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Testing the reliability of a velocity definition in a dispersive medium
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We introduce a method to test if a given velocity definition corresponds to an actual physical flow in a dispersive
medium. We utilize the equivalence of the pulse dynamics in the real-ω and real-k Fourier expansion approaches
as a test tool. To demonstrate our method, we take the definition introduced by Peatross et al. [Phys. Rev. Lett.
84, 2370 (2000)] and calculate the velocity in two different ways. We calculate (i) the mean arrival time between
two positions in space, using the real-ω Fourier expansion for the fields and (ii) the mean spatial displacement
between two points in time, using the Fourier expansion in real-k space. We compare the velocities calculated
in the two approaches. If the velocity definition truly corresponds to an actual flow, the two velocities must
be the same. However, we show that the two velocities differ significantly (3%) in the region of superluminal
propagation even for the successful definition of Peatross et al.
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I. INTRODUCTION

Studies concerning the propagation of light in dispersive
media dates back as far as Brillouin and Sommerfeld [1].
Nevertheless, new studies [2–14] on the concept of pulse
velocity were stimulated by the famous experiment [15,16]
in which light seems to propagate over the speed of light
in a vacuum (superluminal). This effect takes place due to
superluminal group velocities near the absorption resonance
in dye solutions.

Beside absorptive dielectrics there exist metamaterials in
which the index exhibits some unusual behavior. These are
constructed either using coherent population trapping [17],
e.g., electromagnetically induced transparency (EIT) and
index-enhancement schemes, or spatial modulation as in left-
handed materials [18]. Beyond scientific curiosity, applications
such as memory storage and read out using slow light motion
carried out the physics of metamaterials to an important status
in information technology.

In such materials, dielectric response may switch from
absorption to gain in MHz intervals for the optical frequencies.
As well, index of refraction may display steep and negative
derivatives. In those situations, it is confusing even to figure
out the reorganization of the pulse besides facing the problem
of superluminality. Unfortunately, when the original pulse
is severely modified there is no direct way to test the
validity of the propagation velocity. Several experiments [2–6]
measure either the peak of the pulse or the mean absorption
time. However, motion of the pulse peak or center may not
correspond to a travel velocity, since the shape of the pulse is
distorted by mutual act of gain or absorption. For this reason,
we adopt a method to test the reliability for a given description
of velocity. We utilize the equivalence of the pulse dynamics
within the real-ω and real-k Fourier expansions as the test tool
in complex dielectrics.

When the dielectric function is complex, there are two
alternative mathematical approaches that are used in dealing
with pulse dynamics. One can analyze the system equivalently
using the real-ω [E(x,t) = ∫ +∞

−∞ dωD1(ω)ei(k(ω)x−ωt)] and

real-k [E(x,t) = ∫ +∞
−∞ dkD2(k)ei(kx−ω(k)t)] Fourier domain.

E(x,t) is the electric field that is used to calculate the velocity.

In the real-ω or real-k approaches, decay appears spatially or
temporarily in the Fourier integrand, respectively, since k or
ω is complex. If one is interested in the penetration depth,
Fourier expansion is carried out over the real-ω space. On
the other hand, if one is interested in the temporal lifetime
of the pulse in the material, then real-k expansion is used. For
example, dealing with photonic crystals composed of complex
dielectric materials, one constructs the master equation using
the real-ω (real-k) Fourier space for calculating the penetration
(duration) of light into (in) the crystal [19–21]. For a given
velocity definition, the pulse speed can be calculated within
both approaches.

Among different velocity definitions [7,22,23] existing in
the literature, one of the most successful is the one that is
introduced by Peatross et al. [8]. In Ref. [8], propagation is
described with the Poynting vector average of the temporal
position, i.e., 〈t〉x = ∫

dt t S(x,t)/
∫

dtS(x,t). The velocity
v1 = (x − x0)/(〈t〉x − 〈t〉x0 ) is introduced in this regard. On
the other hand, considering the same definition [8], a second
velocity v2 = (〈x〉t − 〈x〉t0 )/(t − t0) can be adopted similarly
using the mean spatial position of the pulse, i.e., 〈x〉t =∫

dx x S(x,t)/
∫

dxS(x,t). Since t or x average is dealt within
the calculation of v1 or v2, respectively, it is standard to work
in the conjugate Fourier space where ω or k is chosen as real.
If the definition correctly addresses a physical flow, then the
two velocities must be identical or at least must be very close
to each other.

It is shown in Ref. [11] that the observed consistency of the
definition [8] with the experimental results [2–6] follows from
the equivalence of the detector time (mean time for detector
absorption) to the arrival time deduced from this description
[8]. Accordingly, here we choose to test the validity of this
definition as the example.

In order to compare the two results for the given velocity
definition, we perform the following. We first calculate the
mean arrival time �t = 〈t〉x-〈t〉x0 , from position x0 to x, for a
distance �x1 = x − x0. This is handled in the real-ω approach.
Second, we calculate the corresponding mean propagation
distance �x2 = 〈x〉t -〈x〉t0 , from time t0 to t , in the real-k
Fourier expansion. For the purpose of comparison, we chose
t − t0 equal to �t , which is the value determined in the real-ω
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expansion. Afterwards, we compare the two distances, �x1

and �x2, for the same �t . Thereby, we compare the two
velocities, v1 = �x1/�t and v2 = �x2/�t .

The organization of the paper is as follows. In Sec. II, we
establish a connection between the two expansion coefficients
D1(ω) and D2(k) using the boundary conditions. In Sec. III,
we calculate the velocity definition of Peatross et al. [8] in two
different ways, by expanding the fields both in the real-ω and
real-k Fourier space. We show the results with the differences
in the calculated values of the two velocities, especially in the
superluminal region. Section IV includes our conclusions.

II. RELATING THE FOURIER COEFFICIENTS
D1(ω) AND D2(k)

In this section, we establish an analytical connection
between the Fourier components of the real-ω expansion
[D1(ω)] and the real-k expansion [D2(k)]. In order to indicate
that a variable is fixed to real, we use a bar accent over that
variable. For instance, dω̄ (dk̄) corresponds to an integration
over the real-ω (-k) space.

We consider a dielectric function in the Lorentzian form
[22,24]

ε(ω) = 1 − ω2
p

ω2 − ω2
0 + iγ ω

, (1)

where ωp (ω0) is the plasma (atomic transition) frequency and
γ is the damping rate. One can calculate refractive index by
n(ω) = (ε)1/2.

The calculation of complex k values for given real-ω̄ values
is straightforward using ck = ω̄n(ω̄). However, the calculation
of complex ω requires the solution of the nonlinear equation
ck̄ = ωn(ω) for given real-k̄ value. In Fig. 1 we plot both
integration paths in the complex ω plane, corresponding to
real ω (C1 line) and real k (C2 contour). We also indicate the
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FIG. 1. (Color online) Real-ω (C1: red thin ωI = 0 line) and
real-k (C2: thick contour) integration paths corresponding to the
Lorentzian dielectric constant (1) with parameters ωp = 0.1ω0 and
γ = 0.12ω0. C2 contour is deduced by solving the nonlinear index
equation ck̄ = n(ω)ω for real-k̄ values. The two lines L1 and L2 are
the branch cuts of the index [24]. Both branch cuts are below the
real-k integration path. Length of the branch cuts are exaggerated
only for visual purposes.

(a) real-ω n = 1 n = nR + inI

x = 0

∫ +∞
−∞ dω̄A1(ω̄)ei[k(ω̄)x−ω̄t]

+
∫ +∞
−∞ dω̄B1(ω̄)ei[k(ω̄)x+ω̄t]

∫ +∞
−∞ dω̄D1(ω̄)ei[k(ω̄)x−ω̄t]

(b) real-k n = 1 n = nR + inI

x = 0

∫ +∞
−∞ dk̄A2(k̄)ei[ k̄x−ω(k̄)t]

+
∫ +∞
−∞ dk̄B2(k̄)ei[ k̄x+ω(k̄)t]

∫ +∞
−∞ dk̄D2(k̄)ei[ k̄x−ω(k̄)t]

FIG. 2. The same reflection-transmission problem considered (a)
in the real-ω and (b) in the real-k Fourier spaces. Incident light
penetrates from a vacuum on the left-hand side to an absorbing
dielectric slab of complex index n(ω) on right-hand side (RHS).
(a) Incident wave of Fourier coefficients A1(ω) results in a reflected
wave of coefficient B1(ω) and a transmitted wave of coefficients
D1(ω). (b) Incident wave of Fourier coefficient A2(k) results in
a reflected wave of coefficient B2(k) and a transmitted wave of
coefficient D2(k). The two solutions on the RHS must match at the
origin x = 0 for all times. This results in the relation of Eq. (6)
between D1(ω) and D2(k).

branch cuts (L1,2) of index n(ω) [24], which are below the
real-k integration path C2.

In order to relate the Fourier coefficients D1(ω) and D2(k),
we consider the following simple reflection-transmission
boundary problem (see Fig. 2). A Gaussian wave packet
[of Fourier coefficient A1(ω)] traveling toward the right in
a vacuum (n = 1) is incident on the absorbing dielectric slab
of index n(ω); see Fig. 2(a). It results in a reflected wave packet
of Fourier coefficient B1(ω) and a transmitted wave (into the
slab)

E1(x,t) =
∫ +∞

−∞
dωD1(ω)ei(k(ω)x−ωt), (2)

with Fourier coefficient D1(ω). In Fig. 2(b), the same problem
is considered in the real-k Fourier domain, with incident wave
of coefficient A2(k), reflected wave of coefficient B2(k), and a
transmitted wave

E2(x,t) =
∫ +∞

−∞
dkD2(k)ei(kx−ω(k)t) (3)

of Fourier coefficient D2(k).
Since both ω and k are real on the left-hand side, they are

simply related by A2(k) = cA1(ω) and B2(k) = cB2(ω). In the
real-ω approach, using the boundary condition (BC) at x = 0,
one obtains

D1(ω) = 2

1 + n(ω)
A1(ω). (4)

In this paper, for the sake of simplicity, we consider a Gaussian
profile for A1(ω), which does not have any pole.

Additionally, the two solutions for the transmitted wave,
E1(x,t) and E2(x,t), must match at the boundary x = 0 for all
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times. That is

∫ +∞

−∞
dω̄D1(ω̄)e−iω̄t =

∫ +∞

−∞
dk̄D2(k̄)e−iω(k̄)t , (5)

where ω̄, k̄ stand for real variables and ω(k̄) = ωR(k̄) + iωI (k̄)
is the complex function of the real variable k̄ determined from
the nonlinear index equation ck̄ = ωn(ω).

Using the Dirac δ function ξ (z) generalized to complex
plane [25,26] and carrying out some algebra based on contour
integrals, Eq. (5) transforms to the simple relation

D2(k̄) = dω

dk
(k̄)D1(ω(k̄)), (6)

where presence of k̄ indicates that all quantities are evaluated
at complex variable ω(k̄) corresponding to real k̄. Details of
the derivation can be found in Ref. [27]. Equation (6) is quite
simple and straightforward. On the other hand, the result is
cumbersome when D1(ω) or n(ω) has a branchcut or pole in
between the curves C1 and C2 (see Fig. 1). In the following
section, we use Eq. (6) and relate the real-k integrand to the
real-ω one.

III. COMPARISON OF THE TWO VELOCITIES DEDUCED
FROM THE SAME DEFINITION

In this section, we test the velocity definition introduced
by Peatross et al. [8]. We derive the two expressions for the
velocity, using the real-ω and real-k Fourier expansions. Then,
we calculate the velocities v1 and v2 by relating the coefficients
D1(ω) and D2(k) [see Eqs. (2) and (3)] using Eq. (6). In the
superluminal region, we observe discrepancies in the amount
of 3% [see Fig. 3(a)].

In Sec. II we derived the relation Eq. (6) imagining a
boundary between vacuum and dielectric along the lines of
experiments [2–6] and the generality. In this section, however,
we consider a more particular case; a dispersive dielectric
occupying the whole space without any boundaries. This is
done so, not to deal with the tail of the pulse relying out of
the dielectric. Equations (5) and (6) remain valid, because
the condition of matching the two solutions at the origin
E1(0,t) = E2(0,t) does not require a physical boundary. At
any random position, this condition must already be satisfied.

We consider a Gaussian wave packet U (0,t) = e−t2/τ 2

cos(ωct) imposed at the origin. This leads [22] to the Fourier
coefficient D1(ω) = e−(ω−ωc)2/4 + e−(ω+ωc)2/4, where ωc is the
carrier frequency of the pulse. D2(k) is determined from D1(ω)
using Eq. (6).

First, we calculate the arrival time (�t = 〈t〉�x1 − 〈t〉0) of
the mean pulse center from position 0 to �x1. Time averages
are directly calculated within the real-ω expansion of the fields
similar to Ref. [8], using Fourier coefficient D1(ω). Second, we
use the same arrival time �t (which is calculated using real-ω
domain) in the real-k approach and evaluate the displacement
of the average pulse position, i.e., �x2 = 〈x〉�t − 〈x〉0, from
time 0 to �t . Finally, since �t is common in both approaches,
we compare the velocities v1 = �x1/�t and v2 = �x2/�t ,
plotted in Fig. 3(a).
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FIG. 3. (a) Comparison of the two velocities (in units of c)
deduced from definition of Peatross et al. [8]. The velocities v1 =
�x/(〈t〉�x − 〈t〉0) and v2 = (〈x〉�t − 〈x〉0)/�t are calculated using
the same definition but performing real-ω (solid line) and real-k
(dashed line) Fourier expansions for the fields, respectively. For a
consistent definition, the two results must be identical. However, 3%
discrepancy between v1 and v2 is observed in the superluminal region.
Thus, this description is not so reliable in the superluminal regime.
We use a Gaussian pulse of carrier frequency ωc and temporal width
ω0τ = 20. Propagation distance is �x1 = 150 c/ω0. (b) Real (nR)
and imaginary (nI ) parts of the index of refraction. Parameters for
the index are the same as described in the legend of Fig. 1.

A. Real ω

Average time position of the pulse after propagating a
distance �x (starting from x = 0),

〈t〉�x =
∫

dt t S(�x,t)∫
dtS(�x,t)

, (7)

can be directly calculated by expanding the fields in the real-ω
space and using the expressions [8]

∫
dt t S(�x,t) = �x

∫ +∞

−∞
dω̄

dk

dω
e−2kI �x |D1(ω̄)|2n∗(ω̄)

− i

∫ +∞

−∞
dω̄e−2kI �x dD1

dω
D∗

1 (ω̄)n∗(ω̄) (8)

and
∫

dtS(�x,t) =
∫ +∞

−∞
dω̄e−2kI �x |D1(ω̄)|2n∗(ω̄). (9)

Here, kI (ω̄) is the imaginary part of the wave-vector cor-
responding to the real-ω̄ value. The calculated values of
the velocity v1 = �x1/(〈t〉�x1 − 〈t〉0) for different carrier
frequencies ωc are plotted in Fig. 3(a) with a solid line. We
choose a temporal width of ω0τ = 20 and propagation distance
of �x1 = 150 c/ω0.
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B. Real k

Above, using the real-ω approach, we determine the arrival
time �t in between the two positions 0 and �x1. In the real-k
approach, we use the calculated value of �t as the input. We
determine the distance that mean pulse center travels from time
0 to �t , i.e., �x2 = 〈x〉�t − 〈x〉0. The average pulse position
at time �t ,

〈x〉�t =
∫

dx x S(x,�t)∫
dxS(x,�t)

, (10)

can be directly calculated by carrying the Fourier expansion
over the real-k coefficients using the expressions
∫

dx x S(x,�t) = �t

∫ +∞

−∞
dk̄

dω

dk
e2ωI �t |D2(k̄)|2n∗(k̄)

+ i

∫ +∞

−∞
dk̄e2ωI �t dD2

dk
D∗

2 (k̄)n∗(k̄) (11)

and
∫

dxS(x,�t) =
∫ +∞

−∞
dk̄e2ωI �t |D2(k̄)|2n∗(k̄), (12)

where Fourier components decay in time with imaginary part
(ωI ) of the complex frequency ω(k̄) during the propagation.
Complex ω(k̄) values are determined from the nonlinear index
equation ck̄ = ωn(ω) for real k̄, and ωI is always negative
for the absorbing dielectric [Eq. (1)]. Relevance of Fourier
coefficient D2(k) to D1(ω) is given in Eq. (6).

The average displacement �x2 that is calculated in the
real-k approach is compared with the one for the real-ω
approach �x1. We note that �t is common to both approaches.
The calculated velocity v2 = (〈x〉�t − 〈x〉0)/�t is plotted in
Fig. 3(a) with dotted line for different carrier frequencies.
The two results, v1 and v2, differ significantly (3%) in the
superluminal propagation regime.

On the other hand, similar calculations using the real part
of the conventional group velocity [21], as v1 = Re{dω/dk}
and v2 = 1/Re{dk/dω}, results in 16% discrepancy in the
superluminal propagation region.

IV. SUMMARY AND CONCLUSIONS

The velocity introduced by keeping track of the pulse peak
or the pulse center does not always correspond to the velocity
of the energy-signal transfer. When the pulse shape is modified
during the propagation, it is confusing even conceptually to
define the arrival time of the original signal.

Here, we introduce a method to check if a given velocity def-
inition is reliable regarding its correspondence to a real physi-
cal flow. We calculate the velocity introduced by Peatross et al.
[8] in two different ways. First, we calculate the mean arrival
time �t of the pulse between two points in space. We perform
this calculation using real-ω Fourier expansion of the fields.
Second, we calculate the mean displacement of the pulse be-
tween two points in time, 0 and �t . This calculation is carried
out with real-k Fourier expansion. Finally, since �t is common
in the both approaches, we compare the two velocities.

We observe that the velocity definition of Peatross et al.,
relying on the Poynting vector average of the pulse, results in
3% discrepancy in the superluminal propagation region; see
Fig. 3(a). Thus, one questions if this velocity truly corresponds
to a physical flow in the superluminal region. On the other
hand, the definition of Peatross et al. is more successful com-
pared to the conventional definition of group velocity, where
discrepancy comes out to be 16% in the superluminal region.

Since the arrival time introduced by Peatross et al. also
corresponds to the detector time [11], we reach the additional
conclusion that the arrival time measurements [2–6] do not
address a proper velocity for the flow. It is still an open
problem to find a reliable velocity description consistent with
the equivalence of the two approaches. Our method is also
possible to address the physics of elementary particles when
there exist sources standing for absorption or gain [28].
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