
PHYSICAL REVIEW A 86, 033835 (2012)
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The existence and stability of spatial solitons in one-dimensional binary photonic lattices with alternating
spacing and a saturable defocusing type of nonlinearity are investigated. Five types of nonlinear localized
structures are found to exist: two in the mini-gap in the energy spectrum and others in the regular gap. It is proved
that some of them are stable in certain ranges of the system parameters. Interactions between two identical
localized structures propagating parallel to each other are investigated, too. It is shown that this interaction leads
to formation of different localized patterns, such as solitons, breather-like modes, and breather complexes. The
interaction output depends on the power and type of interacting identical solitons, the separation between them,
the width of the mini-gap, and the phase relation between the tails of interacting solitons.
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I. INTRODUCTION

One-dimensional (1D) photonic crystals or photonic lattices
(PLs) represent a special type of optical waveguide array in
which it is possible to control the propagation of light by
changing the parameters of the system, such as the refractive
index and lattice period. The periodic lattice system is charac-
terized by discrete translation symmetry which determines the
band-gap structure of the energy spectra, i.e., the creation of
allowed and forbidden bands for the propagation of light [1].
This concept is similar to that developed in solid state physics
for electrons moving through a crystalline lattice [2]. Due to
their configuration, PLs exhibit various phenomena that cannot
be observed in homogenous optical media, such as discrete
diffraction and Bloch oscillations [3] or diffraction manage-
ment [4]. In nonlinear PL media the interplay between nonlin-
ear and linear effects can lead to a localization of energy into a
few channels. Moreover, nonlinearity can influence the system
to develop modulational instability [5,6] or cause creation of
lattice solitons [7–9] and interactions among them [10–12].

Inexhaustible investigation of the possible ways to control
the transport properties of light led to the development of
different types of PLs, such as lattices with various defects
[13–15], curved [16] and zig-zag [4] PLs, lattices with alter-
nating positive and negative couplings between neighboring
channels [17], or those exhibiting parity-time symmetry [18].
Recently, there has been a lot of interest in binary PLs—a spe-
cial type of nonuniform PL whose additional periodicity gives
rise to an extra mini-gap [19] in the corresponding spectra.
One-dimensional binary PLs were examined both theoretically
and experimentally in structures composed of optical waveg-
uides with alternating widths [20–22] or periodically modified
spacing between them [23–25]. In both configurations
mini-gaps occur and an additional narrow frequency region for
formation of (mini-) gap solitons opens. Furthermore, Bloch-
Zener oscillations [26] as well as properties of surface local-
ized modes [27,28] in various binary superlattices have been
studied, too.

Soliton interactions and their propagation in different
directions through PLs attract a lot of attention in the study
of optical soliton phenomena [29]. There are two types

of soliton interactions to be distinguished: coherent and
incoherent ones. Coherent interactions occur in materials with
an instantaneous (or extremely fast) nonlinear response, like
the case of Kerr or quadratic nonlinearities. For coherent
interactions it is important that the relative phase between
the two beams that overlap and interfere stays fixed for
durations much longer than the response time of the medium’s
nonlinearity [30]. In that case solitons may attract or repulse
depending on whether their envelopes are in phase or out
of phase. Furthermore, interesting behavior of anomalous
coherent interactions of spatial gap solitons in optically
induced photonic lattices has also been demonstrated [31,32].
On the other hand, in the case of incoherent interactions the
relative phase change between the beams is much faster than
the nonlinear response of the material. Incoherent interactions
were studied intensively using materials with slow nonlinear
response such as photorefractive crystals [33]. However, if the
relative phase between the interacting solitons is held constant
during their propagation, coherent interaction may occur even
in photorefractive media [34,35]. Various phase-dependent
interactions between solitons open up a vast research area of
soliton dynamics such as switching, steering, and propagation
control in photonic lattices [36–38].

In this paper, we extend our analysis of light propagation
in a binary lattice with saturable nonlinearity and alternating
spacing presented in Ref. [24], and we investigate how the
variation in the lattice period, i.e., the coupling between
channels, affects the band-gap structure, formation, and
interaction of (mini-) gap solitons. Our results show the
existence of five different types of nonlinear localized modes,
two of which exist in the mini-gap, while all others appear
in the regular gap. Furthermore, stability of (mini-) gap
solitons is briefly discussed. In addition, we study numerically
parallel interactions between identical gap solitons, looking for
nonlinear all-optical switching in such double-periodic PLs.
Depending on the type of interacting solitons, mutual phase
relation, as well as the distance between them, attractive and
repulsive interactions can be observed, leading to the fusion
of two solitons into a single one or forcing them to change
propagation course through the lattice.
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FIG. 1. (Color online) Schematic representation of a binary PL
consisting of 2N elements with constant channel width w and
alternating separations s1 and s2. The basic unit cell of the lattice
(two channels coupled via C1) is highlighted in red. The period of the
binary PL is denoted by �.

II. THE MODEL

Our model describes the light propagation in a 1D binary
PL composed of 2N identical channels whose mutual distance
periodically changes, as depicted in Fig. 1. This setup can
be viewed as an array comprising coupled two-channel basic
cells, whereby each basic cell includes channels coupled via a
coupling constant C1. Coupling between cells is then described
by another coupling constant, C2.

If we presume light propagation along the z direction, the
field evolution can be described by the discrete nonlinear
Schrödinger equation (DNSE) with a saturable nonlinear term
[39]:

i
dEn(z)

dz
+ Cn,n−1En,n−1(z) + Cn,n+1En,n+1(z)

+α
|En(z)|2

1 + κ|En(z)|2 En(z) = 0, (1)

where n denotes the index of the channel in the lattice, En(z)
is the mode amplitude in the nth channel, while α = −1 and κ

represent nonlinear coefficient describing a defocusing type of
nonlinearity and saturation parameter, respectively. The two

conserved quantities of the system are the total power P =∑
n |En|2 and the Hamiltonian H = ∑

n[−Cn,n−1En−1E
∗
n −

Cn,n+1En+1E
∗
n − α|En|2/κ + α ln(1 + κ|En|2)/κ2].

Following the procedure presented in Ref. [18], in the linear
regime (α = 0) we separately observe the modes’ evolution in
even (En = an) and odd (En = bn) elements of the lattice and
reduce the 1D DNSE to two coupled sets of equations:

i
dan

dz
+ C2bn,n−1 + C1bn,n+1 = 0,

(2)

i
dbn

dz
+ C1an,n−1 + C2an,n+1 = 0.

Stationary light propagation requires field amplitudes in the
form an = A exp[i(Kbn� − βz)] and bn = B exp[i(Kbn� −
βz)], where β, Kb, and � stand for the propagation constant
of a mode, the Bloch momentum, and the period of the lattice,
respectively. By replacing the presumed solutions into Eq. (2),
the following dispersion relation can be derived:

Kb = 1

2�
arccos

(
β2 − (

C2
1 + C2

2

)
2C1C2

)
. (3)

The frequency regions of bands and gaps are determined by
the value of Kb. Bands in the spectrum demand real Kb, while
for the complex values of Kb corresponding gaps occur. From
Eq. (3) it follows that the Bloch momentum has complex val-
ues for β ∈ (−(C1 − C2),(C1 − C2)) and β ∈ ((C1 + C2),∞).
Unlike in a uniform PL, the spectrum of a binary PL is
characterized by the existence of two gaps, whereby the
position of the gaps is imposed by the corresponding intervals
for β. This division of the first band and emergence of a
mini-gap are the consequences of the additional modulation of
the refractive index, which is modeled by alternating changes
in the values of the coupling constants. The dependence of
the width of a mini-gap on the coupling constants is governed
by dmg = 2(C1 − C2). For the reference lattice, we set the
coupling constants to be C1 = 282 m−1 and C2 = 127 m−1 as
in Ref. [24]. By holding the first parameter fixed and varying
the second one, it is evident that the energy spectrum of the bi-
nary lattice changes, making the mini-gap broader or narrower,
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FIG. 2. (Color online) Comparative illustration of the band-gap spectra for binary PLs with (a) broader and (b) narrower mini-gap widths
with respect to the reference lattice whose mini-gap width is denoted by d (C1 = 282 m−1, C2 = 127 m−1, dashed dark blue line). The left
panel depicts results obtained for binary PLs with C2 = 80.5 m−1, dmg = 1.3d (purple solid line), and C2 = 34 m−1, dmg = 1.6d (dash-dotted
light blue line). On the right panel calculated results are given for binary PLs with C2 = 173.5 m−1, dmg = 0.7d (purple solid line) and
C2 = 235.5 m−1, dmg = 0.3d (dash-dotted light blue line). The coupling coefficient C1 = 282 m−1 has a fixed value in all cases. Arrows in the
panels show directions of the mini-gap growth (left) and reduction (right).
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depending on the mutual ratio between C1 and C2 (Fig. 2).
It can be noticed that by decreasing the ratio between the
coupling constants the mini-gap becomes more narrow, until
finally it disappears, leading to the case of an uniform lattice.

III. NONLINEAR LOCALIZED MODES

The stationary solutions of Eq. (1) can be written in the form
En(z) = En exp(−iβnlz), with βnl being the corresponding
nonlinear propagation constant inside the gap. We solve
this problem using a procedure based on the Gauss-Newton
algorithm [40]. In the following, we distinguish five different
types of nonlinear localized modes: two in the mini-gap and
three in the region of the regular gap. For simplicity, we termed
solitons from the mini-gap as MG solitons of types I and II. In
the regular gap we distinguish antisymmetric solitons of types
I and II and twisted modes. The distinction between types I and
II refers to the position of the center of the localized structure:
type I solitons identify structures whose centers are positioned
within the lattice cell, while type II identifies solitons whose
centers are located between two neighboring cells. Apart from
obtaining numerical solutions, we made analytical estimations
for narrow localized structures and derived corresponding
expressions.

The stability of localized modes is considered with respect
to three criteria: the spectral criterion obtained by a linear
stability analysis (LSA) [41], the criterion derived from the
Hamiltonian versus power (H-P) diagrams [42], and the nu-
merical criterion. The last one is based on the results of a direct
numerical simulation of the propagation of initially slightly
perturbed localized modes. Here, the model equation (1) is
numerically solved by a fifth-order Runge-Kutta procedure
[43]. The total simulation length is set to z = 400 mm,
which by far exceeds experimentally accessible lengths in
nonlinear crystal samples. The spectral criterion, based on
the linearization with respect to small perturbations, and H-P
criterion cannot give a definite answer for the nonlinear system
stability. Therefore, here the stability of modes is determined
by direct numerical simulation.

A. Mini-gap solitons

Mini-gap solitons are found to exist for nonlinear propaga-
tion constants inside the extra gap. They are characterized
by a field amplitude that is in phase within the unit cell,
and they have a phase jump of π among neighboring cells.
The numerically obtained field profiles of both types of MG
solitons are depicted in Figs. 3(a) and 3(b).

Following the numerically obtained MG soliton patterns
of type I, we derived simple analytical expressions for
the field amplitudes, and we checked whether they fit the
numerical counterparts. The starting amplitude configuration
was (E−(N−1),E−(N−2), . . . ,E−4,E−3,−E−2,−E−1,E0,E1,

−E2,−E3,E4,E5, . . . ,EN−1,EN ), and we assumed that the
field amplitude En has the most significant values in the first
and third channels [as in Fig. 3(a)]. Including this into the
system of equations (1) and keeping only the largest terms,
after a straightforward algebraic procedure we obtained the
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FIG. 3. (Color online) Field profiles of MG solitons of type I

(a) and II (b), antisymmetric solitons of type I (c) and type II (d),
and a twisted soliton (e) for a reference lattice C1 = 282 m−1, C2 =
127 m−1, and κ = 5 × 10−4. Field amplitudes are in arbitrary units
and scaled by the factor

√
κ . Dashed lines with circles and solid lines

denote the numerical and analytical results, respectively.

amplitudes of the MG solitons of type I:

E1 =
√

−(βnl + C1)

α + κ(βnl + C1)
, E3 =

√
−βnl

α + βnlκ
,

E2 = C2E1 − C1E3

βnl

, E4 = βnlC2

β2
nl − C2

1

E3,

En=2j+3 =
(

C1

βnl

)j (
C2

βnl

)j−1

E4 (j = 1, . . . ,N/2 − 2),

En=2j+4 =
(

C1

βnl

)j (
C2

βnl

)j

E4 (j = 1, . . . ,N/2 − 2).

Since the MG soliton of type I is symmetric with respect
to the central cell, the same amplitude distribution will be
valid for n = −(N − 1), . . . ,0. In contrast to numerically
obtained solutions that are found in the whole mini-gap, ap-
proximate analytical solutions exist only for βnl ∈ (0,C1 − C2)
[see Fig. 4(a)].

The analytical results nicely reproduce only the central part
of the soliton structure (up to the fifth element) [see Fig. 3(a)],
and the corresponding power can be written in the form

PMG ≈ 2

[
|E1|2 + |E2|2

+ |E3|2
(

1 + β2
nlC

2
2(

β2
nl − C2

1

)2 + C2
1C

2
2(

β2
nl − C2

1

)2

)]
, (4)

which exhibits larger deviations compared to the numerical
curve.
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FIG. 4. (Color online) Power vs βnl for (a) MG, (b) antisym-
metric, and (c) twisted solitons for the reference lattice parameters
C1 = 282 m−1, C2 = 127 m−1, and κ = 5 × 10−4. Power is given in
arbitrary units and scaled by the factor κ .

The existence curves of the MG solitons, obtained numer-
ically, are depicted in Fig. 4(a). It can be seen that there are
two solution branches, each corresponding to a certain type
of MG localized mode. The solid blue curve in Fig. 4(a)
defines the existence region of the MG modes of type I. It
extends throughout the entire mini-gap. The MG solitons close
to the upper band slowly converge to “outgap” solitons [44],
which are characterized by nondecaying tails. The analytically
estimated curve for the MG solitons of type I is shown in this
plot as a red dashed curve. On the other hand, type II MG
solitons [dotted blue curve in Fig. 4(a)] exist only for negative
values of βnl . In addition, results show that the soliton power
for type I solitons decreases with the increase of dmg . However,
the power of modes of type II increases for broader mini-gaps.

The linear stability analysis showed that the MG solitons
of type I are stable for negative values of βnl and oscillatory
unstable in almost the whole existence region characterized by
a positive βnl . These results are confirmed by direct numerical
simulations, while the H-P criterion predicts stability of the
MG solitons in the whole existence region. The type II
solutions are unstable in the whole region of their existence

for PLs whose mini-gap widths are less than d according to
the LSA and direct numerical simulations. For lattices with
broader mini-gap, there is an area of frequencies for which
the LSA predicts stable propagation of solitons. While this is
consistent with the H-P criterion, numerical simulations show
instability of these solutions after z = 200 mm.

B. Antisymmetric solitons

In the regular gap, we numerically obtained two types
of antisymmetric soliton solutions. The type I solution is
derived analytically, too. Both types of modes exhibit a
pure staggered form [Figs. 3(c) and 3(d)]. The following
analytical solutions for the amplitude of modes of type
I have been obtained starting with the amplitude pattern
(E−(N−1), . . . ,E−2,−E−1,E0,−E1,E2, . . . ,EN ) and assum-
ing |E0| = |E1| � |En|, n = −1,±2,±3, . . . :

E1 =
√

βnl − C1

−α + κ(C1 − βnl)
,

En=2j = C
j

2 C
j−1
1

β
2j−1
nl

E1 (j = 1, . . . ,N/2),

En=2j+1 = C
j

2 C
j

1

β
2j

nl

E1 (j = 1, . . . ,N/2 − 1),

with the corresponding power

Pas = 2|E1|2
⎡
⎣N/2∑

j=1

(
C2

βnl

)2j−2 (
C1

βnl

)2j−2

+
N/2∑
j=1

(
C2

βnl

)2j (
C1

βnl

)2j−2
⎤
⎦ . (5)

Due to the antisymmetry with respect to the central cell,
mode amplitudes will be inversed for n = −(N − 1), . . . ,0.
The existence region of this soliton type is βnl ∈ (C1 +
C2,C1 − α/κ). Therefore, the analytically obtained profiles
and the existence regions of type I antisymmetric solitons
nicely fit the numerical findings, as illustrated in Figs. 3(c)
and 4(b), where the latter one shows the corresponding P (βnl)
dependencies.

Similar to the case of MG solitons, two branches of the
antisymmetric solutions can be distinguished. It is evident
that the type II solitons require higher powers in order to be
localized. For both types of solutions the increase of the mini-
gap’s width causes an increase of power needed for nonlinear
localization.

The stability of the antisymmetric modes of type I is
predicted by the H-P criterion in the whole existence region.
However, according to the direct numerical simulations and
the LSA, only the modes with low power are stable, while the
high-power solutions are unstable and propagate as breathers.
On the other hand, the LSA and direct numerical simulation
indicate the instability of the solutions of type II in the whole
region of their existence.
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C. Twisted solitons

Besides antisymmetric modes, in the regular spectrum also
gap twisted solitons exist. An example of a field profile of
a twisted mode is depicted in Fig. 3(e). The envelope of a
twisted solution is in phase within the central cell, while among
neighboring elements of the lattice a phase shift of π appears
[45], i.e., (E−(N−1), . . . ,E−2,−E−1,E0,E1,−E2,E3, . . . ,EN ).
By adopting the analytical approach mentioned in the two
previous sections for other soliton types, we obtained the
following results for the corresponding amplitudes:

E1 =
√

−(βnl + C1)

α + κ(βnl + C1)
,

En=2j = C
j

2 C
j−1
1

β
2j−1
nl

E1 (j = 1, . . . ,N/2),

En=2j+1 = C
j

2 C
j

1

β
2j

nl

E1 (j = 1, . . . ,N/2 − 1),

with the related power

Ptw = 2|E1|2
⎡
⎣N/2∑

j=1

(
C2

βnl

)2j−2 (
C1

βnl

)2j−2

+
N/2∑
j=1

(
C2

βnl

)2j (
C1

βnl

)2j−2
⎤
⎦ . (6)

These solutions exist for βnl ∈ (C1 + C2,−C1 − α/κ).
Similar, due to the symmetric nature of the solution, mode
amplitudes will be identical for n = −(N − 1), . . . ,0 with
respect to the central cell. The previous condition related to
the analytically obtained βnl interval implies the existence
of twisted solitons in the regular gap. Obviously, this region
of nonlinear propagation constants is in full accordance with
the one obtained numerically. The curves of soliton existence
[Fig. 4(c)] refer to a certain power threshold necessary for
formation of twisted solitons. In this βnl interval, analytical and
numerical results are in good agreement. A decrease of the ratio
C1/C2, i.e., a more narrow mini-gap, leads to a decrease of
soliton power. Finally, for very narrow mini-gaps (dmg = 0.3d)
no twisted modes are found to exist.

The stability of twisted modes is confirmed by all stability
criteria in almost the whole existence region. Exceptions are
the low-power modes whose instability is indicated by the LSA
and numerical criteria.

IV. PARALLEL SOLITON INTERACTIONS
IN BINARY PHOTONIC LATTICES

The understanding of soliton interactions in various PLs
is of crucial significance for light manipulation in photonic
devices. In this paper, we numerically investigate the parallel
interactions of two identical localized modes of all existing
types. In order to achieve interaction between two solitons, it
is necessary that the mutual distance allows for an overlap of
amplitude tails, so the localized modes can “feel” each other
[37,46]. Depending on whether the tails of solitons are in phase
or out of phase, the resulting interaction will have attractive or
repulsive character. In general, the interaction output also de-
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FIG. 5. (Color online) Top view of the parallel interactions
between MG solitons of type I: (a) in-phase and (b) out-of-phase
interaction in the reference lattice (βnl = −80 m−1), (c) out-of-phase
interaction in a reference lattice (βnl = −20 m−1), and (d) out-
of-phase interaction in the lattice with mini-gap width parameter
dmg = 1.3d (βnl = −100 m−1). In all cases the separation between
centers of initial solitons equals � = 2�.

pends on the solitons’ power, the mini-gap width, and the initial
distance � between the centers of two interacting solitons.

A. Interaction between MG solitons

In the case of the reference lattice, in-phase interactions
between two MG solitons will lead to fusion of the interacting
modes into narrow breather-like structures, mostly localized
within one cell [Fig. 5(a)]. On the other hand, the out-of-phase
solitons will repulse each other, causing the occurrence of
discrete diffraction for low-power solitons, or free propagation
across the lattice for solitons with higher powers, as shown
in Fig. 5(b). These situations resemble those reported in
Refs. [29,46]. Solutions which exist deeper in the mini-gap
and whose tails are out of phase may form localized structures
that will be deducted periodically and travel toward each other
[Fig. 5(c)]. Simulations have shown that, with increasing the
power of such solitons, the period of oscillations decreases.
Observations of the interactions of MG solitons of type I with
positive values of βnl has pointed at their mutual attraction
and formation of breather-like modes, no matter which type
of interaction (in phase and out of phase) took part. A
similar situation occurs for other types of examined binary
PLs, whereby the in-phase interactions between solitons from
broader mini-gaps and with βnl < 0 lead to fusion into a stable
soliton of type I, while the out-of-phase interactions may cause
formation of self-trapped breather complexes consisting of
two coupled out-of-phase solitons with most of their energy
concentrated within two cells [Fig. 5(d)].

In the case of interactions between MG solitons of type II,
modes that are in phase attract each other, leading to the
formation of localized structures with most of the energy
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FIG. 6. (Color online) Top view of the parallel interactions
between MG solitons of type II: (a) out-of-phase interaction (dmg =
1.3d , � = 2�, and βnl = −75 m−1), (b) out-of-phase interaction
(dmg = 1.3d , � = 3�, and βnl = −75 m−1), (c) in-phase interaction
(dmg = 0.3d , � = 12�, and βnl = −100 m−1), and (d) out-of-phase
interaction (dmg = 0.3d , � = 12�, and βnl = −80 m−1).

localized within one cell, while the out-of-phase interactions
have repulsive character. When the distance between centers
of initial solitons equals two periods (� = 2�), overlapping
between structures is very strong, causing mutual transfer
of energy. For these center separations, in-phase solitons
give rise to fusion into a stable soliton mostly localized
within one cell (low-power initial solitons) or narrow breather
modes (high-power initial solitons). With the increase of
the solitons’ power, the out-of-phase interactions between
solitons with center-to-center separation of � = 2� result in
discrete diffraction for broad solitons, free propagation across
the lattice for more localized initial modes, and interesting
breather complexes for solitons that are deeper in the mini-gap,
as depicted in Fig. 6(a). For larger separations � = 3�, the
overlap of tails decreases, as does the mutual influence. Now,
the out-of-phase solitons that are deeper in the mini-gap
construct stable soliton complexes with most of their energy
located in two cells [Fig. 6(b)]. Reduction of the mini-gap
affects the appearance of broad MG localized solutions of
type II. To achieve the overlap of tails here, we took � to match
12 periods of the lattice in our calculations. Again, we varied
the phase relation between the solitons’ tails as well as the
solitons’ power. Simulations show that in-phase interactions
between low-power solitons lead to periodical confinement of
energy within several channels, as depicted in Fig. 6(c). On
the other hand, the out-of-phase interactions cause repulsion
of localized structures [Fig. 6(d)]. The narrower the initial
solitons are, the less pronounced is the repulsion between
them. With the increase of power more localized in-phase
structures attract each other, an exchange of energy appears,
and solitons continue to propagate freely through the lattice.
With a further increase in the solitons’ power, the solitons tend
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FIG. 7. (Color online) Top view of the parallel interactions in
the reference lattice between antisymmetric solitons of type I:
(a) in-phase interaction (βnl = 900 m−1), (b) out-of-phase interac-
tion (βnl = 900 m−1), (c) in-phase interaction (βnl = 430 m−1), and
(d) out-of-phase interaction (βnl = 430 m−1). In all cases the separa-
tion between centers of initial solitons equals � = 2�.

to fuse into a breather-like mode after they experience the first
collision, whereby they collide later as the power of the solitons
grows.

B. Interaction between antisymmetric solitons

In Figs. 7(a) and 7(b) the interactions (in phase and out of
phase, respectively) between two very narrow antisymmetric
solitons of type I are illustrated. Similarly to what was found
in [46], the interaction causes a redistribution of energy
between solitons, but it is not strong enough to force them
to pass into other channels. Instead, two breather-like modes
are formed whose oscillations in amplitude decrease with the
increase of their mutual distance. As the power of the solitons
decreases, which corresponds to broader localized structures,
the interaction between them becomes more intense due to a
greater overlap of tails. The perturbation to each of the solitons
becomes larger, and in some cases it can lead to free movement
of localized modes across the lattice. In these situations, the
solitons are able to overcome the intralattice potential barrier
[41,47]. For very broad modes, in-phase interactions will
cause fusion into breather-like structures, while out-of-phase
interacting solitons will lead to the occurrence of discrete
diffraction, as illustrated in Figs. 7(c) and 7(d). With the
increase of the mini-gap, interactions between antisymmetric
modes of type I become weaker, whereupon most of the sce-
narios resemble the situations depicted in Figs. 7(a) and 7(b).

The type II soliton interactions are depicted in Fig. 8.
Simulations show that besides the phase relation of interacting
modes, the outcome of interactions considerably depends
on the separation between centers of the initial structures
and the width of the mini-gap, especially in cases of lattices
with broader mini-gaps. For narrow mini-gaps, all in-phase
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FIG. 8. (Color online) Top view of the parallel interactions
between antisymmetric solitons of type II: (a) in-phase interaction
and (b) out-of-phase interaction in a lattice with dmg = 0.3d (βnl =
600 m−1); (c) in-phase interaction and (d) out-of-phase interaction in
a lattice with mini-gap width parameter dmg = 1.3d (βnl = 900 m−1).
In all cases the separation between centers of initial solitons is
� = 3�.

interactions will cause fusion into breather-like modes with
most of the energy concentrated within one cell, as illustrated
in Fig. 8(a). Furthermore, very narrow localized structures
will fuse into one-channel localized solitons. For out-of-phase
interacting modes, mutual repulsion occurs, leading to a shift
from initial channels and formation of breather-like complexes
consisting of two self-trapped breather structures with most of
the energy localized within basic cells (i.e., channels coupled
via C1), as presented in Fig. 8(b). With the increase of the
solitons’ power this repulsive character fades out, whereupon
the amplitude oscillations of emerging breather structures
decrease. On the other hand, in lattices with broad mini-gaps
it is possible to obtain breather-like complexes with most of
the energy trapped within two channels, which are symmetric
with respect to the center of the breather complex [Fig. 8(d)].
This situation happens only if the interacting modes are
narrow and sufficiently separated (at least � = 3�). A similar
situation is found for two narrow solitons whose tails are in
phase and centers are positioned at � = 3�. Here a breather
complex is formed again, but now the peaks of the complex
are closer to each other than in the case of out-of-phase
interaction [Fig. 8(c)]. These phenomena may be suitable for
applications in all-optical switching and light manipulation,
following the concept of logic operations [48]. Also, in lattices
with broad mini-gaps, low-power solitons with in-phase tails
will form either a stable soliton of type I for � = 3� or a
self-trapped breather for � = 2�.

C. Interaction of twisted solitons

In the case of interactions between two identical twisted
solitons, simulations show that the obtained localized

structures do not feel each other for center separations � higher
then three periods of the lattice. Furthermore, solitons found in
the PLs with broad mini-gaps are highly localized, and thus for
� > 2� interaction does not occur. In general, two identical
high-power solitons with out-of-phase interacting tails will
always change by transforming into two coupled breather-like
modes. The in-phase interactions lead to the corruption of
both structures and transport of energy through numerous
channels in the lattice. The same situation happens for out-
of-phase interactions between broad solitons. In addition, the
interactions between high-power solitons are negligible in the
PLs with broad mini-gaps.

V. CONCLUSION

In this work, we have analyzed localized mode formation
and propagation of solitons through 1D binary PLs with al-
ternating distances between adjacent elements and defocusing
saturable nonlinearity. Due to the particular geometry of the
binary lattice characterized by double periodicity, an additional
mini-gap in the corresponding spectra is formed which enables
the creation of new localized entities. Therefore, a new
field of investigation and manipulation with newly localized
patterns is opened. In addition, this sets huge challenges for
experimental and theoretical investigations of the localized
mode formation and propagation in complex multiperiodic
lattices.

Here we demonstrate the existence of two types of mini-gap
solitons, two types of antisymmetric gap solitons, as well as
twisted gap solitons. The center of a mode of so-called type I
is within the cell, while in the case of type II the center is
located between two neighboring cells. The stability analysis,
which is performed by a linear stability procedure, according
to the H-P criterion and by direct numerical simulations, shows
the existence of stable solitons under certain conditions. Here
the exceptions are antisymmetric and MG solitons of type
II, which are stable according to the LSA and H-P criterion
but unstable according to the direct simulations. Finally,
parallel interactions between two coherent identical solitons
of the same type are studied. Direct simulations have shown
the dependence of the interaction outcome on the solitons’
power, mutual separation, phase relation between parts of
the overlapping solitons’ tails, as well as on the type of
interacting solitons. Different situations may lead to the fusion
of two solitons into another soliton or a narrow breather-like
mode. Furthermore, scenarios such as mutual repulsion of
solitons and formation of breather-like complexes are shown
to be possible as well. This study is only an introduction
to the intriguing field of localized structure management in
multiperiodic photonic lattices.
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Lett. 93, 033901 (2004).

[42] N. Akhmediev, A. Ankiewicz, and R. Grimshaw, Phys. Rev. E
59, 6088 (1999).

[43] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes—The Art of Scientific Computing, 3rd ed.
(Cambridge University Press, New York, 2007).

[44] A. V. Gorbach and M. Johansson, Eur. Phys. J. D 29, 77 (2004).
[45] S. Darmanyan, A. Kobyakov, E. Schmidt, and F. Lederer, Phys.

Rev. E 57, 3520 (1998).
[46] A. B. Aceves, C. De Angelis, T. Peschel, R. Muschall, F. Lederer,

S. Trillo, and S. Wabnitz, Phys. Rev. E 53, 1172 (1996).
[47] Yu. S. Kivshar and D. K. Campbell, Phys. Rev. E 48, 3077

(1993).
[48] D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature

(London) 424, 817 (2003).

033835-8

http://dx.doi.org/10.1103/PhysRevLett.83.4756
http://dx.doi.org/10.1103/PhysRevLett.85.1863
http://dx.doi.org/10.1103/PhysRevA.46.3198
http://dx.doi.org/10.1103/PhysRevLett.92.163902
http://dx.doi.org/10.1103/PhysRevLett.81.3383
http://dx.doi.org/10.1038/nature01452
http://dx.doi.org/10.1364/OPEX.13.001780
http://dx.doi.org/10.1364/OPEX.13.001780
http://dx.doi.org/10.1364/JOSAB.14.003066
http://dx.doi.org/10.1364/OL.28.000834
http://dx.doi.org/10.1364/OL.28.000834
http://dx.doi.org/10.1364/OL.32.000512
http://dx.doi.org/10.1038/nature04722
http://dx.doi.org/10.1038/nature04722
http://dx.doi.org/10.1364/OL.33.000917
http://dx.doi.org/10.1364/OL.35.003099
http://dx.doi.org/10.1103/PhysRevLett.83.963
http://dx.doi.org/10.1103/PhysRevLett.83.963
http://dx.doi.org/10.1103/PhysRevA.81.053817
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1364/OL.27.002112
http://dx.doi.org/10.1103/PhysRevLett.91.113902
http://dx.doi.org/10.1103/PhysRevLett.91.113902
http://dx.doi.org/10.1364/OL.29.002890
http://dx.doi.org/10.1007/s00340-009-3467-2
http://dx.doi.org/10.1103/PhysRevA.79.065801
http://dx.doi.org/10.1103/PhysRevA.79.065801
http://dx.doi.org/10.1364/OL.37.001253
http://dx.doi.org/10.1140/epjd/e2012-30204-4
http://dx.doi.org/10.1103/PhysRevLett.102.076802
http://dx.doi.org/10.1103/PhysRevLett.102.076802
http://dx.doi.org/10.1364/OL.32.001390
http://dx.doi.org/10.1364/OL.32.001390
http://dx.doi.org/10.1126/science.286.5444.1518
http://dx.doi.org/10.1364/OL.8.000596
http://dx.doi.org/10.1088/1674-1056/19/6/065203
http://dx.doi.org/10.1088/1674-1056/19/6/065203
http://dx.doi.org/10.1364/OL.36.001167
http://dx.doi.org/10.1103/PhysRevA.32.2270
http://dx.doi.org/10.1364/OL.22.000369
http://dx.doi.org/10.1364/OL.22.000369
http://dx.doi.org/10.1364/OL.22.000448
http://dx.doi.org/10.1364/OL.22.000448
http://dx.doi.org/10.1364/OL.16.000015
http://dx.doi.org/10.1109/JQE.2002.806190
http://dx.doi.org/10.1109/JQE.2002.806190
http://dx.doi.org/10.1103/PhysRevLett.76.1623
http://dx.doi.org/10.1364/OE.14.011248
http://dx.doi.org/10.1103/PhysRevLett.93.033901
http://dx.doi.org/10.1103/PhysRevLett.93.033901
http://dx.doi.org/10.1103/PhysRevE.59.6088
http://dx.doi.org/10.1103/PhysRevE.59.6088
http://dx.doi.org/10.1140/epjd/e2004-00017-3
http://dx.doi.org/10.1103/PhysRevE.57.3520
http://dx.doi.org/10.1103/PhysRevE.57.3520
http://dx.doi.org/10.1103/PhysRevE.53.1172
http://dx.doi.org/10.1103/PhysRevE.48.3077
http://dx.doi.org/10.1103/PhysRevE.48.3077
http://dx.doi.org/10.1038/nature01936
http://dx.doi.org/10.1038/nature01936



