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Tunneling of optical lattice solitons at interfaces
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The nonlinear wave propagation and scattering processes in discrete optical heterostructures is studied both
analytically and numerically. The presented theory describes the reflection and tunneling of lattice solitons
at interfaces. In particular, the derived expressions allow us to construct the reflected and transmitted pulses
from the incident one. In the range of validity, the analytical results are in very good agreement with the
numerical simulations. It is demonstrated that optical heterostructures represent an effective tool for controlling
and manipulating nonlinear light pulses and beams.
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I. INTRODUCTION

Nanostructured periodic systems such as photonic crystals
and metamaterials provide the opportunity to realize unique
optical phenomena not found in nature [1,2]. Recently, essen-
tial progress was reported in the modeling and fabrication of
various dielectric and metallodielectric structures. Examples
include the demonstration of the photonic band-gap effect
[3–5], the slow-light regime [6–8], and enhanced light-matter
interaction processes [9,10], to mention just a few. Effective
control of photons in nanostructured photonic band-gap
systems can be achieved by means of an engineered network
of waveguide channels, nanocavities, and other functional
elements. That is, any practical realization of all-optical
communication networks will represent a heterostructure
of different units in which light pulses can be effectively
controlled and manipulated.

Solitons are nonlinear wave packets that can propagate
undistorted over long distances. This particular feature makes
them very attractive for applications in the field of all-optical
communications [11]. However, the problem of soliton inter-
action processes with inhomogeneities needs to be addressed
separately. The point is that solitons represent solutions of so-
called integrable nonlinear equations [12]. The inhomogeneity
may break the integrability of the model and, as a result, cause
the radiative decay of solitons [13].

Let us consider the case of effectively one-dimensional
discrete optical systems [14]. In particular, discrete wave
dynamics was intensively studied in arrays of optical waveg-
uides [15], coupled nanocavities in photonic crystals [16], met-
allodielectric systems [17,18], and Bose-Einstein condensates
in deep optical lattices [19–21]. Under many experimentally
accessible conditions the governing equation for such systems
is the discrete nonlinear Schrödinger equation [22]:

i
∂ψn

∂t
+ C(ψn+1 + ψn−1) + N |ψn|2ψn + εnψn = 0. (1)

Here, depending on the system under consideration, t is either
the temporal or the spatial variable [14]. The eigenmode
amplitude at site n is ψn, and C represents the coupling
constant of the adjacent sites. In what follows, for the sake
of simplicity, it is assumed that C has the same value for all
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sites. Moreover, the nonlinear coefficient N is also assumed
to be independent of n. The inhomogeneity in Eq. (1) is
introduced through εn. For instance, in the case of arrays of
optical waveguides, εn may change from site to site due to the
different refractive constant of the individual waveguides.

Below, nonlinear wave transmission and reflection are
studied in discrete optical heterostructures which consist of
two semi-infinite uniform elements with a step discontinuity
at the interface. The demonstration of surface solitons in such
systems [23–25] initiated the rapidly growing interest in linear
and nonlinear optical wave dynamics at interfaces [26–29].
In particular, the power-dependent behavior of lattice solitons
at the interface between two periodic media was reported in
Refs. [30] and [31]. In what follows, soliton propagation and
scattering are studied in the weakly nonlinear limit, i.e., when
the nonlinear term in Eq. (1) represents a small perturbation to
the linear part.

Before proceeding further, the following comment is in
order. Localized wave packets are called pulses for systems
where t represents the temporal variable. However, if t is the
spatial coordinate, those pulses actually are optical beams. In
particular, that is the case for arrays of coupled waveguides.

II. PERTURBATION ANALYSIS

If nonlinear effects are sufficiently weak, the problem can
be treated analytically. In this limiting case, by means of the
reductive perturbation method [32,33], Eq. (1) can be reduced
to the integrable nonlinear Schrödinger (NLS) equation [11].
The NLS model describes the carrier wave envelope, and
under certain conditions, it supports the bright soliton solutions
[12]. From the physics point of view, soliton formation is
a result of the balance between nonlinear effects and linear
dispersion and diffraction. In order to achieve such a balance,
the wave envelope must vary slowly on the scale of the carrier
wavelength. For low enough pulse amplitudes this condition
can always be satisfied. Indeed, envelope soliton parameters
depend on the strength of nonlinear effects. In particular, a
wider soliton has a lower amplitude [12]. Therefore, the theory
presented is valid for the case of sufficiently wide solitons.

Let us assume that εn = εl for n < 0 and εn = εr for n � 0.
That is, the system is uniform on both sides of the interface
which is located at n = 0. Furthermore, suppose that an
incident nonlinear pulse in the left region (n < 0) propagates
to the right and gets scattered at the interface. In general,
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in the final state, there will be a reflected wave propagating
backwards to the left and a transmitted wave which tunnels at
the interface in the right region (n � 0).

It should be stressed that only the variation in εn is relevant
for wave propagation and scattering processes. Indeed, the
values of εn in the corresponding term in Eq. (1) can be
shifted by the arbitrary constant ε via ψn → exp(iεt)ψn

transformation. Therefore, without loss of generality, either
εl or εr can be made to equal exactly 0.

A. Transmitted wave

According to the analysis given above, in the region n � 0
there is only a transmitted wave which, following Refs. [34]
and [35], can be written as

ψn =
∞∑

m=1

∑
l�m

μmV (m,l)(η,τ )E(l)
n , (2)

where μ � 1 is the smallness parameter that guarantees
that the nonlinear term in Eq. (1) can be treated as a
small perturbation to the linear terms. Here, in order to
describe the wave envelope, the set of “slow variables,”
τ = μ2n and η = μ(n − vr t), is introduced. By definition,
E(l)

n = exp (il[krn − ωrt]), and ωr is given by the dispersion
relation:

ωr = −εr − 2C cos(kr ). (3)

In addition, vr is the group velocity:

vr = dωr

dkr

= 2C sin(kr ). (4)

Inserting Eq. (2) into Eq. (1) gives the NLS equation for a
slowly varying envelope V (1,1)(η,τ ),

iV (1,1)
τ + Dr

2
V (1,1)

ηη + Nr |V (1,1)|2V (1,1) = 0, (5)

with

Dr = cot(kr ) (6)

and

Nr = 1

2

N

C sin(kr )
. (7)

The slow variables in the subscripts denote the corresponding
partial derivatives, i.e., fτ ≡ ∂f/∂τ , etc.

It should be stressed that Eq. (5) describes the transmitted
wave in the reference frame moving with the group velocity
vr .

B. Reflected wave

In the region n < 0 there are incident and reflected waves.
Note that, in Eq. (1) inhomogeneity is introduced through the
linear term only. This implies that, in the reflection process,
neither a carrier wave frequency shift nor a scattered pulse
Fourier spectrum distortion is present. It should be noted as
well that the incident pulse is assumed to be broad enough,
and respectively, its spectral width is narrow. Therefore,
the incident and reflected waves must have opposite wave

numbers, and ψn reads [34,35]

ψn =
∞∑

m=1

∑
l+l′�m

μmU (m,l,l′)(ξ,ξ̄ ,τ )E(l,l′)
n ; (8)

here E(l,l′)
n = exp (il[kln − ωlt] − il′[kln + ωlt]), and the ad-

ditional slow variables ξ = μ(n − vlt) and ξ̄ = μ(n + vlt) are
introduced. In addition,

ωl = −εl − 2C cos(kl) (9)

and

vl = dωl

dkl

= 2C sin(kl). (10)

In general, U (m,l,l′) envelopes are allowed to be functions of
all (that is, τ , ξ , and ξ̄ ) variables.

Again, inserting Eq. (8) into Eq. (1) gives the NLS equations
for slowly varying envelopes. In particular, the perturbation
analysis shows that the envelope of an incident wave does not
depend on ξ̄ [i.e., U (1,1,0) = U (1,1,0)(ξ,τ )] and obeys

iU (1,1,0)
τ + Dl

2
U

(1,1,0)
ξξ + Nl|U (1,1,0)|2U (1,1,0) = 0. (11)

Analogously, the envelope of a reflected wave is independent
of ξ̄ [i.e., U (1,0,1) = U (1,0,1)(ξ̄ ,τ )], and

iU (1,0,1)
τ − Dl

2
U

(1,0,1)
ξ̄ ξ̄

− Nl|U (1,0,1)|2U (1,0,1) = 0. (12)

In the expressions given by Eqs. (11) and (12), Dl is defined
as

Dl = cot(kl), (13)

and the nonlinear coefficient reads

Nl = 1

2

N

C sin(kl)
. (14)

Equations (11) and (12) are written in reference frames moving
with the group velocities vl and −vl , respectively.

C. Boundary conditions

Therefore, the nonlinear wave dynamics on both sides of the
discontinuity is governed by the corresponding NLS equations.
The boundary conditions at the interface relate the amplitudes
of transmitted and reflected waves to that of the incident wave.
Indeed, at n = 0 Eq. (2) reads

ψ0 =
∞∑

m=1

∑
l�m

μmV (m,l)E
(l)
0 . (15)

At the same site Eq. (8) gives approximately

ψ0 ≈
∞∑

m=1

∑
l+l′�m

μmU (m,l,l′)E
(l,l′)
0 . (16)

Note that at n = 0 the slow variables are

τ = 0, η = −μvr t, ξ = −ξ̄ = −μvlt.

Analogously, according to Eq. (8), at n = −1,

ψ−1 =
∞∑

m=1

∑
l+l′�m

μmU (m,l,l′)E
(l,l′)
−1 , (17)
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and Eq. (2) yields the following approximate expression:

ψ−1 ≈
∞∑

m=1

∑
l�m

μmV (m,l)E
(l)
−1. (18)

At n = −1 the slow variables read

τ = −μ2, η = −μ(1 + vr t),

ξ = −μ(1 + vlt), ξ̄ = −μ(1 − vlt).

Taking into account that

ωl = ωr (19)

must hold in the wave scattering process, Eqs. (15) and (16)
give

V (1,1) = U (1,1,0) + U (1,0,1). (20)

Moreover, Eqs. (18) and (17) in combination with Eq. (19)
result in

exp(−ikr )V (1,1) = exp(−ikl)U
(1,1,0) + exp(ikl)U

(1,0,1). (21)

Here, the Taylor series expansions of V (1,1), U (1,1,0), and
U (1,0,1) are employed, and only the corresponding leading
terms are kept:

V (1,1)(−μvr t − μ, −μ2) ≈ V (1,1)(−μvr t,0),

U (1,1,0)(−μvlt − μ, −μ2) ≈ U (1,1,0)(−μvlt,0),

U (1,0,1)(+μvlt − μ, −μ2) ≈ U (1,0,1)(+μvlt,0).

That approximation is accurate since μ � 1. Moreover, it
is clear that slowly varying envelopes can be approximately
treated as constant on such small length scales.

Finally, Eqs. (20) and (21) yield

U (1,0,1)(ξ̄ ,0) = R U (1,1,0)(−ξ̄ ,0), (22)

with the reflection coefficient R,

R = exp (−ikr ) − exp (−ikl)

exp (ikl) − exp (−ikr )
, (23)

and

V (1,1)(η,0) = T U (1,1,0)(vlη/vr ,0), (24)

with the transmission coefficient T ,

T = 2i sin(kl)

exp (ikl) − exp (−ikr )
. (25)

It should be noted that −π � kl, kr � π [14]. Nevertheless,
in addition, they are related through Eq. (19),

cos(kr ) = cos(kl) + εl − εr

2C
, (26)

and so, generally speaking, not for all allowed values of kl do
corresponding real values of kr exist. Equations (22), (24), and
(26) determine the reflected and transmitted waves from the
incident pulse.

III. RESULTS

Let us consider soliton propagation and tunneling processes
at the interface of a heterostructure (see Fig. 1). As discussed
above, except for the discontinuity, weakly nonlinear pulses
can be described by the NLS equation. Solutions of the NLS
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FIG. 1. (Color online) Top: The soliton scattering process at the
interface of a heterostructure. Here, |ψn(t)| is plotted. Bottom: εn as a
function of n. In this simulation the interface is located at n = 3000.
Values of other parameters and further details are given in the text.

model can be studied by means of the inverse scattering
method. In particular, the NLS equation

i
∂


∂z
+ P

2

∂2


∂x2
+ Q|
|2
 = 0 (27)

supports the bright soliton solutions if PQ > 0 is satisfied
[11,12]. Therefore, in what follows, the values of kl and kr are
further restricted by DlNl > 0 and DrNr > 0 inequalities. In
particular, if C and N are simultaneously positive, |kl|,|kr | <

π/2, as can be seen from Eqs. (6), (7), (13), and (14). It must
be stressed that the analytical method presented is valid for
π/2 < |kl|,|kr | < π as well. However, for those values of kl

and kr , bright soliton solutions do not exist. This case is less
interesting for applications and, so, is not considered below.

A. Fundamental soliton scattering

Suppose that the incident pulse represents the fundamental
soliton solution of Eq. (11),


(ξ,τ ) = 1

L

√
Dl

Nl

sech

(
ξ

L

)
exp

(
i
Dl

2

τ

L2

)
; (28)

here, a real parameter L is the soliton width [12]. Note that L

is related to the soliton amplitude as well.
According to Eqs. (22) and (24), the initial conditions for

Eqs. (5) and (12), respectively, read


R(ξ̄ ,0) = R

LR

√
Dl

Nl

sech

(
ξ̄

LR

)
, (29)


T (η,0) = vr

vl

T

LT

√
Dl

Nl

sech

(
η

LT

)
, (30)

where LR = L and LT = vrL/vl . In addition, R and T are
given by Eq. (23) and Eq. (25). These expressions define the
initial value problem for reflected and transmitted waves.

The solution of a sech-type initial value problem of the NLS
equation is well known [34–36]. In particular, for the initial
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condition,


i(x,z = 0) = A

Li

√
P

Q
sech

(
x

Li

)
, (31)

the number of generated solitons in Eq. (27) represents the
maximum integer M , which obeys

M < |A| + 1
2 . (32)

In general, M > 1 and there emerges the bound state of M

solitons plus dispersive radiation. The amplitude of the mth
soliton is

A(m) = 2

Li

√
P

Q

(
|A| + 1

2
− m

)
. (33)

This bound state represents the higher-order soliton solution
of the NLS equation with an oscillating profile [11,36]. In the
particular case M = 1, by shedding the dispersive radiation,
the solution asymptotically relaxes to a fundamental soliton
with a constant shape [see Eq. (28)]. If |A| � 1/2, according
to Eq. (32), no soliton can be generated and the pulse disperses.
The dispersive modes have vanishing amplitudes in the final
state.

Comparison of Eq. (29) with Eq. (31) for a reflected wave
directly gives A = AR , where

AR = R, (34)

while from Eqs. (30) and (31) for a transmitted wave, it follows
that A = AT :

AT = T

√
Dl

Nl

√
Nr

Dr

vr

vl

. (35)

Equation (26) shows that both AR and AT are functions of kl .

B. Numerical simulations

The incident fundamental soliton scattering process de-
picted in Fig. 1 represents the solution of Eq. (1) with the
initial condition

ψn(0) = μ
1

L

√
Dl

Nl

sech(�) exp(i�), (36)

where

� = μ

L
(n − n0), (37)

� =
(

kl + Dl

2

μ2

L2

)
(n − n0). (38)

Here, it is assumed that the incident fundamental soliton is
centered around site n0 = 2500 at t = 0. The parameters for
numerical calculations are set as follows: C = N = 1, L = 1,
μ = 0.05, εl = 0, and εr = 0.5. Equation (26) determines the
values of kr as a function of kl . Since both C and N are positive,
as discussed above, the absolute values of kl and kr are chosen
to be less than π/2 ≈ 1.57. For the given set of parameters the
dependency of kr on kl is shown in Fig. 2.

The example shown in Fig. 1 corresponds to kl = 0.8.
The amplitude of the incident soliton [see Eq. (36)] is
0.059. Equations (34) and (35) directly give that |AR| =

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.6

0.8

1

1.2

1.4

1.6

k
l

k r

FIG. 2. (Color online) Dependency of kr on kl given by Eq. (26).
Discussion and the values of other parameters are presented in the
text.

0.188 and |AT | = 1.37. Therefore, according to Eq. (32), the
reflected pulse represents a dispersive wave packet, and in the
transmitted pulse there emerges a fundamental soliton with the
amplitude

|ψT (t → ∞)|max = μA
(1)
T = 0.066, (39)

where, following Eqs. (30) and (33), A
(1)
T is given by

A
(1)
T = 2

LT

√
Dr

Nr

(
|AT | − 1

2

)
. (40)

During the soliton formation process the pulse amplitude
shows a damped oscillatory behavior towards the analytically
predicted value. For instance, the arithmetic mean of the max-
imum and minimum amplitude values in the first oscillation is
0.067. This is in very good agreement with the result predicted
by Eq. (39). The amplitude of the reflected pulse, which
represents a dispersive wave packet, decays monotonously
with time.

0.4 0.5 0.6 0.7 0.8 0.9 1
0.058

0.06

0.062

0.064

0.066

0.068

0.07

0.072

0.074

k
l

μ 
A

T(1
)

FIG. 3. (Color online) Dependency of μA
(1)
T on kl . Squares and

circles represent the numerically obtained results for the arithmetic
mean of the maximum and minimum amplitude in the first and second
oscillations of the soliton parameters, respectively. The solid line is
the theoretical prediction.
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FIG. 4. (Color online) Unstable dynamics of the bound state of
two solitons. kl = 1.2, and as in Fig. 1, |ψn(t)| is plotted. Higher order
effects cause the splitting of the transmitted second-order soliton into
two pulses with a long dispersive tail.

According to Eq. (32) a similar dynamics takes place for
0.4 � |kl| � 1.0. That is, for this range of kl , a single soliton
tunnels at the interface, and the reflected wave represents
the dispersive radiation. Figure 3 compares the results of
numerical simulations with the analytical predictions. It is
difficult to obtain numerically the asymptotic value for the
soliton amplitude with arbitrary accuracy. This is the reason for
the systematic offset to higher values of the numerical results
from the theoretical predictions. Indeed, Fig. 3 demonstrates
that the arithmetic mean of the maximum and minimum
amplitude values in the second oscillation of the soliton
parameters agrees much better with the theory.

For |kl| < 0.4 and 1.0 < |kl| < π/2 the transmitted pulse
is a higher-order soliton. For example, for kl = 1.2 Eqs. (34)
and (35) give that |AR| = 0.133 and |AT | = 1.838. That is,
the reflected wave represents the dispersive radiation, and the
transmitted pulse is the second-order soliton. However, such
a bound state is unstable against the neglected higher-order
perturbations, and fission of solitons takes place. The process
is depicted in Fig. 4. This represents a nonelastic effect which
cannot be described by the NLS equation.

Moreover, for the given width of the incident soliton L = 1
and |kl| < 0.4, the incident soliton is not sufficiently wide.
Indeed, from the definition of ξ and Eq. (28) it follows that the
incident wave packet is localized on a scale of order ∼2L/μ ≈
40. On the other hand, the carrier wavelength is 2π/kl . For
example, for kl = 0.3, this quantity approximately equals .
Therefore, the envelope of the pulse cannot be treated as slowly
varying. In this case, a larger value for the soliton width, e.g.,
L = 2, must be taken.

IV. DISCUSSION AND CONCLUSIONS

The theory presented reduces the nonintegrable discrete
nonlinear Schrödinger equation to the integrable NLS model.
This allows us to develop a fully analytical theory of
weakly nonlinear solitary wave dynamics in discrete optical
heterostructures with a step discontinuity at the interface.
It must be stressed that the theoretical results are valid for
sufficiently wide solitons.

One of the most interesting processes is lattice soliton tun-
neling at the interfaces. As demonstrated above, it is possible
to derive explicit expressions for the reflected and transmitted
pulses from the incident one. The results obtained clearly show
that heterostructures represent an effective tool for control
and manipulation of soliton amplitude, width, and velocity.
The numerical simulations confirm the analytical predictions.
Moreover, it is possible to generate higher order solitary pulses
from a fundamental soliton. However, unfortunately, such
solutions of the NLS equation are unstable against higher-order
perturbations, and fission of solitons takes place.

The effects discussed may be useful for the generation
and manipulation of slow light pulses, which, in turn, show
huge potential for applications in the field of all-optical
communications.
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