
PHYSICAL REVIEW A 86, 033837 (2012)

First-order corrections to the rotating-wave approximation in the Jaynes-Cummings model

Shu He,1,2 Chen Wang,1 Qing-Hu Chen,3,1,* Xue-Zao Ren,2 Tao Liu,2 and Ke-Lin Wang4

1Department of Physics, Zhejiang University, Hangzhou 310027, People’s Republic of China
2School of Science, Southwest University of Science and Technology, Mianyang 621010, People’s Republic of China

3Center for Statistical and Theoretical Condensed Matter Physics, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
4Department of Modern Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China

(Received 20 March 2012; published 25 September 2012)

The Jaynes-Cummings model without the rotating-wave approximation can be solved exactly by an extended
Swain ansatz with conserved parity. Analytical approximations are then performed at different levels. The
well-known rotating-wave approximation (RWA) is naturally covered in the present zeroth- and first-order
approximations. A first-order correction to the RWA can be obtained in a second-order approximation, by which
the effect of the counter-rotating-wave term emerges clearly. Concise analytical expressions are given explicitly
and can be applicable up to the ultrastrong-coupling regime. A preliminary application to vacuum Rabi splitting
is shown to be very successful.
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I. INTRODUCTION

The interaction of light with matter is a fundamental
concern in optical physics. The simplest paradigm is a two-
level atom coupled to the electromagnetic mode of a cavity.
In the strong-coupling regime where the coupling strength
g/ω (ω is the cavity frequency) between the atom and the
cavity mode exceeds the loss rates, the atom and the cavity
can repeatedly exchange excitations before coherence is lost.
Rabi oscillations can be observed in this strong-coupling
atom-cavity system, which is usually called cavity quantum
electrodynamics (QED) [1]. Typically, the coupling strength
in cavity QED reaches g/ω ∼ 10−6. It can be described by the
well-known Jaynes-Cummings (JC) model [2].

Recently, for superconducting qubits, a one-dimensional
transmission-line resonator [3] or an LC circuit [4–6] has been
shown to play the role of the cavity; this is known today
as circuit QED. More recently, an LC resonator inductively
coupled to a superconducting qubit [7–9] has been realized ex-
perimentally. The qubit-resonator coupling has been strength-
ened from g/ω ∼ 10−3 in the earlier realization [3] to a few
percentage later [6,10] and most recently to 10% [7–9]. In the
cavity-QED system, the rotating-wave approximation (RWA)
is usually made; however, in circuit QED, due to the ultrastrong
coupling g/ω ∼ 0.1 [7–9], evidence for the breakdown of the
RWA has been provided [7]. Therefore, counter-rotating-wave
terms (CRTs) should be included in the JC model. Recently,
many works have been devoted to this qubit-oscillator system
in the ultrastrong-coupling regime [11–15].

Actually, the JC model without the RWA has been studied
extensively for more than 40 years. A incomplete list of
references is given by Refs. [16–31]. Two main schemes are
employed. One is based on photonic Fock states [16–21]
following the pioneering work by Swain [16]. Continued
fractions are present and the solution then becomes very
intricate. The other is on the basis of various polaronlike
transformations or shifted operators, which are approaches
based on photonic coherent states [22–30]. A very accurate
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solution can be obtained readily, but infinite photonic Fock
states are involved.

The RWA eigenstates include only two bare states, which
facilitated earlier clear investigations of various quantum
phenomena in quantum optics. Surprisingly, one or a few
dominant terms in the eigenstates of the JC Hamiltonian
beyond the RWA are still lacking or have not been given
explicitly until now, to the best of our knowledge. Simple
corrections to the RWA may be very useful to analyze the
effect of CRTs on various phenomena at the microscopic level.
In this sense, a few dominant terms are more helpful than the
exact solution including infinite bare states. The purpose of
this paper is not to find a more accurate spectrum, but to give
concise first-order corrections to the RWA.

By using the conserved parity, we extend Swain’s wave
function to the JC model without the RWA. We do not follow
the usual exact diagonalization routine. As an alternative, we
derive a polynomial equation with only a single variable, just
the eigenvalue that we seek. The solutions to this polynomial
equation can give exactly all eigenfunctions and eigenvalues
for arbitrary parameters. Moveover, we can perform approxi-
mations step by step with the help of these exact solutions. The
zeroth- and first-order approximations will exactly recover the
RWA results. The dominant effect of the CRTs emerges in
the second-order approximation.

Without the RWA, the Hamiltonian of a two-level atom
(qubit) with transition frequency � interacting with a single-
mode quantized cavity of frequency ω is

H = �

2
σz + ωa†a + g(a† + a)σx, (1)

where g is the coupling strength, σx and σz are Pauli spin-
1/2 operators, and a† and a are the creation and annihilation
operators for the quantized field. Here, δ = � − ω is defined
as the dimensionless detuning parameter. The energy scale is
set as ω = 1 here.

The RWA is made by neglecting the CRTs a†σ+ + aσ−;
then one can easily diagonalize the Hamiltonian and obtain
the eigenfunctions as [32]

| 〉RWA =
(

cn |n〉
dn |n + 1〉

)
, n = 0,1,2, . . . . (2)
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FIG. 1. (Color online) The first eight energy levels as a function
of coupling constant g at resonance. The exact results without the
RWA are presented by black solid lines. (a) The RWA results (red
dashed line) and (b) the analytical results in Eqs. (26), (27), (30), and
(32) of the second-order approximation (red dashed line).

For later use, we also list the relevant eigenvalues

ERWA
1n = n + 1

2 − 1
2Rn, (3)

ERWA
2n = n + 1

2 + 1
2Rn, (4)

where Rn =
√

δ2 + 4g2 (n + 1). In the ground state (GS), the
qubit is in the GS and the photon is in a vacuum state. The GS
energy is E0 = −�

2 .
Associated with the JC Hamiltonian with and without the

RWA is conserved parity �, such that [H,�] = 0, which is
given by

� = −σz exp(iπN̂ ), (5)

where N̂ = a†a is the bosonic number operator. � has two
eigenvalues ±1, depending on whether the excitation number
is even or odd. The above state (2) with even n is of odd
parity and with odd n even parity. The ground state is of even
parity. The RWA results for the first eight energy levels at
resonance, E1(2)n = n + 1

2 ± g
√

n + 1, are given in Fig. 1(a)
for later comparison.

II. EXACT SOLUTION WITHOUT THE RWA

First we introduce a scheme to obtain the exact solution to
the JC model without the RWA. For convenience, we can write
a transformed Hamiltonian with a rotation around the y axis
by an angle π

2 . In the matrix form it is

H =
(

a†a + g(a† + a) −�
2

−�
2 a†a − g(a† + a)

)
. (6)

About 40 years ago, Swain first proposed an ansatz for
the wave function in the photonic Fock states [16], which
is also a starting point of the standard numerically exact
diagonalization scheme. Since then, various methods have
been developed along this line [17–20], but the conserved
parity has not been considered, to our knowledge. Therefore
continued fractions are unavoidably present in the expressions
for the eigensolutions.

We also proceed along this line, but the parity is incorpo-
rated in Swain’s ansatz, which is then given by

| 〉 =
( ∑M

n=0 cn |n〉
±∑M

n=0(−1)ncn |n〉

)
(7)

where + (−) stands for even (odd) parity, and M is the
truncated number. The Schrödinger equation gives∑

n=0

a†acn|n〉 + g
∑
n=0

cn(
√

n|n − 1〉 + √
n + 1|n + 1〉)

∓�

2

∑
n=0

(−1)ncn|n〉 = Ecn|n〉. (8)

Left-multiplying the photonic states 〈m| gives

mcm + g
√

m + 1cm+1 + g
√

mcm−1 ∓ �

2
(−1)mcm = Ecm;

then we have the recurrence relation

cm+1 = 1

g
√

m + 1

[
E − m ± �

2
(−1)m

]
cm −

√
m

m + 1
cm−1.

(9)

By careful inspection of Eq. (7), one can find that c0 is
flexible in the Schrödinger equation where normalization for
the eigenfunction is not necessary, so we select c0 = 1.0. Then
we have

c1 = 1

g

[
E ± �

2

]
.

Once the first two terms are fixed, the coefficients of the other
terms higher than a† should be determined by the recurrence
relation Eq. (9)

For m = M , the terms higher then (a†)M are neglected, and
we may set cM+1 = 0; then we have[

E − M ± �

2
(−1)M

]
cM − g

√
McM−1 = 0. (10)

Note that this is actually a one-variable polynomial equation
of degree M . The variable is just the eigenvalue we want to
obtain. It is expected that the roots of Eq. (10) will give the
exact solutions to the JC model without the RWA if M is large
enough.

To obtain the true exact results, in principle, the truncated
number M should be taken to infinity. Fortunately, it is not
necessary. It is found that finite terms in the state (7) are
sufficient to give exact results in the whole coupling range.
The usual numerical exact diagonalization can readily give
the energy levels and their wave functions in the JC model,
which can be regarded as a benchmark. We will increase the
truncated number M until the relative difference of the energies
obtained from the roots and the standard value is just less than
10−7, which sets the criterion for the convergence achieved.
Interestingly, for coupling constant g � 0.1 for three typical
atom frequencies � = 0.1, 1, and 1.5, the truncated number
M = 15 in the polynomial equation can give exactly 20 energy
levels by the above criterion for convergence. For g = 1.0
and 2.0, the polynomial equations with M = 25 and 40 can
yield about 20 energy levels exactly. In fact, all the above
calculations can be immediately done on an ordinary PC.

For later use, the first eight exact energy levels as a function
of the coupling constant g obtained by the above polynomial
equations with M = 25 at resonance (� = 1) are presented
in Figs. 1(a) and 1(b) by black solid lines. The parity is not
changed after the level crossing. We then try to follow the
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energy curves to get some analytical approximate results in
the next section.

III. ANALYTICAL RESULTS WITHOUT THE RWA

The recurrence relation Eq. (9) can be simplified to a
tridiagonal form:⎛⎜⎜⎜⎜⎜⎜⎝

�0(E) 1 0 · · · 0

1 �1(E)
√

2 · · · 0

0
√

2 �2(E) · · · 0

· · · · · · · · · · · · · · ·
0 0 0

√
M �M (E)

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
c0

c1

c2

· · ·
cM

⎞⎟⎟⎟⎟⎟⎠ = 0,

where

�m(E) = 1

g

[
m − E ∓ �

2
(−1)m

]
. (11)

The eigensolutions can be obtained from the zeros of the
determinant of the matrix. By increasing M , we can get the
eigenvalues to any desired accuracy. Alternatively, analytical
approximations can be performed systematically by increasing
the order of the matrix step by step. In this way, the results are
improved gradually by considering more off-diagonal matrix
elements.

Neglecting all the off-diagonal terms, the zeroth-order
approximation �m(E) = 0 gives

Em = m ∓ (−1)m
�

2
.

The lowest energy is

E0 = −�

2
.

The ground state is of even parity, so the state is

|0〉′ =
(

c0 |0〉
c0 |0〉

)
. (12)

Transforming back to the original frame gives

|0〉 = 1√
2

(
1 −1
1 1

)(
c0 |0〉
c0 |0〉

)
∝ |g,0〉 .

Interestingly, the first element in the zeroth-order approxima-
tion actually gives exactly the ground state in the RWA. The
other solutions are g irrelevant and therefore omitted.

A. The first-order approximation

The first-order approximation is made by selecting the
matrices with order 2 along the diagonal line,(

�m(E)
√

m + 1√
m + 1 �m+1(E)

) (
cm

cm+1

)
= 0. (13)

It is expected that the mth second-order determinant would
contain the information about two levels with the same parity.
Comparing with the RWA results, it can be inferred that even m

corresponds to odd parity and odd m to even parity. Fortunately,
we have the same �(E) for any value of m:

�m(E) = 1

g

[
m − E + �

2

]
.

Then we have the following quadratic equation:(
m − E + �

2

) (
m + 1 − E − �

2

)
− (m + 1) g2 = 0,

which yields the eigenvalues

E = m + 1
2 ± 1

2

√
(1 − �)2 + 4g2 (m + 1). (14)

These are just the RWA eigenvalues in Eqs. (3) and (4).
According to the wave function Eq. (7), the eigenstate is

then obtained as

|m〉′ =
(

cm |m〉 + cm+1 |m + 1〉
±(−1)m [cm |m〉 − cm+1 |m + 1〉]

)
. (15)

By the above relation between m and parity, we always have
±(−1)m = −1. Transforming back to the original frame gives

|m〉 = 1√
2

(
1 −1

1 1

)
|m〉′ ∝

(
cm |m〉

cm+1 |m + 1〉
)

, (16)

which are just the eigenstates under the RWA in Eq. (2) for
excited states.

So in the first approximation, we cannot obtained results
beyond the RWA ones for all excited states. The effect of the
CRTs emerges only beyond the first-order approximation.

B. The second-order approximation

Naturally, the second-order approximation is performed by
reducing the problem to the mth third-order determinant as∣∣∣∣∣∣∣

�m(E)
√

m + 1 0√
m + 1 �m+1(E)

√
m + 2

0
√

m + 2 �m+2(E)

∣∣∣∣∣∣∣ = 0. (17)

To be more concise, we consider only the resonant case δ = 0.
It is straightforward to extend the result to finite detunings.

Two univariate cubic equations for even and odd parity
can be explicitly derived for any mth third-order determinant.
Three roots for each univariate cubic equation can be obtained
easily by the formula presented in the Appendix. Comparing
with the exact results obtained above, one can see that the
second roots y2 are the true solutions. In particular, the first
root y1 for m = 0 determinant with even (odd) parity gives the
GS energy ( the energy of the first excited state). With these
results in mind, the general solutions can be grouped into the
following two cases, and all eigenvalues and eigenfunctions
can be given analytically in a unified way.

1. m = 2k with even parity and m = 2k + 1 with odd parity

For both m = 2k with even parity and m = 2k + 1 with
odd parity (k = 0,1,2, . . . ), we have the same univariate cubic
equation in the following form:

E3 − (
3m + 5

2

)
E2 + [(

m + 3
2

)(
3m + 1

2

) − (2m + 3)g2]E
− (

m − 1
2

)(
m + 3

2

)2 + [
2m2 + 4m + 1

2

]
g2 = 0. (18)
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According to the Appendix, we have

A = 4 + (6m + 9) g2,

B = −8m − 12 − (12m2 + 22m − 3)g2,

C = (2m + 3)2 g4 + (
6m3 + 13m2 + 3

2m − 3
4

)
g2

+ 4m2 + 12m + 9.

It can be readily proven that 	 = B2 − 4AC < 0 in this case,
so there are three different real roots. Note above that the
energy level is given by the second root y2, so

E =
(
3m + 5

2

) +
√

4 + (6m + 9)g2[cos θ − √
3 sin θ ]

3
,

(19)
with

θ = 1

3
arccos

(
8 − (9m + 27) g2√
[4 + (6m + 9) g2]3

)
.

In particular, m = 0 with even parity will also give the GS.
The GS energy is given by the first root y1:

EGS =
5
2 − 2

√
4 + 9g2 cos θ

3
, (20)

with

θ = 1

3
arccos

(
8 − 27g2√
(4 + 9g2)3

)
.

The states in this case all take the form

| 〉 ∝
(

cm+1 |m + 1〉
cm |m〉 + cm+2 |m + 2〉

)
. (21)

2. m = 2k + 1 with even parity and m = 2k with odd parity

For both m = 2k + 1 with even parity and m = 2k with
odd parity, we have the same univariate cubic equation in the
other form:

E3 − (
3m + 7

2

)
E2 + [(

m + 1
2

)(
3m + 11

2

) − (2m + 3) g2
]
E

− (
m + 1

2

)2(
m + 5

2

) + (
2m2 + 6m + 7

2

)
g2 = 0. (22)

Similarly, we have

A = (6m + 9)g2 + 4,

B = (−12m2 − 38m − 21)g2 + (−8m − 4),

C = (−2m − 3)2g4 + (
6m3 + 29m2 + 83

2 m + 81
4

)
g2

+ 4m2 + 4m + 1.

One can also readily prove that 	 = B2 − 4AC < 0, so there
are also three different real roots. The energy level is given by
the second root y2,

E =
(
3m + 7

2

) +
√

(6m + 9)g2 + 4[cos θ − √
3 sin θ ]

3
,

(23)
with

θ = 1

3
arccos

( −8 + 9mg2√
[4 + (6m + 9)g2]3

)
.

In particular, m = 0 with odd parity will yield also the first
excited state. The corresponding eigenenergy is given by the
first root y1,

E1 =
7
2 − 2

√
9g2 + 4 cos θ

3
, (24)

with

θ = 1

3
arccos

( −8√
(4 + 9g2)3

)
.

The states in this case all take the form

| 〉 ∝
(

cm |m〉 + cm+2 |m + 2〉
cm+1 |m + 1〉

)
. (25)

3. Unified expressions

For future use, we will give unified expressions for the
eigenvalues and eigenfucntions and their one-to-one corre-
spondence to those in the RWA in the following. Setting
m = n − 1 in Sec. II B 1 and m = n in Sec. II B 2, the
eigenvalues in Eqs. (19) and (23) can be expanded in terms of
g as

E1n = n + 1

2
− g

√
n + 1

+ n

4
g2 + 1

32

(3n + 4) n√
n + 1

g3 + · · · , (26)

E2n = n + 1

2
+ g

√
n + 1 − (n + 2)

4
g2

− 1

32

(n + 2) (3n + 2)√
n + 1

g3 + · · · . (27)

The corresponding eigenstates take the forms

|1n〉 ∝
(

cn |n〉
cn−1 |n − 1〉 + cn+1 |n + 1〉

)
, (28)

|2n〉 ∝
(

cn |n〉 + cn+2 |n + 2〉
cn+1 |n + 1〉

)
. (29)

It should be pointed out that the GS and the first excited
state cannot be brought into the above general expression for
n = 0. The GS energy and the GS are

EGS = − 1
2 − 1

2g2 − 1
8g4 + · · · , (30)

|GS〉 ∝
(

c1 |1〉
c0 |0〉 + c2 |2〉

)
, (31)

and the energy of the first excited state and the state itself are

E1 = 1
2 − g − 1

2g2 + 1
8g3 + · · · , (32)

|1EX〉 ∝
(

c0 |0〉 + c2 |2〉
c1 |1〉

)
. (33)

In any case, the ratios of coefficients in the second-order
approximation are

cm:cm+1:cm+2 =
[
−

√
m + 1

�m(E)

]
:1:

[
−

√
m + 2

�m+2(E)

]
, (34)

where the sign ∓ in Eq. (11) for �m(E) for any eigenstate is
only parity dependent.
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It is interesting to note that the first two terms in Eqs. (26)
and (27) are no other than the RWA results of Eqs. (3) and (4)
at resonance. The additional terms appear just because of the
presence of the CRTs. Also, the eigenfunctions in Eqs. (28)
and (29) contain the components of the RWA eigenfunctions
in Eq. (2). Another bare state which cannot be generated by
the rotating-wave terms also emerges.

The analytical results for the energy levels in the second-
order approximation are shown in Fig. 1(b) with red dashed
lines. It is shown that for g � 0.4, the present second-order
approximation can give reasonably good results. Moreover,
it should be emphasized that the analytical expressions are
almost exact for a remarkable wide coupling regime, g �
0.2. So it could become a solid and concise platform to
discuss the effect of CRTs on various physical phenomena
in the presently experimentally accessible systems. Note that
the present maximum value for the coupling strength in a
superconducting qubit coupled to a resonant circuit [7] has
reached g = 0.12, to our knowledge. An application to vacuum
Rabi splitting is performed in the next section as a preliminary
example.

IV. VACUUM RABI SPLITTINGS

If we pump the dressed atom from its ground to an
excited state, it will decay to the dressed ground state through
spontaneous emissions. Under the RWA, when the atom is
excited by the operator V = |e〉〈g| + |g〉〈e| from the ground
state |g,0〉, the emission spectrum has two peaks with equal
heights. The separation of the two peaks, 2g, is just the vacuum
Rabi splitting [33,34].

Without the RWA, we have two choices for the initial states.
When the CRTs are included, the photon in the ground state
is no longer in a vacuum state, as shown in Eq. (31). In the
framework of the second-order approximation, we first use V

to excite the atom from the ground state at resonance,

|V RS〉(1) = V |GS〉 ∝
(

c0 |0〉 + c2 |2〉
c1 |1〉

)
,

which can be expanded in terms of the eigenstates with odd
parity. Note that only the following four excited states are
included:

|V RS〉(1) = v1 |1EX〉 + v2 |2EX〉 + v5 |5EX〉 + v6 |6EX〉 .

(35)
The probabilities hi = |νi |2 can be expressed in g as

h1 = 1

2
+ 1

4
g + 11

32
g3 − 1

16
g4 + · · · ,

h2 = 1

2
− 1

4
g − 11

32
g3 − 1

16
g4 + · · · ,

h3 = 3

64
g6 + · · · ,

h4 = 1

16
g4 +

√
3

48
g5 + · · · .

The atom will decay from the initial state to the dressed ground
state via an emission spectrum. The heights of the peaks in the
spectrum are proportional to the squares of the probabilities of
the corresponding eigenstates. Therefore from the above four
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FIG. 2. (Color online) The peak heights in emission spectrum as
a function of coupling constant at resonance for the initial states (a)
V |GS〉′ and (b) |e,0〉. The present analytical results for the first and
the second peaks are marked by open triangles and pluses, the exact
results by open circles and squares.

probabilities one may find two main peaks, and the other two
peaks are too small to be visible.

In Fig. 2(a), we plot the peak heights from the first two
excited states h1 (open triangles) and h2 (pluses). The exact
numerical results for these heights are also given with open
circles and open squares, respectively. It is interesting to note
that the present analytical results for the main peak height
agree excellently with the exact ones in a wide coupling regime
(0 < g < 0.2).

With increase of the coupling strength, the third peak from
the sixth excited state (h4) becomes visible. Recently a full
numerically exact study [35] showed three peaks (not four
peaks) at g = 0.8 in Fig. 2(b) of that paper. Our analytical
results are qualitatively consistent with this exact study. If the
third peak is visible, the coupling constant should exceed 0.5;
the present second-order approximation can describe it only
qualitatively.

The other initial state is the usual one |e,0〉 which includes
only the first and second excited states in the framework of the
second-order approximation:

|V RS〉(2) = |e,0〉 = v1 |1EX〉 + v2 |2EX〉 . (36)

We can derive two peaks up to o(g6):

h1 = 1
2 − 1

4g + 5
32g3 − 1

16g4 + · · · ,

h2 = 1
2 + 1

4g − 5
32g3 − 1

16g4 + · · · .

Those peak heights are also listed in Fig. 2(b) with open
triangles and pluses, respectively. It is also shown that the
analytical results in this case are perfectly consistent with the
exact ones in a wide coupling regime (0 < g < 0.2).

In both initial states, the level difference for the first two
excited states will give the vacuum Rabi splitting:

E2EX − E1EX = 2g − 1
4g3 + O(g4),

which is smaller than the RWA value by a small amount, 1
4g3.

For the recently experimentally accessible ultrastrong-
coupling constant g = 0.1, the effect of CRTs on the vacuum
Rabi splitting only results only in a tiny shift around 0.0025(ω),
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which is too small to be distinguished in the experimental
data. The ratios of the two heights h1/h2 for the first and
the second initial states can be evaluated as 1.107 and 0.905,
respectively, which are however large enough to be seen
experimentally.

Finally, we would like to give some remarks. As shown in
Fig. 1, in a wide coupling regime (0 < g < 0.2), the difference
between the RWA energy and the present second-order
approximate energy is very subtle, but the states are essentially
different. Some bare states in the latter are absent in the former.
This is also the reason that the difference in the vacuum Rabi
splitting is invisible, but is evident in the peak heights. In the JC
system, the components in the eigenstates are very important
and play the dominant role in many physical processes.

V. SUMMARY

In this paper, the JC model without the RWA is mapped to a
polynomial equation with a single variable, the eigenvalue, via
the bosonic Fock space and parity symmetry. The solutions to
this polynomial equation recover exactly all eigenvalues and
eigenfunctions of the model for all coupling strengths and
detunings. Furthermore, the analytical results are presented in
different stages. The first approximation in the present for-
malism reproduces exactly the RWA results. The effect of the
CRTs emerges clearly just in the second-order approximation.
All eigenvalues and eigenfunctions are derived analytically. It
is shown that they play a dominant role up to the remarkable
coupling strength of g = 0.2, suggesting that they could be
convincingly applied to recent circuit quantum electrodynamic
systems operating in the ultrastrong-coupling regime up to
g = 0.12. Application of the analytical results to the vacuum
Rabi splitting is performed. The different heights of the two
main peaks are given explicitly and agree well with the exact
ones in a wide coupling regime. The concise analytical results
including only three bare states will be very useful for the

exploration of the effects of CRTs on various phenomena in
the ultrastrong-coupling regime.
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APPENDIX: SOLUTIONS TO THE UNIVARIATE
CUBIC EQUATION

The univariate cubic equation can be generally expressed
as

x3 + bx2 + cx + d = 0.

Its solutions can be found in any mathematics manual. If

	 = B2 − 4AC < 0

with

A = b2 − 3c, B = bc − 9d, C = c2 − 3bd,

there are three different real roots,

y1 = −b − 2
√

A cos θ

3
, (A1)

y2 = −b + √
A[cos θ − √

3 sin θ ]

3
, (A2)

y3 = −b + √
A[cos θ + √

3 sin θ ]

3
, (A3)

where

θ = 1

3
arccos

(
2Ab − 3B

2
√

A3

)
. (A4)
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