the effective potential depicted in Fig. 2(b)
suggests that if the initial width of the beam is larger than
the value for the second extremum, then the width will
increase continuously during propagation. In Figs. 4(a) and
4(b), we depict propagation of the optical beam of initial
width W = 3 and power P = 100 over 20 diffraction lengths.
The inset shows the initial and final intensity profiles. Clearly,
the dynamics of the beam is rather unexpected. Instead of
spreading, the initially broad beam emits an excess of power in
the form of linear waves and subsequently undergoes dynamic
transition into a much narrower, higher intensity beam. In
fact, it turns out that the final beam is actually a soliton with
a new amplitude, A ≈ √

62, width W ≈ 0.51, and power of
P ≈ 56. These parameters correspond to stationary soliton
solutions described by the reduced Lagrangian. The observed
behavior is quite unique. To explain it, the initial refractive
index distribution [Fig. 4(c)] is fundamental. Sufficiently far
away from the center, the refractive index is monotonically
increasing to zero. Thus the refractive index at the periphery
is larger than at the center, and light will leak into the
surrounding areas during propagation. However, in the center
it is increasing too, so the refractive index at x = 0 is slightly
larger than in the near neighborhood. Strictly speaking, such a
structure is not a waveguide because the high refractive index
at the beam wings will prevent the asymptotic decay of a wave
amplitude, but the narrow “channel” gives rise to local focusing
of the beam. The combination of these two mechanisms
modifies the intensity distribution and, subsequently, the
refractive index structure, and thereby increases coupling into
the narrow channel. Ultimately, a proper waveguide structure
is formed and so power will couple into the waveguide, leading
finally to the formation of a proper stable soliton.
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We should note that if the initial width is sufficiently large,
then the beam simply diffracts, and no solitons are formed.

IV. VARIATIONAL APPROACH TO COHERENT
SOLITON INTERACTION

To describe the coherent interaction of two well-separated,
identical solitons with the variational method, we will employ
a general two-soliton ansatz,

u(x,z) = u1(x,z) + u2(x,z)

= A exp

[
− (x − ξ )2

2W 2

]
exp [iθ + iB(x − ξ )]

+A exp

[
− (x + ξ )2

2W 2

]
exp [iφ + iθ − iB(x + ξ )] ,

(14)

where φ denotes an initial phase difference between solitons.
Parameter B represents the transverse “velocity” of the soliton.
In fact, one can show that 2B = dξ/dz. For simplicity, we
only consider the situation where the two solitons either move
towards or away from each other, so we use B1 = −B2 = B.

The total intensity |u(x,z)|2 reads

|u(x,z)|2 = |u1(x,z)|2 + |u2(x,z)|2
+ 2 |u1(x,z)| |u2(x,z)| cos [φ − 2Bx] . (15)

The oscillating term represents variation of the relative phase
of two solitons. In the highly nonlocal limit (σj → ∞),
its contribution lies outside the bandwidth of the Fourier-
transformed response function, and the resulting medium
response is phase independent, i.e., incoherent. Even if the
solitons interact coherently, the nonlocality still gives rise
to a smoothed-out nonlinear refractive index, which depends
primarily on the incoherent sum of the soliton amplitudes, and
hence entails incoherentlike soliton interactions [34].

For given medium parameters (αj ,σj ) (j = 1,2) and power
of the individual solitons P = √

πA2W , the stationary width
and amplitude are determined by Eq. (9). From now on, we
denote the width and amplitude by Ws and As , respectively,
to stress that they are given by their stationary values. We
will consider only weakly interacting solitons, hence we can
assume that their amplitude A and width W are equal to their
stationary values. However, we keep the z dependence in the
soliton phase θ = θ (z) and velocity B = B(z).

The Lagrangian density of the system, given by Eq. (3),
is evaluated on the two-soliton trial function, and integrated
over x. After lengthy calculations, assuming well-separated
solitons, we obtain the reduced Lagrangian

L̃ = −2
√

πA2
sWs

{(
dθ

dz
− B

dξ

dz
+ 1

2

1

W 2
s

+ B2

)

+
(

dθ

dz
− ξ

dB

dz
+ 1

2

1

W 2
s

− ξ 2

W 4
s

)
exp

[
− ξ 2

W 2
s

]
cos [φ]

−
∑
i=1,2

αi

A2
sWs

2
√

2W 2
s + σ 2

i

(
1 + exp

[
−4

ξ 2

2W 2
s + σ 2

1

])}
.

(16)

FIG. 5. (Color online) (a) Effective potential V for in-phase
(dashed red line) and out-of-phase (solid blue line) interacting solitons
corresponding to the parameters P = 50, α1 = 2, α2 = −1, σ1 = 1,
and σ2 = 2. (b) Zoom from (a).

From the ensuing Euler-Lagrange equations, we arrive at the
following effective particle equation:

d2ξ

dz2
= −d2V (ξ )

dξ
, (17)

where the effective potential is given as

V (ξ ) = −4
ξ 2

W 4
s

exp

[
− ξ 2

W 2
s

]
cos φ

− 2α1
P√
π

∑
i=1,2

1√
2W 2

s + σ 2
i

exp

[
−4

ξ 2

2W 2
s + σ 2

i

]
,

and the spatial soliton separation plays the role of the
particle coordinate. The parameter P denotes the power of
the individual soliton, P = √

πA2
sWs .

Notice that only the first term in the potential depends on the
relative phase between solitons. For sufficiently high degrees
of nonlocality or powers, this term becomes negligible and in-
phase (φ = 0) and out-of-phase (φ = π ) solitons will interact
similarly, i.e., the interaction is incoherent.

Figure 5(a) shows the potential as a function of ξ for both in-
phase and out-of-phase interacting solitons of power P = 50.
The medium parameters are α1 = 2, α2 = −1, σ1 = 1, and
σ2 = 2, resulting in the stationary width Ws ≈ 0.42. We
observe that the potential increases from a minimum value
until it reaches a maximum and then decays monotonically to
zero. An increasing potential corresponds to attraction between
the two solitons, while a decreasing potential corresponds to
repulsion. The potential does not form a well, and thereby does
not predict a stable stationary state, where the two solitons
propagate side by side with no net force between them. At the
separation corresponding to dV/dξ = 0, the force between the
solitons is zero, but the state will not be stable. The point marks
the transition between an attractive and a repulsive potential,
and will be denoted ξt . In the zoom shown in Fig. 5(b), we see
that the transition between repulsion and attraction occurs at
different separations for in-phase and out-of-phase solitons.

In order to understand why two solitons attract each other
for sufficiently small spatial separations and repel when the
separation is increased, we need to consider the nonlinearity-
induced refractive index change �n. Figures 6(a) and 6(b)
show the intensity profile and the refractive index for two

033838-5



B. K. ESBENSEN, M. BACHE, O. BANG, AND W. KROLIKOWSKI PHYSICAL REVIEW A 86, 033838 (2012)

FIG. 6. (Color online) Intensity (solid red line) and nonlinear
refractive index change (dashed blue line) of two out-of-phase
solitons with spatial separation of (a) 0.8ξt and (b) 1.5ξt , where
ξt ≈ 0.44. The parameters are P = 50, α1 = 2, α2 = −1, σ1 = 1,
and σ2 = 2.

out-of-phase solitons with spatial separation ξ = 0.8ξt and
ξ = 1.5ξt , respectively, in a medium with α1 > |α2|.

When ξ < ξt , the nonlinear refractive index (�n) increases
in the region between solitons, leading to their attraction. When
the separation is increased and ξ > ξt , the index �n drops,
resulting in the solitons moving away from each other in what
appears as repulsion.

Nonlocal solitons experience the presence of each other
even if they are launched with a large separation. The
nonlocality originates a refractive index distribution wide
enough to connect the two solitons, even though the field
overlap is almost zero [Fig. 6(b)]. Hence, two well-separated
solitons in nonlocal media can interact, while in local Kerr
media, they propagate independently because of the localized
index distribution.

Figure 7(a) depicts the effective potential for the parameters
P = 50, α1 = 2, α2 = −1, σ1 = 2, and σ2 = 1. We observe
that for in-phase interacting solitons, the potential is always
attractive, and so the solitons will never repel. On the other
hand, if we look at the zoom shown in Fig. 7(b), we see that
the potential is in fact changing between being attractive and
being repulsive for out-of-phase solitons. So they will repel
for sufficiently large separations.

A careful analysis of Eq. (18) [together with Eq. (9)] reveals
that if α1 > |α2| and σ1 > σ2, then the potential will always be
attractive for the interaction between in-phase solitons, while it

FIG. 7. (Color online) (a) Effective potential V (ξ ) for in-phase
(dashed red line) and out-of-phase (solid blue line) interacting solitons
corresponding to the parameters P = 50, α1 = 2, α2 = −1, σ1 = 2,
and σ2 = 1. (b) Zoom from (a).

FIG. 8. (Color online) Properties of effective potential V (ξ )
for (a) in-phase and (b) out-of-phase interacting solitons. Blue (i)
indicates an always attractive potential, while red (ii) indicates that
the potential is either attractive or repulsive depending on the spatial
separation. The parameters are P = 10, α1 = 2, and α2 = −1.

may be both attractive and repulsive for the interaction between
out-of-phase solitons. On the other hand, if σ2 > σ1, then it
will always be both attractive and repulsive for the interaction
between out-of-phase solitons, while it may be only attractive
for the interaction between in-phase solitons. By being both
attractive and repulsive, we mean that the potential has a
transition point, such that for ξ < ξt , it is attractive, while
for ξ > ξt , it is repulsive.

These properties of the potential are illustrated in Fig. 8 for
given parameters P , α1, and α2. Here the blue color indicates
an always attractive potential, while the red color indicates an
either attractive or repulsive potential, depending on the spatial
separation of the interacting solitons.

In the regime |α2| > α1, the potential is either attractive or
repulsive, depending on the spatial separation of the interacting
solitons. We remember that in this regime, one must have
σ2 > σ1 for a stationary solution to exist. If the first term in
Eq. (18) is negligible (the interaction is incoherent), then we
can more generally say that for σ1 > σ2, the potential is only
attractive, while for σ2 > σ1, it is either attractive or repulsive
depending on the separation between the interacting solitons.

In Fig. 9(a), we illustrate the dependence of the transition
separation, ξt , on the soliton power for both in-phase and out-
of-phase interacting solitons. In the former case, the transition
separation decreases monotonically with increasing power,
whereas in the latter case, there is a local minimum in ξt (P ).
When the power is sufficiently high, the phase-dependent term

FIG. 9. (Color online) (a) Transition separation as a function of
power (P ∈ [10,500]) for φ = 0 (solid blue line) and φ = π (dashed
red line). The medium parameters are α1 = 2, α2 = −1, σ1 = 1, and
σ2 = 2. (b) Transition separation as a function of width of nonlocal
nonlinearities for φ = π and P = 50. The medium parameters are
α1 = 2 and α2 = −1.
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in Eq. (18) becomes negligible, and the transition separation
for in-phase and out-of-phase interacting solitons is almost
identical. The observed decrease in ξt with increasing P is
due to the fact that a higher power of the solitons leads to a
lower (normalized) intensity in the overlap region, and thus a
lower (normalized) refractive index in the center between the
solitons.

Figure 9(b) shows the transition separation for out-of-phase
interacting solitons as a function of σ1 and σ2 for given
parameters P , α1, and α2. Evidently, ξt simply increases with
increasing σ1, whereas the dependence on σ2 is nontrivial.
For small σ1, ξt increases with increasing σ2, but for large σ1,
ξt (σ2) is nonmonotonic.

It is important to note that according to the potential in
Eq. (18), in-phase solitons will always be attracting in media
with only a self-focusing nonlocal nonlinearity. Out-of-phase
solitons may be repelling, but if the phase-dependent term in
the potential can be left out of account, out-of-phase solitons
will always be attracting too. This predicted behavior is in
agreement with the numerical results in [34]. Furthermore, it
has been observed experimentally and even exploited to build
all-optical logic gates [33]. The fact that interacting solitons
may repel for sufficiently large spatial separations is a pure
consequence of the competing self-defocusing nonlinearity.
The results are, of course, only valid for separations sufficiently
larger than the width of the individual solitons.

V. NUMERICAL SIMULATIONS OF COHERENT
SOLITON INTERACTION

In this section, we investigate the validity of the variational
results obtained in Sec. IV by using numerical simulations.
For given sets of medium parameters (αj ,σj ) (j = 1,2) and
power P , Eq. (9) is solved and the stationary width Ws and
amplitude As are found. When these parameters are known,
the transition separation ξt , if it exists, can be determined by
solving dV/dξ = 0 for ξ . The two-soliton ansatz [Eq. (14)] is
then used as the initial condition in Eq. (1), and is propagated
using a split-step Fourier scheme.

The potential shown in Fig. 5 shows that for the given
medium parameters (α1 = 2, α2 = −1, σ1 = 1, and σ2 = 2),
stationary solitons, with individual power P = 50, will either
attract or repel each other, depending on their initial spatial
separation. This applies to both in-phase and out-of-phase
interacting solitons, but the transition between attraction and
repulsion occurs at different separations.

Figure 10 shows the propagation of two in-phase solitons
with initial spatial separation ξ = ξt . For the given power and
medium parameters, the transition separation is found to be
ξt ≈ 1.11. The initial transverse velocity B of the solitons
is zero, as it is in all of the cases studied below. We observe
attraction between the two solitons and, eventually, collision. If
the initial separation between them is increased to ξ = 1.02ξt ,
then, as Fig. 10(b) shows, the solitons now repel each other,
as predicted by the variational calculations. The solitons will
continue to move apart from each other. The initial separation
of the solitons has to be increased to ∼1.02ξt in order to
observe repulsion, due to the inaccuracy of the approximate
variational results.

Figure 11 shows the same scenario for out-of-phase
interacting solitons. In the simulation shown in the first of

FIG. 10. (Color online) Trajectories of in-phase interacting soli-
tons with power P = 50 and initial separation (a) ξ = ξt and (b)
ξ = 1.02ξt , where ξt ≈ 1.11. The medium parameters are α1 = 2,
α2 = −1, σ1 = 1, and σ2 = 2.

these figures, the initial separation is ξ = ξt , and we observe
that the solitons attract each other. When the initial separation
is increased to ξ = 1.02ξt , the solitons repel, as shown in
the latter figure. For out-of-phase interacting solitons, the
transition separation is found to be ξt ≈ 1.07.

If the in-phase interacting solitons in Fig. 10 are propagated
further, they collide, as depicted in Fig. 12(a). Due to the
nonintegrability of the governing propagation equation (1), the
collision is inelastic. We observe that when the two solitons
collide, the intensity increases in the overlap region and
power is irradiated as diffractive waves. The solitons intersect
quasiperiodically during propagation, until they eventually
fuse. On the other hand, if we propagate the two out-of-phase
interacting solitons over long distance, they never overlap.
They approach each other, but when they come sufficiently
close, they start repelling, as shown in Fig. 12(b), and so they
never touch. As the spatial separation is increased, they start
attracting again and we observe a quasiperiodical behavior.

It was noted in Sec. IV that the assumptions imposed to
derive Eq. (16) boil down to having sufficiently high power of
the interacting solitons. Thus, the assumptions are even better
satisfied for higher powers. Indeed, our simulations of the
interaction of two out-of-phase solitons with power P = 500
show that the transition separation predicted by the variational
calculations is within 0.5% of the exact numerical value, and
thereby the accuracy of the variational results increases with
increasing power.

In the derivation of the potential in Eq. (18), it was
assumed that the separation of the two interacting solitons is
much larger than the width of the solitons themselves. Under

FIG. 11. (Color online) Trajectories of interacting out-of-phase
solitons with power P = 50 and initial separation (a) ξ = ξt and (b)
ξ = 1.02ξt , where ξt ≈ 1.07. The medium parameters are α1 = 2,
α2 = −1, σ1 = 1, and σ2 = 2.
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FIG. 12. (Color online) Trajectories of interacting in-phase soli-
tons with power P = 50 and initial separation (a) ξ = ξt ≈ 1.11 and
(b) ξ = ξt ≈ 1.07. The medium parameters are α1 = 2, α2 = −1,
σ1 = 1, and σ2 = 2.

this assumption, the variational results will never be able to
describe the well-known stationary state of two out-of-phase
solitons, i.e., the so-called dipole-mode soliton [41,62], with a
spatial separation on the order of the width of the solitons.

To find the stationary dipole state, we will assume that
all soliton parameters except θ in the ansatz [Eq. (14)] are
constants with respect to z. Then one can show that the Euler-
Lagrange equations for the three parameters A, W , and ξ

yield the single equation which determines the dipole soliton
solution,

1
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(18)

By using the stationary values of Ws and As , determined
by Eq. (9) for given power P and (αj ,σj ) (j = 1,2), Eq. (18)
can be solved numerically for ξs .

For the medium parameters α1 = 2, α2 = −1, σ1 = 1, and
σ2 = 2, and power P = 50, Eq. (18) yields the two solutions
ξ = ξt ≈ 1.03 and ξ = ξs ≈ 0.44. The first one is the transi-
tion point separating attraction and repulsion, as discussed
earlier. The second solution ξ = ξs represents separation
between constituent solitons forming the dipole-mode state.
Figure 13(a) shows the input and output intensity profiles of
the stationary propagation (over 50 diffraction lengths) of the
dipole soliton consisting of two out-of-phase solitons with
initial separation ξ = ξs , for the given parameters Ws ≈ 0.42.
Figure 13(b) show the scenario when the initial separation is
slightly larger than the stationary value ξ = 1.1ξs . We now
observe that while the separation between the constituent
solitons oscillates during propagation, the dipole state remains
stable.

FIG. 13. (Color online) (a) Intensity profile of the dipole-mode
nonlocal soliton (or bound state of two out-of-phase solitons).
Separation between constituent solitons ξs ≈ 0.44. (b) Dynamics of
the dipole soliton initially perturbed by increasing the separation
between solitons to ξ = 1.1ξs . The parameters are P = 50, α1 = 2,
α2 = −1, σ1 = 1, and σ2 = 2.

VI. VARIATIONAL APPROACH TO INCOHERENT
SOLITON INTERACTION

In this chapter, we consider the interaction between two
mutually incoherent one-dimensional (1D) solitons in media
with competing nonlocal Kerr nonlinearities. The two solitons
interact only through the nonlinearity, which depends on the
superposition of the individual intensities, rather than the
amplitudes, and so is independent of the relative phase between
the solitons. The interaction can be described by the following
set of two coupled nonlocal NLS equations [56,59,63]:

i
∂u

∂z
+ ∂2u

∂x2
+ �nu = 0, (19)

i
∂v

∂z
+ ∂2v

∂x2
+ �nv = 0, (20)

where u and v represent the amplitudes of the solitons. The
nonlinear refractive index is given by

�n =
∫ ∞

−∞
R(x − x ′){|u(x ′,z)|2 + |v(x ′,z)|2}dx ′, (21)

where R is the full nonlocal response function of the medium,

R(x) = α1R1(x) + α2R2(x). (22)

Equations (19) and (20) can be considered as the Euler-
Lagrange variational problem corresponding to the following
Lagrangian density:

L (u,v, . . .) = −Im{u∗∂zu + v∗∂zv} − (|∂xu|2 + |∂xv|2)

+ |u|2 + |v|2
2

�n(I ), (23)

where the asterisk denotes the complex conjugate.
For simplicity, we will consider the interaction of two iden-

tical, well-separated, and hence weakly interacting solitons,
which will be represented by the following Gaussian trial
functions:

u(x,z) = A exp

[
− (x − ξ )2

2W 2

]
exp [iθ1 + iB(x − ξ )] , (24)

v(x,z) = A exp

[
− (x + ξ )2

2W 2

]
exp [iθ2 − iB(x + ξ )] , (25)
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where A(z) is the soliton amplitude, W (z) is the soliton
width, and ξ (z) are the spatial positions of the individual
solitons. θ1(z), θ2(z) and B(z) represent soliton phase, phase
tilt, respectively.

For given medium parameters (αj ,σj ) (j = 1,2) and power
of the individual solitons P = √

πA2W , the stationary width
and amplitude are determined by Eq. (9). We will from now
on denote the width and amplitude by Ws and As , respectively,
to stress that they are given by their stationary values.

We evaluate the Lagrangian density of the system, given by
Eq. (23), on the trial functions, and integrate over x, to obtain
the reduced Lagrangian

L̃ = −2
√

πA2
sWs
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+ 1

2

1

W 2
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2∑
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2W 2

s + σ 2
j
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1+ exp
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ξ 2

2W 2
s +σ 2

j

]}
,

(26)

where 2θ = θ1 + θ2.
From the ensuing Euler-Lagrange equations for the reduced

Lagrangian, we can derive the following equation for soliton
position ξ :

d2ξ

dz2
+
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A2
sWsξ

(2W 2
s + σ 2

j )3/2
exp
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− 4

ξ 2

2W 2
s + σ 2

j

]
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(27)

Here P2 = 2P , where P = √
πA2

sWs is the power of the
individual solitons. This equation can be then transformed
into the following relation for an effective particle:

d2ξ

dz2
= −dV (ξ )

dξ
, (28)

where
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2
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ξ 2

2W 2
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2

]
(29)

is an effective potential, and the spatial soliton separation plays
the role of the position of the particle.

Figure 14(a) shows the potential as a function of ξ

when α1 > |α2| for both σ2 > σ1 and σ1 > σ2. An increasing
potential corresponds to attraction between the two solitons,
while a decreasing potential corresponds to repulsion. We
observe that when σ2 > σ1, the potential is attractive for small
separations, but becomes repulsive when the separation is
increased. At the separation corresponding to dV/dξ = 0,
the force between the solitons is zero, but the corresponding
state is not stable. The point marks the transition between an
attractive and a repulsive potential, and will be denoted ξt .
When σ1 > σ2, the potential is always attractive, independent
of the spatial separation of the interacting solitons.

FIG. 14. (Color online) (a) Effective potential of incoherently
interacting solitons for P = 50, α1 = 2, and α2 = −1. Dashed red
(solid blue) curve corresponds to σ1 = 1, σ2 = 2 (σ1 = 2, σ2 = 1).
(b) Properties of the potential for α1 > |α2|. Blue (i) indicates an
always attractive potential, while red (ii) indicates that the potential
is either attractive or repulsive depending on the spatial separation of
the solitons.

The transition point ξt can be found by analytically solving
the equation dV/dξ = 0 to get

ξt = 1

2

√√√√(
2W 2

s + σ 2
1

)(
2W 2

s + σ 2
2

)
σ 2

2 − σ 2
1

ln

[
−α1

(
2W 2

s + σ 2
2

)3/2

α2
(
2W 2

s + σ 2
1

)3/2

]
.

(30)

Here we remember that α1/(2W 2
s + σ 2

1 )3/2 > |α2|/(2W 2
s +

σ 2
2 )3/2 [see Eq. (9)]. Equation (30) reveals that if σ1 > σ2,

then the potential is always attractive (no real solution exists),
independent of the spatial separation of the solitons, whereas
if σ2 > σ1, it will always have a transition point ξt such that
for ξ < ξt , it is attractive, while for ξ > ξt , it is repulsive.

These properties of the potential are illustrated in Fig. 14(b)
for α1 > |α2|. Here the blue color indicates an always attractive
potential, while the red color indicates that the potential is
either attractive or repulsive depending on the separation of the
solitons. We do not depict the potential properties for |α2| >

α1, since in this regime one must have σ2 > σ1 for a stationary
solution to exist, and the figure would be trivial.

A simple analysis of Eq. (30) shows that ξt decreases with
increasing power due to the decrease in Ws with increasing
power. This is because the higher power of the solitons leads
to lower (normalized) intensity in the overlap region, and thus
a lower (normalized) refractive index in the center between
the solitons (when α1 > |α2|). The dependence on the width
of the nonlinearities is similar to that depicted in Fig. 9.

The physical reason for soliton attraction and repulsion is
the same nonlinear refractive index change as discussed in
the case of coherent soliton interaction. For completeness,
we illustrate in Fig. 15 the light intensity distribution and
corresponding nonlinear refractive index �n(x) for two close
and well-separated solitons. Again, in the first instance, the
index between solitons increases, giving rise to their attraction.
For well-separated solitons, �n(x) decreases in the region
between solitons, leading to their repulsion.

It is important to stress that in media with only a self-
focusing nonlocal nonlinearity, mutually incoherent solitons
will always attract each other according to the potential in
Eq. (30). This is in agreement with the literature [2,5]. Thus,
the fact that mutually incoherent solitons may repel for suffi-
ciently large spatial separations is a pure consequence of the
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FIG. 15. (Color online) Intensity (solid red line) and nonlinear
refractive index change (dashed blue line) of two incoherent solitons
with spatial separation of (a) 0.8ξt and (b) 1.5ξt , where ξt ≈ 0.44.
The parameters are P = 50, α1 = 2, α2 = −1, σ1 = 1, and σ2 = 2.

competing self-defocusing nonlinearity. Repulsion between
mutually incoherent solitons has been observed experimentally
in photorefractive media some time ago [64]. However, in
that case, the behavior originated from a two-dimensional
charge distribution in the process of the formation of screening
photorefractive solitons.

VII. NUMERICAL SIMULATIONS OF INCOHERENT
SOLITON INTERACTION

In this section, we will numerically test the validity of the
variational results obtained above.

To this end, for given sets of medium parameters αj , σj

(j = 1,2) and power P , Eq. (9) is solved and the stationary
width Ws and amplitudeAs are found. When these parameters
are known, the transition separation ξt , if it exists, can be
determined from Eq. (30). The functions given by Eqs. (24) and
(25) are used as initial conditions in Eqs. (19) and (20), which
are numerically propagated using a split-step Fourier scheme.

We showed previously that for σ2 > σ2, mutually incoher-
ent solitons will either attract or repel, depending on their
spatial separation. This holds independently of the relative
size of α1 and α2.

Figure 16(a) shows the propagation of two mutually
incoherent solitons with initial separation ξ = ξt . The depicted
intensity is the sum of the individual intensities, I = |u|2 +
|v|2, normalized to the maximum input intensity, as it is in
all of the figures below. The power of the individual solitons
is P = 50 and the medium parameters are α1 = 2, α2 = −1,

FIG. 16. (Color online) Trajectories of incoherently interacting
solitons for α1 > |α2| with power P = 50 and initial separation (a)
ξ = ξt and (b) ξ = 1.02ξt , where ξt ≈ 1.09. The medium parameters
are α1 = 2, α2 = −1, σ1 = 1, and σ2 = 2.

FIG. 17. (Color online) Trajectories of incoherently interacting
solitons for α1 < |α2| with power P = 50 and initial separation (a)
ξ = ξt and (b) ξ = 1.02ξt , where ξt ≈ 0.97. The medium parameters
are α1 = 1, α2 = −2, σ1 = 1, and σ2 = 3.

σ1 = 1, and σ2 = 2. The initial transverse velocity B of the
solitons is zero. We observe attraction between the two solitons
and, eventually, collision. If the initial separation between
them is increased to ξ = 1.02ξt , as shown in Fig. 16(b), then
the solitons repel each other, as predicted by the variational
calculations. The solitons will continue to move apart from
each other. The initial separation of the solitons has to be
increased to ∼1.02ξt in order to observe repulsion due to the
inaccuracy of the approximate variational results.

Figures 17(a) and 17(b) show the same scenario for
incoherently interacting solitons in media with |α2| > α1.
In the simulation shown in the first of these figures, the
initial separation is ξ = ξt , and we observe that the solitons
attract each other. When the initial separation is increased to
ξ = 1.02ξt , the solitons repel, as shown in the latter figure. The
power of the individual solitons is P = 50 and the medium
parameters are α1 = 1, α2 = −2, σ1 = 1, and σ2 = 3.

If the interacting solitons in Fig. 16(a) are propagated
longer, then they collide, as depicted in Fig. 18(a). Due to the
nonintegrability of the governing propagation equations (19)
and (20), the collision is inelastic, and thus, the number of
solitons may not be conserved in collision events. Figure 18(b)
shows the input and output intensity profiles.

Additional numerical simulations (not shown) reveal that in
media with σ1 > σ2, mutually incoherent solitons are always
attracting each other, independently of their spatial separation,
as predicted by the variational calculations.

FIG. 18. (Color online) Extended trajectories of incoherently
colliding solitons from Fig. 16. The power P = 50 and initial
separation ξ = ξt , where ξt ≈ 1.09. The medium parameters are
α1 = 2, α2 = −1, σ1 = 1, and σ2 = 2. (b) Normalized input
(z/LD = 0) (red line) and output (z/LD = 50) (blue line) intensity
profiles.
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FIG. 19. (Color online) Trajectories of colliding mutually inco-
herent solitons with power P = 50 and initial separation ξ = 0.75ξt ,
where ξt ≈ 1.09. Initial velocity (a) B = 1.10 and (b) B = 1.21. The
medium parameters are α1 = 2, α2 = −1, σ1 = 1, and σ2 = 2.

So far we have only considered the effective particle
equation, given by Eq. (28), in the case of solitons with zero
initial relative transverse velocity, i.e., B = 0. In this case, the
initial energy of the “effective” particle is simply given by
its potential energy, i.e., E = V (ξ ). If ξ < ξt , then we have
observed attraction between the solitons, and if ξ > ξt , then
we have observed repulsion. However, in the same way that a
classical particle may be able to overcome a potential barrier
if it has an initial kinetic energy, the outcome of the incoherent
soliton interaction may change if the solitons have an initial
velocity B 
= 0.

We consider the potential in Fig. 14(a) for σ2 > σ1. If the
spatial separation of the solitons is, say, 0.75ξt , then the shape
of the potential tells that the solitons will attract. But if the
solitons are given an initial velocity (the effective particle is
given an initial kinetic energy) B such that (2B)2 > V (ξt ) −
V (0.75ξt ) ⇒ B > 1.10, then we would expect the solitons to
“escape” the attractive force and move away from each other.

Figure 19(a) shows the propagation of two mutually
incoherent solitons with initial separation ξ = ξt and initial
velocity B = 1.10. We observe that even though the solitons
have an initial outgoing velocity, they are captured by the
attractive force between them and eventually collide. If the
initial velocity is increased by 10%, then the solitons get a
sufficiently high kinetic energy to escape from the attractive
potential, and they move away from each other, as depicted in
Fig. 19(b).

Similarly, if the spatial separation of the solitons is larger
than ξt , say, ξ = 1.25ξt , then the shape of the potential in
Fig. 14(a) indicates that the solitons will repel. But if they
are given an initial velocity B such that (2B)2 > V (ξt ) −
V (1.25ξt ) ⇒ B < −0.66, then we would expect them to
overcome the repulsive force and collide.

FIG. 20. (Color online) Trajectories of interacting mutually inco-
herent solitons with power P = 50 and initial separation ξ = 1.25ξt ,
where ξt ≈ 1.09. Initial velocity (a) B = −0.63 and (b) B = −0.66.
The medium parameters are α1 = 2, α2 = −1, σ1 = 1, and σ2 = 2.

Figures 20(a) and 20(b) show the propagation of two
mutually incoherent solitons with initial separation ξ = ξt

and initial velocity B = −0.63 and B = −0.66, respectively.
We observe that when the initial ingoing velocity is too low
(numerically), the repulsive force between the solitons is too
strong to allow the solitons to collide. But when the velocity
is increased, the solitons overcome the repulsive potential and
collide [Fig. 20(b)].

VIII. CONCLUSION

In conclusion, in this work we studied the formation
and interaction of solitons in nonlocal media with compet-
ing nonlinearities. We used a variational approach to find
stationary soliton solutions and found them to be stable.
We then employed a variational technique to investigate the
interaction between identical solitons. We found that solitons
may repel or attract depending on their separation. In partic-
ular, while nonlocality induces attraction of nearby solitons,
the competition between self-focusing and defocusing may
induce repulsion of well-separated solitons. We investigated
the dynamics of soliton propagation and interaction using
numerical simulations. Our numerical simulations appear to
be in perfect agreement with the analytical results obtained
with the variational method.
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