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Wide-band optical switch via white light cavity
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We propose a device whose reflectivity can be controlled optically over a wide frequency band. To this objective,
we propose a Fabry-Pérot cavity filled with a three-level atomic gas such that the effective susceptibility can be
adjusted through incoherent pump and coherent driving fields. Adopting the concepts of electromagnetic-induced
transparency and the white light cavity, we can control the susceptibility to break or satisfy the resonance condition
over a wide frequency range, resulting in a wide-band optical switch. In addition to numerical calculation, we first
give the analytical parameters, such as pump rate, and the Rabi frequency of the driven field, required for white
light cavity in this paper. Using such a cavity as a wall of another cavity, we can, optically, realize a wide-band
Q-switched cavity. Such a device can also be used as a new type of optical switch for quantum information.
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I. INTRODUCTION

Optical switches are an important element in many optical
systems, which have the function to transform from transparent
into opaque to incident light, and vice versa. In addition
to their use as a usual switch, they have been applied to
produce the Q-switching laser, which is used to squeeze the
output pulse to achieve high peak power and narrower width.
Based on the mechanical (rotating mirror), electro-optic, and
acousto-optic switches, there are corresponding rotating mirror
Q-switching [1], electro-optic Q-switching [2], and acousto-
optic Q-switching [3] lasers. In addition to the application
of optical switching on lasers, optical switches also have
promising applications in quantum information. For example,
two qubits trapped in two separated cavities connected by an
optical fiber can generate entanglement [4]. Now if one uses
an optical switch to turn f the fiber on and off, one can control
the entanglement of the two qubits. Typically the mechanical,
electric, and acoustic modes introduce unstable factors in the
process. Therefore a pure optical switch is considered more
interesting and stable.

There are several methods to adjust and control the
reflectivity by external fields. Wang et al. added a driving
field to a two-level atomic gas inside a cavity to realize an
optical switch in a narrow frequency band [5]. Zhang et al.
controlled the reflection of a probe field in �-type three-level
atoms of cesium vapor by two counterpropagating coupling
fields [6,7] and reached the maximum reflectivity of 0.6 [7].
Barak et al. considered an atom near a microtoroidal resonator
which coupled to a fiber to control the transmission of photons
through fiber [8]. Recently, an interesting phenomenon called
the electromagnetic induced grating (EIG) has attracted both
theoretical and experimental attention [9–11]. The idea of EIG
is just to change the medium from being transparent to opaque
by simply using an optical method. However, most of above-
mentioned methods work at a very narrow frequency band.

In this paper, we propose a mirror consisting of a Fabry-
Pérot cavity filled with three-level driven atomic gas, and

define such a mirror as a cavity-made mirror. It is shown that,
by adding pumping and driving fields on the atomic gas, we
can control the reflectivity of such a mirror, resorting to the
concepts of the electromagnetic induced transparency (EIT)
[12] and the white light cavity [13–16]. This way, the total
transmission properties of the mirror can be changed to near
total reflection, and vice versa, in a wide frequency band. This
is an interesting approach to coherently control the reflectivity
of a cavity-made mirror adopting an optical method.

This paper is organized as follows: In Sec. II, we introduce
the model. In Sec. III, we discuss the susceptibility of the
atomic gas with pump and driving fields. In Sec. IV, we study
the white light cavity condition in our model. How to realize
the reflectivity-controllable mirror is discussed in Sec. V. The
conclusions are presented in Sec. VI.

II. MODEL OF CAVITY-MADE MIRROR

It is well known that the susceptibility of an atomic gas can
be controlled optically, such as in EIT [12] and enhanced
refractive index without absorption [17]. However, using
atomic gas as a uniform slab, the reflectivity at interface is
small and is less sensitive to the susceptibility due to low
impedance [6,7]. Here we consider a mirror consisting of an
atomic gas that is confined within two metallic mirrors. A
similar model of a cavity filled with two-level atomic gas was
used to control the Goos-Hänchen shift [5], in which authors
mainly focused on a certain frequency and considered the
variation of reflectivity with the incident angle.

The scheme of the cavity-made mirror is shown in Fig. 1(a).
The region between the two mirrors contains atomic gas.
The level structure of the atoms inside the cavity is shown
in Fig. 1(b). The reflectivity of the end mirrors is set to be
Rmirr = 0.999. The response of the atomic gas to an incident
probe (signal) field is characterized by the susceptibility χ .
The equivalent relative refractive index of atomic gas is

n =
√

1 + χ (1)
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FIG. 1. (Color online) The scheme of cavity-made mirror (a) con-
sisting of three-level atoms of the type shown in (b) filling a cavity.

and the resonance condition of the cavity is

Re (n)d1
ωm

c
= mπ (m = 1,2, . . .). (2)

When the frequency ω of the incident field E is equal to the
resonant frequency ωm, the incident field can transmit through
the cavity-made mirror. Otherwise, the field is reflected.
Thus, for a certain frequency, we can adjust the equivalent
refractive index to satisfy the resonance condition, making
the cavity-made mirror transparent. However, it is hard to
realize transparency for such a cavity-made mirror over a
wide frequency band with usual dielectrics. Therefore, the
key question here is how to control the susceptibility of the
atomic gas in order for the cavity field, being resonant over a
wide band, resulting in a wide-band unit transparency. In the
next section, we discuss the susceptibility of the atomic gas
with level structure shown in Fig. 1(b) and show that, for a
certain range of parameters, it is possible to obtain an external
control of reflectivity over a wide range of frequencies.

III. SUSCEPTIBILITY OF THE ATOMIC GAS

We consider a three-level atomic system in � configuration
with one upper state |a〉 and two ground states |b〉 and |c〉
as shown in Fig. 1(b). An example of such a system is 133Cs
for which |a〉 ≡ (6 2P1/2,F = 4), |b〉 ≡ (6 2S1/2,F = 3), and
|c〉 ≡ (6 2S1/2,F = 4). We want to calculate the response of
a probing (signal) field E that is nearly resonant with the
|a〉 → |b〉 transition by calculating the susceptibility. The level
|a〉 is also coupled to the level |c〉 via a strong driving field of
Rabi frequency �μ. In addition, we include a pump mechanism
from level |b〉 to level |a〉 with a pumping rate r . The decay

rates from level |a〉 to level |b〉 and from level |a〉 to level |c〉
are assumed to be γ and γμ, respectively. The decay from level
|b〉 to level |c〉 is ignored.

The system Hamiltonian of the three-level atoms interacting
with the signal and driving fields (but ignoring the decay and
pump mechanisms) is

H = h̄ωab|a〉〈a| + h̄ωcb|c〉〈c| − (h̄�μe−iωμt |a〉〈c|
+℘Ee−iωt |a〉〈b| + c.c.). (3)

Here ℘ is the dipole matrix element of the transition |a〉 ↔ |b〉.
In Eq. (3), we omit the off-resonant coupling of a driven
field to the transition |a〉 ↔ |b〉 and the coupling of a probe
field to the transition |a〉 ↔ |c〉. The reason is that these
off-resonant interactions only introduce fast oscillation terms
and have nearly no contribution to the internal state evolution
after time average. After setting the following transformations:
ρab = ρ̃abe

iωt , ρac = ρ̃ace
iωμt , ρcb = ρ̃cbe

i(ω+ωμ)t , 
 = ωab −
ω, and 
μ = ωac − ωμ and adding the contribution of the
atomic decays and the pumping rate, we get the following
equations for the elements of density matrix (for derivation,
see Appendix A):

ρ̇aa = −(γ + γμ)ρaa + rρbb

+ i

(
℘

h̄
Eρ̃ba + �μρ̃ca − ℘

h̄
E∗ρ̃ab − �∗

μρ̃ac

)
, (4a)

ρ̇bb = −rρbb + γρaa − i

(
℘

h̄
Eρ̃ba − ℘

h̄
E∗ρ̃ab

)
, (4b)

ρ̇cc = γμρaa − i(�μρ̃ca − �∗
μρ̃ac), (4c)

˙̃ρab = −γabρ̃ab − i
ρ̃ab − i
℘

h̄
E(ρaa − ρbb) + i�μρ̃cb,

(4d)

˙̃ρcb = −γcbρ̃cb − i(
 − 
μ)ρ̃cb + i�∗
μρ̃ab − i

℘

h̄
Eρ̃ca,

(4e)

˙̃ρca = −γcaρ̃ca + i
μρ̃ca − i�∗
μ(ρcc − ρaa) − i

℘

h̄
E∗ρ̃cb.

(4f)

Here γca = γab = (γ + γμ)/2 and γcb = 0. We solve this set
of equations for ρ̃ab in the steady state to the first order of
the probe field E, which is labeled as ρ̃

(1)
ab . Thus the resulting

expression for ρ̃
(1)
ab is

ρ̃
(1)
ab = ℘E

h̄

[(
 − 
μ)]
(
ρ(0)

aa − ρ
(0)
bb

) + �μρ̃(0)
ca

[|�μ|2 − 
(
 − 
μ)] + i[(
 − 
μ)γab]
, (5)

where ρ̃
(0)
αβ is the zeroth order of the matrix element in the probe

field E. The corresponding expression for the susceptibility
[18] is given by

χ = A
[(
 − 
μ)]

(
ρ(0)

aa − ρ
(0)
bb

) + �μρ̃(0)
ca

[|�μ|2 − 
(
 − 
μ)] + i[(
 − 
μ)γab]
, (6)

where A = N℘2/ε0h̄, and N is number density of atom gas.
The steady-state values of ρ(0)

aa , ρ(0)
bb , and ρ̃(0)

ca are obtained using
the rest of the equations in Eqs. (4) by omitting the elements
multiplied by E and incorporating the normalization condition.
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We then obtain (for derivation, see Appendix B)

ρ(0)
cc = r

[
γμ

(
γ 2

ca + 
2
μ

) + 2γca|�μ|2]
2(2r + γ )γca|�μ|2 + rγμ

(
γ 2

ca + 
2
μ

) , (7a)

ρ
(0)
bb = 2γ γca|�μ|2

2(2r + γ )γca|�μ|2 + rγμ

(
γ 2

ca + 
2
μ

) , (7b)

ρ(0)
aa = 2rγca|�μ|2

2(2r + γ )γca|�μ|2 + rγμ

(
γ 2

ca + 
2
μ

) , (7c)

ρ̃(0)
ca = −i�∗

μ

(
ρ(0)

cc − ρ(0)
aa

)
γca − i
μ

. (7d)

It is clear that if the pumping rate r is larger than the decay
rate of the transition |a〉 → |b〉, i.e., r > γ , the population
inversion happens, i.e., ρ(0)

aa > ρ
(0)
bb . Moreover, at resonance,

i.e., 
μ = 
 = 0, χ = A�μρ̃
(0)
ca

|�μ|2 and coherence ρ̃(0)
ca is purely

imaginary and contributes to the absorption or gain. A lower
absorption or even net gain can be obtained at resonance when
ρ̃(0)

ca = 0 or ρ(0)
aa = ρ(0)

cc . This can happen when we turn off
the pumping or increase the Rabi frequency of the driving
field. Though the above results are obtained under certain
approximations, they are reliable under the condition when the
probe field is much weaker than the driving field. A comparison
of the results based on the above approximation with the
exact numerical calculation of the evolution of matrix element
according to Eqs. (4) is shown in Appendix C. Our approximate

(a)

(b)

FIG. 2. The susceptibility as a function of the frequency of the
signal field in the absence of the pump field r = 0 with (a) �μ = γ

and (b) �μ = 4γ . Solid (dashed) line refers to the real (imaginary)
part of the susceptibility.

results are in full agreement with the exact numerical results
when the probe field is weak.

The emphasis here is that by adjusting the pumping rate
r and the driving field �μ, we can control the population
inversion and the coherence ρ̃(0)

ca . Consequently, we find a
neat way to control the susceptibility χ . We adopt γμ = 0.2γ ,
γca = γab = (γμ + γ )/2 = 1.1γ , and 
μ = 0 as the operating
parameters in this paper. For lower density of the atomic gas,
we set A = γ here. Next we determine the susceptibility as a
function of the frequency of the incident field under different
pump rates and the driving fields.

A. Absence of pump, r = 0

In this case, the steady values in Eqs. (7) have values ρ
(0)
bb =

1 and the rest are zero. In other words, the atom is in the ground
state |b〉 all the time. The susceptibility becomes

χ = −γ


(|�μ|2 − 
2) + i
γab

. (8)

The susceptibility as a function of the frequency of the driving
field is plotted in Fig. 2. This is just the phenomena of EIT. At
the resonant frequency ω = ωab, susceptibility is exactly zero.
The slope at ω = ωab is positive and its value decreases with
increasing the driving field �μ.

B. Pump with r < γ

In this case, ρ̃(0)
aa − ρ̃

(0)
bb < 0. The coherence ρ̃(0)

ca approaches
zero with increasing �μ. The susceptibility is plotted in

(a)

(b)

FIG. 3. The susceptibility as a function of the frequency of
the signal field with pumping rate r = 0.5γ with (a) �μ = γ and
(b) �μ = 4γ . Solid (dashed) line refers to the real (imaginary) part
of the susceptibility.
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(a)

(b)

FIG. 4. The susceptibility as a function of the frequency of
the detected field with pump r = γ with (a) �μ = γ and (b)
�μ = 4γ . Solid (dashed) line refers to the real (imaginary) part of
the susceptibility.

Fig. 3 and both real and imaginary parts are similar to the
EIT case.

The amplitude of the susceptibility decreases as r ap-
proaches γ . Due to the influence of ρ̃(0)

ca , the imaginary part
of susceptibility is negative at ω = ωab whose amplitude
decreases with �μ.

C. Pump with r = γ

In this case, ρ̃(0)
aa − ρ̃

(0)
bb = 0, and the susceptibility becomes

χ = γ�μρ̃(0)
ca

(|�μ|2 − 
2) + i
γab

, (9)

which is very different from the EIT case. We plot the real and
imaginary parts of the susceptibility in Fig. 4 and see that, for
�μ = 4γ , the susceptibility is essentially zero for the entire
range of signal frequencies.

D. Pump with r > γ

When the pumping rate is larger than the decay rate,
i.e., r > γ , the population inversion takes place and we
obtain ρ̃(0)

aa − ρ̃
(0)
bb > 0. If we omit ρ̃(0)

ca in the expression (6)
of the susceptibility, the resulting expression is similar to
Eq. (8) except multiplying by the factor −1. Thus we obtain
negative dispersion. According to Eq. (6) the real part of the
susceptibility is proportional to the population inversion while
its imaginary part is proportional to ρ̃(0)

ca .

(a)

(b)

FIG. 5. The susceptibility as a function of the frequency of the sig-
nal field for pumping rate r = 2γ with (a) �μ = γ and (b) �μ = 4γ .

It is clear from Eqs. (7) that the population inversion ρ̃(0)
aa −

ρ̃
(0)
bb relates to the ratio of r to γ , while ρ̃(0)

ca relates to the ratio of
�μ to γμ. We plot the susceptibility as a function of frequency
of the probe field for different pumping rates r and different
Rabi frequencies of the driving field �μ in Figs. 5 and 6.

From above, it is clear that it is easy to control the slope of
the susceptibility through �μ, while the gain can be decreased
by increasing the Rabi frequency of the driving field. This is
seen by comparing the dashed curves in Fig. 6(a) with 6(b). We
list the population inversion ρ̃(0)

aa − ρ̃
(0)
bb and ρ̃(0)

ca for different
cases in Table I. In the next section, we discuss how to control
the susceptibility to realize the resonance or off resonance of
a cavity-made mirror over a wide range of frequencies.

IV. WHITE LIGHT CAVITY CONDITION

In a Fabry-Pérot cavity, only certain discrete frequencies
can be exactly resonant. If the cavity is filled with a medium
that possesses a negative dispersion and cancels the frequency
dependence of the phase delay, a continuous range of fre-
quencies can be resonant at the same time. Such a cavity
is called a white light cavity [13]. There were several papers
concerning the white light cavity using the bifrequency Raman
gain [14–16]. However, in this paper, we adopt another method
to realize the white light cavity, the reason being that our model
can easily be transformed into an EIT model just by turning
off the pump.

From Eq. (2), ωm are discrete frequencies for the
usual dielectric. If we want to get a resonance frequency
band, the refractive index of the medium should satisfy
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(a)

(b)

FIG. 6. The susceptibility as a function of the frequency of the sig-
nal field for pumping rate r = 4γ with (a) �μ = γ and (b) �μ = 4γ .

the equation ∂ {Re [n(ω)] ω} /∂ω = 0 or ∂Re [n(ω)] /∂ω =
−Re [n(ω)] /ω. Here we focus on the frequency region near
ωab. From the results in Figs. 5 and 6, we see that the
susceptibility χ near ωab can be neglected for both real and
imaginary parts, and then the white light cavity condition
is [13,16]

∂ Re [n(ω)] /∂ω|ω=ωab
= −1/ωab. (10)

The key is to determine the required Rabi frequency of
the driving field �μW satisfying Eq. (10). To obtain the
required �μW satisfying the white light cavity condition,
we approximate ∂ Re [n(ω)] /∂ω|ω=ωab

by Re [n(ωab + γ ) −
n(ωab − γ )]/2γ . In addition, as χ near ωab is much smaller, it
is reasonable to use the Taylor expansion n(ω) ≈ 1 + χ ′/2 +
iχ ′′/2. The resulting equation for �μW is

χ ′(ωab + γ ) − χ ′(ωab − γ ) = −4γ /ωab. (11)

TABLE I. Population inversion and ρ(0)
ca for different values of r

and �μ.

ρ(0)
aa − ρ

(0)
bb ρ(0)

ca

�μ = γ 0.196 −0.04i

r = 2γ �μ = 2γ 0.188 −0.02i

�μ = 4γ 0.199 −0.01i

�μ = γ 0.325 −0.04i

r = 4γ �μ = 2γ 0.331 −0.02i

�μ = 4γ 0.333 −0.01i

FIG. 7. (Color online) The required �μW for the white light
condition as a function of Aωab for different pumping rate r .
γμ = 0.2γ , γac = γab = (γ + γμ)/2 = 1.1γ , and γcb = 0.

Here χ ′ is the real part of susceptibility. On inserting the
expression of χ into Eq. (11) and performing some simpli-
fications (shown in Appendix D), we get the required �μW

satisfying white light condition. The resulting expression is

�μW =
√

− b

3a
+ 1

3a

3

√
1

2
(α +

√
β) + 1

3a

3

√
1

2
(α −

√
β),

(12a)

α = 9abc − 2b3 − 27a2d, (12b)

β = α2 + 4(3ac − b2)3, (12c)

a = 4(2r + γ )γca, (12d)

b = 2γca[rγ γca − Aω0(r − γ ) − 4γ 2(2r + γ )] (12e)

c = γca

[
2Aω0(r − γ )γ 2 + Aω0γabrγμ

− 4γ 2rγcaγμ + 4(2r + γ )
(
γ 2 + γ 2

ab

)
γ 2

]
, (12f)

d = 2rγμγ 2
caγ

2
(
γ 2 + γ 2

ab

)
. (12g)

This is an exact solution for the white light cavity condition.
With the known atomic level structure and the pumping rate,
we can calculate the required �μW satisfying the white light
cavity condition. This avoids the tedious process judged from
reflectivity by using different values of �μ [13].

With the parameters γμ = 0.2γ and γca = γab = 1.1γ , we
plot �μW as a function of Aωab (with A = N℘2/ε0h̄) for
different values of the pumping rate r in Fig. 7. It is clear that
�μW increases with Aωab and pump rate r . However, there
seems to be a limitation on �μW for increasing the pumping
rate. It is noticed that the difference between the case of r = 16
and the case of r = 32 is negligible. This can be understood by
the fact that r can only affect the population inversion which
has a maximum value 1.

For usual atomic gas, A = γ and ωab ∝ 106γ . Therefore
�μW is about 102γ . It is clear from Figs. 5 and 6 that the
band-width of the white light condition (linear dependence of
χ to ω) has the same order as �μW . Therefore in our model,
the linewidth of the white light cavity is about 102γ .

V. REFLECTIVITY OF THE CAVITY-MADE MIRROR

In this section, we show how the above results obtained
for a white light cavity can be used to realize a controllable
reflectivity of the cavity-made mirror for a wide range of

033828-5



XU, AL-AMRI, YANG, ZHU, AND ZUBAIRY PHYSICAL REVIEW A 86, 033828 (2012)

FIG. 8. The reflectivity of the cavity-made mirror as a function
of the frequency of the signal field for different driving fields and
pumping rates. The dashed lines refer to the absence of pump r = 0.
The solid lines refer to nonzero pumping with r = 32γ . The thickest
line corresponds to the white light condition with �μW = 154.88γ .
Empty refers to empty cavity without atomic gas. The length of the
cavity is d1 = 100cπ/ωab.

frequencies. The reflectivity of the cavity-made mirror shown
in Fig. 1(a) is given by

Rcav =
∣∣∣∣rmirr + Tmirrrmirre

2i(dωab/c)[1−(
/ωab)]n(
)

1 − Rmirre2i(dωab/c)[1−(
/ωab)]n(
)

∣∣∣∣
2

. (13)

As mentioned above Rmirr = 0.999, Tmirr = −0.001, and
rmirr = √

Rmirr. We set d = 100cπ/ωab, i.e., the length of the
cavity is 50 wavelengths at ωab. Other parameters are the same
as before.

We first present the case of EIT which corresponds to the
absence of the pumping rate with r = 0. This is shown as the
dashed lines in Fig. 8. It is clear that the EIT effect can sharpen
the linewidth of the spectrum. For r = 0 and �μ = 30γ the
reflectivity is high in the frequency band except for a narrow
frequency range close to ωab. The linewidth in such a case
is much narrower than the linewidth of the empty cavity,
which is about 6.4γ . This means that, in the presence of the
driving field, the linewidth decreases as compared to the case
of the empty cavity. This is easy to understand from Fig. 2
where we see that an addition of the driving field can induce
a positive slope for the real part of the susceptibility. Such a
slope enhances the off-resonant nature of the field detuning
from ωab. However, the stronger the driving field, the milder
the slope. Therefore the linewidth for a strong driving field
tends to approach that for an empty cavity.

Next we consider the case when we add the pump. From
Figs. 5 and 6, we see that the pump leads to a negative slope
of susceptibility which can compensate for the resonance
condition (2). According to the solid lines in Fig. 8, we see
that when the driving field satisfies the white light cavity,
�μW = 154.88γ , there is a wide band with a width of about
40γ in which the reflectivity is near 0. When �μ is different
from �μW , the reflectivity is nonvanishing for all frequencies
except near ω = ωab. Therefore we realize optical switch with
a bandwidth of about 40γ , i.e., by adding a pumping field and
adjusting the driving field at �μW . Here the reflectivity of the
cavity-made mirror approaches zero in the frequency band
|ω − ωab| = 20γ . Also if we cancel the pump and decrease
the Rabi frequency of the driven field to �μ = 30γ , the

reflectivity of the cavity-made mirror can be almost unity for
the same band except around ω = ωab. Adopting the data in
Ref. [6] that γ ≈ 2π × 4.6 MHZ, the effective band of our
optical switch can reach 1 GHZ.

Note that for such a case, there are small dips in reflectivity
near |ω − ωab| = 20γ . The reason for these dips is that the
absorption induced phase satisfied the resonance condition in
Eq. (2), while the absorption prevents the transmission. This
results in having a dip.

From Fig. 8, we see that the linewidth in the spectrum of
reflectivity in the absence of a pump is always smaller than
that for the empty cavity. However, for the case of a nonzero
pumping rate, the situation is more complex. The slopes of the
phases for the empty cavity and cavity containing atomic gas,
respectively, are

dφ0

dω
= d1

c
, (14)

dφA

dω

∣∣∣∣
ω=ω0

= d1

c

(
n + ω∂n/∂ω|ω=ω0

)
≈ d1

c

(
1 + ω∂n/∂ω|ω=ω0

)
. (15)

Therefore, if |dφA/dω|ω=ω0 | < dφ0/dω, the linewidth of
the spectrum for cavity containing atomic gas is larger than
that for the empty cavity. Otherwise, the linewidth is smaller
than the empty cavity. For the case of absence of the pump,
∂n/∂ω > 0 so that the linewidth is always narrower than that
for the empty cavity. However, with the increase of �μ, and
∂n/∂ω → 0, the linewidth tends to that for an empty cavity.

For the case of pump, ∂n/∂ω < 0. Therefore, when
|ω∂n/∂ω|ω=ω0 | < 2, the linewidth is larger than the empty
cavity; such cavity is a white light cavity in general. Otherwise,
the linewidth is narrower than that for the empty cavity
and has the same result as when the pump is absent. When
ω∂n/∂ω|ω=ω0 = −2, this case has the same linewidth as that
of the empty cavity. Similar to Eqs. (12) the required Rabi
frequency of an empty cavity �μE has the same expression as
Eqs. (12) except for the different coefficients.

In Fig. 9(a), we plot the required Rabi frequency �μE for
an empty cavity as a function of Aωab in the presence of the
pump. For certain Aωab and the pump rate r , the linewidth of
�μ < �μE is narrower than that of the empty cavity, whereas
the linewidth of �μ > �μE is larger than that of the empty
cavity. We illustrate this behavior in Fig. 9(b), where we com-
pare the reflectivity of a cavity-made mirror for different �μ.
For the required �μE ≈ 92γ , it is clear that the corresponding
linewidth is nearly the same as that of the empty cavity. For
�μ = 80γ , the corresponding linewidth gets narrower than
that of an empty cavity, while it is larger when �μ = 100γ .
Therefore, with the pump and the driving field, we can adjust
the linewidth of the cavity containing atom gas.

Moreover, for the empty cavity shown in Fig. 10(a) while
ignoring the absorption inside the cavity, the Q factor of the
cavity can be expressed by the reflectivity of the two walls as
Refs. [19,20]

Q(w) = π

−ln
√

RL(ω)RR

. (16)

Here RL(ω) = Rcav is the reflectivity of the left cavity-made
mirror, and RR = Rmirr = 0.999. The Q factor as a function
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(a)

(b)

FIG. 9. (Color online) (a) The required �μE for an empty cavity
as a function of Aωab for different pumping rate r . (b) The reflectivity
of a cavity-made mirror as a function of the detected field for different
�μ with r = 32γ , Aωab = 106γ 2, and �μE = 92γ .

of the detected field for different driving and pump fields are
shown in Fig. 10(b).

From Fig. 10(b), it is clear that the Q factor can be
controlled easily through the driving and the pump fields
applied to the cavity-made mirror. Curve (C) refers to the
Q factor of the cavity-made mirror of the two same mirrors
with Rmirr = 0.999, and its value is Q = 3140. When we
apply a pump and set the driving field as �μ = �μW , the
Q factor moves close to 1 in the band |ω − ωab| < 20γ .
When we turn off the pump and set the driving field as
�μ = 30γ , the Q factor gets larger than 313 except in the
bands |ω − ωab| < 0.56γ and |ω − ωab| > 19.4γ . Therefore,
our cavity-made mirror acts as a wide-band optical switch.

VI. CONCLUSION

We proposed a wide-band optical switch which is made of
a cavity that contains a three-level atomic gas. By adjusting
the pumping rate and the driving field, the susceptibility can be
controlled at the resonant or the off-resonant signal field over
a wide-band frequency. We show that controlling the pumping
rate can lead to a positive dispersion in the EIT regime and
negative dispersion in the white light cavity limit. We obtain
the exact white light cavity condition which determines the
required driving field for a given set of other parameters. When
turning off the pumping field and adding the driving field, such
a cavity-made mirror has high reflectivity but for a narrow
band near the resonant frequency. However, by turning on the

Mirror

Z

d1

(a)

(b)

Q−Switched Cavity

Cavity−made mirror

FIG. 10. (Color online) The scheme of a Q-switched cavity.
(b) Q factor as a function of the frequency of the detected field.
A refers to the case of r = 32γ and �μ = �μW , while B refers to the
case of r = 0 and �μ = 30γ . C refers to the case when the cavity
is made of two same mirrors Rmirr = 0.999. The parameters of the
cavity-made mirror are the same as above.

pumping field and adding the required driving field for a white
light cavity, the cavity mirror can become transparent to a very
wide band of frequencies. This way we show that this laser
cavity mirror can be used as an optical switch, where we can
control its Q factor for a broadband of frequency adopting
entirely an all-optical method.
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APPENDIX A: THE DERIVATION OF EQS. (4)

The Hamiltonian H in Eq. (3) can be expressed in the matrix notation as

H =

⎛
⎜⎝

h̄ωab −℘Ee−iωt −h̄�μe−iωμt

−℘E∗eiωt 0 0

−h̄�∗
μeiωμt 0 h̄ωcb

⎞
⎟⎠. (A1)

It then follows that

Hρ =

⎛
⎜⎝

h̄ωab −℘Ee−iωt −h̄�μe−iωμt

−℘E∗eiωt 0 0

−h̄�∗
μeiωμt 0 h̄ωcb

⎞
⎟⎠

⎛
⎜⎝

ρaa ρab ρac

ρba ρbb ρbc

ρca ρcb ρcc

⎞
⎟⎠ (A2)

=

⎛
⎜⎜⎜⎜⎝

h̄ωabρaa −℘Ee−iωtρba h̄ωabρab − ℘Ee− iωtρbb h̄ωabρac − ℘Ee− iωtρbc

− h̄ωμe−iωμtρca −h̄ωμe−iωμtρcb −h̄ωμe−iωμtρcc

− ℘E∗eiωtρaa − ℘E∗eiωtρab − ℘E∗eiωtρac

− h̄�∗
μeiωμtρaa + h̄ωcbρca − h̄�∗

μeiωμtρab + h̄ωcbρcb − h̄�∗
μeiωμtρac + h̄ωcbρcc

⎞
⎟⎟⎟⎟⎠, (A3)

ρH =

⎛
⎜⎝

ρaa ρab ρac

ρba ρbb ρbc

ρca ρcb ρcc

⎞
⎟⎠

⎛
⎜⎝

h̄ωab −℘Ee−iωt −h̄�μe−iωμt

−℘E∗eiωt 0 0

−h̄�∗
μeiωμt 0 h̄ωcb

⎞
⎟⎠ (A4)

=

⎛
⎜⎝

h̄ωabρaa − ℘E∗eiωtρab − h̄ω∗
μeiωμtρac −℘Ee−iωtρaa −h̄�μe−iωμtρaa + h̄ωcbρac

h̄ωabρba − ℘E∗eiωtρbb − h̄ω∗
μeiωμtρbc −℘Ee−iωtρba −h̄�μe−iωμtρba + h̄ωcbρbc

h̄ωabρca − ℘E∗eiωtρcb − h̄ω∗
μeiωμtρcc −℘Ee−iωtρca −h̄�μe−iωμtρca + h̄ωcbρcc

⎞
⎟⎠. (A5)

We obtain the following equations of motion for the elements of the density matrix from the Schrodinger equation ρ̇ = − i
h̄

[H,ρ]:

ρ̇aa = i

(
℘

h̄
Ee−iωtρba + �μe−iωμtρca − ℘

h̄
E∗eiωtρab − �∗

μeiωμtρac

)
, (A6a)

ρ̇bb = −i

(
℘

h̄
Ee−iωtρba − ℘

h̄
E∗eiωtρab

)
, (A6b)

ρ̇cc = −i

(
�μe−iωμtρca − �∗

μeiωμtρac

)
, (A6c)

˙ρab = −iωabρab − i
℘

h̄
Ee−iωt (ρaa − ρbb) + i�μe−iωμtρcb, (A6d)

ρ̇cb = −iωcbρcb + i�∗
μeiωμtρab − i

℘

h̄
Ee−iωtρca, (A6e)

ρ̇ca = −iωcaρca − i�∗
μeiωμt (ρcc − ρaa) − i

℘

h̄
E∗eiωtρcb. (A6f)

Next we set ρab = ρ̃abe
−iωt , ρac = ρ̃ace

−iωμt , ρcb = ρ̃cbe
−i(ωμ+ω)t , 
 = ωab − ω, and 
μ = ωac − ωμ. After including the

decay and the pumping rates, we obtain

ρ̇aa = −(γ + γμ)ρaa + rρbb + i

(
℘

h̄
Eρ̃ba + �μρ̃ca − ℘

h̄
E∗ρ̃ab − �∗

μρ̃ac

)
, (A7a)

ρ̇bb = −rρbb + γρaa − i

(
℘

h̄
Eρ̃ba − ℘

h̄
E∗ρ̃ab

)
, (A7b)

ρ̇cc = γρaa − i(�μρ̃ca − �∗
μρ̃ac), (A7c)

˙̃ρab = −γab ˜ρab − i
 ˜ρab − i
℘

h̄
E(ρaa − ρbb) + i�μρ̃cb, (A7d)

˙̃ρcb = −γcbρ̃cb − i(
 − 
μ)ρ̃cb + �∗
μρ̃ab − i

℘

h̄
Eρ̃ca, (A7e)

˙̃ρca = −γcaρ̃ca + i
μρ̃ca − i�∗
μ(ρcc − ρaa) − i

℘

h̄
E∗ρ̃cb. (A7f)
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APPENDIX B: THE DERIVATION OF SUSCEPTIBILITY
EQS. (6)

In this Appendix we calculate ρ̃ab in the steady state to first
order in the probe field E. Such approximation result of ρ̃ab

is marked by ρ̃
(1)
ab . We focus on Eqs. (4d) and (4e), in which

all the elements multiplied by E are redefined as ρ
(0)
αβ . The

resulting equations are

0 = −(i
 + γab)ρ̃(1)
ab − i

℘

h̄
E

(
ρ(0)

aa − ρ
(0)
bb

) + i�μρ̃
(1)
cb ,

(B1a)

0 = −[i(
 − 
μ) + γcb]ρ̃(1)
cb + �∗

μρ̃
(1)
ab − i

℘

h̄
Eρ̃(0)

ca ,

(B1b)

with the solution

ρ̃
(1)
ab = ℘

h̄
E

[(
 − 
μ) − iγcb]
(
ρ(0)

aa − ρ
(0)
bb

) + �μρ(0)
ca

[|�μ|2 − 
(
 − 
μ) + γabγcb] + i(
γcb + (
 − 
μ)γab)
. (B2)

Then, according to the definition of susceptibility, we obtain

χ = N℘ρ̃
(1)
ab

ε0E
= N℘2

ε0h̄

[(
 − 
μ) − iγcb]
(
ρ(0)

aa − ρ
(0)
bb

) + �μρ(0)
ca

[|�μ|2 − 
(
 − 
μ) + γabγcb] + i(
γcb + (
 − 
μ)γab)
. (B3)

Finally, we should get the value of ρ(0)
aa , ρ(0)

bb , and ρ(0)
ca . They are

actually the zeroth order of the matrix elements in the probe
field E, and satisfy the equations as

−(γ + γμ)ρ(0)
aa + rρ

(0)
bb + i

(
�μρ̃(0)

ca − �∗
μρ̃(0)

ac

) = 0, (B4a)

−rρ
(0)
bb + γρ(0)

aa = 0, (B4b)

γμρ(0)
aa − i

(
�μρ̃(0)

ca − �∗
μρ̃(0)

ac

) = 0, (B4c)

−(γca − i
μ)ρ̃(0)
ca − i�∗

μ

(
ρ(0)

cc − ρ(0)
aa

) = 0, (B4d)

ρ(0)
aa + ρ

(0)
bb + ρ(0)

cc = 1. (B4e)

The above equations come from Eqs. (4a)–(4c) and (4f) with
omitting the elements multiplied by E, and the normalization
condition. The solutions are

ρ(0)
cc = r

[
γμ

(
γ 2

ca + 
2
μ

) + 2γca|�μ|2]
2(2r + γ )γca|�μ|2 + rγμ

(
γ 2

ca + 
2
μ

)] , (B5a)

ρ
(0)
bb = 2γ γca|�μ|2]

2(2r + γ )γca|�μ|2 + rγμ

(
γ 2

ca + 
2
μ

)] , (B5b)

ρ(0)
aa = 2rγca|�μ|2]

2(2r + γ )γca|�μ|2 + rγμ

(
γ 2

ca + 
2
μ

)] , (B5c)

ρ̃(0)
ca = −i�∗

μ

(
ρ(0)

cc − ρ(0)
aa

)
γca − i
μ

. (B5d)

APPENDIX C: THE NUMERICAL RESULT OF EQS. (4)

In this Appendix, we present exact numerical solutions of
Eqs. (4), and then compare the results with the approximate
results of Eqs. (5)–(7). The motivation here is to show that our
results are consistent and reliable.

The key to our approximation is that the probe field is
much weaker than the driving field. We therefore set ℘

h̄
E =

0.001�μ in this Appendix. Other common parameters are
γμ = 0.2γ , γca = γab = 1.1γ , �μ = γ , 
μ = 0, and 
 = 0.

We will compare the evolution of the matrix elements ρ̃ab,
ρaa − ρbb, and ρca with the corresponding approximate results
shown in Eqs. (5) and (7). Since ρ̃ab is linearly proportional
to the probe field, we adopt a scaled quantity ρ̃ab/B with
B = ℘E

h̄γ
to replace ρ̃ab. In the steady state, ρ̃ab/B is just the

susceptibility χ .

0 5 10 15 20
-1.0

-0.5

0.0

0.5

1.0

γt

Re(ρab(t)/Β)

Im(ρab(t)/Β)

ρaa(t)−ρbb(t)

ρca(t)

ρ
aa

(0)=1
(a)

(b)

0 5 10 15 20
-1.0

-0.5

0.0

0.5

1.0

γt

Re(ρab(t)/Β)

Im(ρab(t)/Β)

ρaa(t)−ρbb(t)

ρca(t)

ρ
bb

(0)=1

FIG. 11. (Color online) The evolution of the matrix elements
based on exact numerical solution of Eqs. (4) when r = 0. The atom
is initially prepared in levels (a) |a〉 and (b) |b〉.
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0 5 10 15 20
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

γt

Re(ρab(t)/Β)

Im(ρab(t)/Β)

ρaa(t)−ρbb(t)

Im(ρca(t))

ρ
aa

(0)=1
(a)

(b)

0 5 10 15 20
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

γt

Re(ρab(t)/Β)

Im(ρab(t)/Β)

ρaa(t)−ρbb(t)

ρca(t)

ρ
bb

(0)=1

FIG. 12. (Color online) The evolution of the matrix elements
based on exact numerical solutions of Eqs. (4) when r = γ . The
atom is initially prepared in levels (a) |a〉 and (b) |b〉.

For comparison, we show the results of three different cases
as follows:

First case: The absence of the pump with r = 0. The
relative approximate results are ρ(0)

aa − ρ
(0)
bb = −1, ρ(0)

ca = 0,
and ρ̃

(1)
ab = 0. The numerical evolution of the corresponding

matrix elements in Eqs. (4) are shown in Fig. 11 under two
different initial states. It is shown that the evolution of the
matrix elements is initially different for different initial states.
However, they tend to have the same value as the time increases
[see Figs. 11(a) and 11(b) for comparison]. More importantly,
the steady-state values of the matrix elements are consistent
with that of the approximate values as predicted above.

Second case: The pump rate is the same as the decay rate,
i.e., r = γ . The approximate results are ρ(0)

aa − ρ
(0)
bb = 0, ρ(0)

ca =
−i0.033, and ρ̃

(1)
ab /B = −i0.033. The exact evolution of the

corresponding matrix elements is shown in Fig. 12 under two
different initial states. It is shown that the matrix element tends
to the approximated result as predicted above.

Third case: The pump rate is two times the decay rate,
i.e., r = 2γ . The approximate results are ρ(0)

aa − ρ
(0)
bb = 0.196,

ρ(0)
ca = −i0.039, and ρ̃

(1)
ab /B = −i0.039. In Fig. 13, we show

the exact numerical results of the evolution of the matrix
elements under two different initial states. As before, the
steady values of the matrix elements are consistent with our
approximate results.

In view of the three cases discussed above, we have
demonstrated that our approximate results in Eqs. (5)–(7)

0 5 10 15 20
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

γt

Re(ρab(t)/Β)

Im(ρab(t)/Β)

ρaa(t)−ρbb(t)

Im(ρca(t))

ρ
aa

(0)=1
(a)

(b)

0 5 10 15 20
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

γt

Re(ρab(t)/Β)

Im(ρab(t)/Β)

ρaa(t)−ρbb(t)

Im(ρca(t))

ρ
bb

(0)=1

FIG. 13. (Color online) The evolution of the matrix elements
based on exact numerical solutions of Eqs. (4) when r = 2γ . The
atom is initially prepared in levels (a) |a〉 and (b) |b〉.

are consistent with the exact numerical results and that our
approximation is reliable when the probe field is weak.
The main condition here is that ℘

h̄
E < 0.01�μ. However,

only when ℘

h̄
E > 0.1�μ, do our approximate results deviate

appreciably from the exact numerical results.

APPENDIX D: THE DERIVATION OF THE RABI
FREQUENCY �μW FOR THE WHITE LIGHT CAVITY

In order to get the resonance for any frequency, we
need ∂ {Re [n(ω)] ω} /∂ω = 0, which is ∂ Re [n(ω)] /∂ω =
−Re [n(ω)] /ω. Here we focus on the frequency region near
ωab. As the frequency is close to ωab, both the real and the
imaginary parts of the susceptibility can be neglected. Hence,
the white light cavity condition is

∂ Re [n(ω)] /∂ω|ω=ωab
= −1/ωab. (D1)

To get the required ωμW for a white light cavity, we trans-
form ∂ Re [n(ω)] /∂ω|ω=ωab

into Re [n(ωab + γ ) − n(ωab −
γ )]/2γ . In addition, as χ moves close to ωab, its value
gets smaller. It is reasonable to use the Taylor expansion
n(ω) = 1 + χ ′/2 + iχ ′′/2. We then obtain the equation for
�μW ,

χ ′(ωab + γ ) − χ ′(ωab − γ ) = −4γ /ωab. (D2)
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With the resonance case of the driving field 
μ = 0, the
equivalent susceptibility becomes

χ = N℘2

ε0h̄



(
ρ(0)

aa − ρ
(0)
bb

) + �μρ̃(0)
ca

(|�μ|2 − 
2) + i
γab

. (D3)

Its imaginary part is

χ ′ = N℘2

ε0h̄



(
ρ(0)

aa − ρ
(0)
bb

)
(|�μ|2 − 
2) − i
γab�μρ̃(0)

ca

(|�μ|2 − 
2)2 + 
2γ 2
ab

(D4)

with

ρ(0)
aa − ρ

(0)
bb = 2(r − γ )γca|�∗

μ|2
2(2r + γ )γca|�∗

μ|2 + rγμγ 2
ca

, (D5a)

ρ̃(0)
ca = −i�∗

μrγμγca

2(2r + γ )γca|�∗
μ|2 + rγμγ 2

ca

. (D5b)

It follows that, on inserting Eqs. (D5) and (D4) into Eqs. (D3)
and (D2), we obtain the cubic equation for |�μ|2:

a|�μ|6 + b|�μ|4 + c|�μ|2 + d = 0, (D6)

where we set A = N℘2/ε0h̄, a = 4(2r + γ )γca , b =
2γca[rγ γca − Aω0(r − γ ) − 4γ 2(2r + γ )], c = γca[2Aω0

(r − γ )γ 2 + Aω0γabrγμ − 4γ 2rγcaγμ +4(2r + γ )(γ 2+γ 2
ab)

γ 2], and d = 2rγμγ 2
caγ

2(γ 2 + γ 2
ab). Its real

root is

�μW =
√

− b

3a
+ 1

3a

3

√
1

2
(α +

√
β) + 1

3a

3

√
1

2
(α −

√
β),

(D7a)

α = 9abc − 2b3 − 27a2d, (D7b)

β = α2 + 4(3ac − b2)3. (D7c)
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