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Anomalous electromagnetic scattering from radially anisotropic nanowires
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We provide a full-wave electromagnetic (EM) scattering theory of discussing the electromagnetic scattering
efficiency of radially anisotropic nanocylinders. In the long-wavelength limit, we derive the conditions for
observing unusual EM scattering including non-Rayleigh vanishing and diverging ones. To verify our theoretical
predictions, both full-wave numerical results and numerical simulations are performed, and good agreement is
found. Moreover, physical origins of the anomalous phenomena are given. Therefore, the anisotropic nanowires
under certain conditions can be hardly visible or exhibit superscattering. These results may find potential
applications in different fields of nanotechnology.
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I. INTRODUCTION

Light or electromagnetic scattering (EM) by small spherical
particles (or cylindrical wires) is a fundamental problem
in classical electrodynamics and was first quantitatively
investigated by Rayleigh [1–3]. Later, exact solutions to the
electromagnetic scattering of spherical particles were given
by Mie, and a full-wave analysis was also established for the
scattering of infinite cylinders, which is quite comparable to
the Mie theory [4–7]. Recently, technological success in the
fabrication of nanostructured materials has pushed the rapid
development of nanotechnology, and the EM scattering cross
section of the nanostructures may be made much smaller or
larger than the geometrical cross section for EM cloaking [8,9]
and for EM superscattering studies [10]. These studies on
nanostructures may be useful for the various applications in
many fields such as optical nanoantennas, optical cloaking,
and optical manipulation.

In the Rayleigh limit, the traditional small nanosphere or
nanocylinder can be regarded as an electric dipole or a line
dipole, and the scattering efficiency Qsca is dependent on
the size parameter q = k0a = ωa/c (where k0 is the wave
vector in the vacuum and a is the radius of the sphere or
the cylinder) with the form Qsca ∼ q4 (for the sphere) or
Qsca ∼ q3 (for the cylinder), as q → 0. However, for coated
small spheres, by adjusting the optical properties of the core
and the shell, the electric and magnetic dipole scattering can be
made to vanish, and Qsca was predicted to be proportional to
q8 [11]. Moreover, the EM scattering from the sphere made of
negatively refractive materials could be constant, (i.e., Qsca ∼
const) or even have inversionally proportional behavior with
Qsca ∼ 1/q2 [12,13]. Based upon the Mie theory, Lukýanchuk
et al. studied the resonance scattering of small particles or thin
wire with low dissipation rate and revealed anomalous EM
scattering [14,15]. In addition, superscattering subwavelength
nanostructructures can be designed by employing multiple
resonances with almost the same frequency [16,17]. More
recently, a doubly resonant structure was found to exhibit
spectral behavior including both electromagnetic induced
transparency and superscattering [18].

Physical studies on nanoparticles with radial anisotropy
have also received much attention. Radial anisotropy requires
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that the components of the permittivity and/or the permeability
tensors of nanospheres be uniaxial in spherical coordinates
with different values along the radial and tangential directions.
For instance, this kind of anisotropy was taken into account
to investigate the ultraviolet absorption and electron inelastic
scattering cross section [19], the optical bistability [20], the
invisibility of Pendry’s cloak [21], the resonant coupling
between localized plasmons and the radially anisotropic
coatings [22], nonlinear susceptibilities for second and third
harmonic generations [23,24], EM transparency [25], and
surface enhanced Raman scattering [26]. Here we extend the
full-wave EM theory for radially anisotropic spheres to radially
anisotropic nanocylinders for the study of unusual scattering.
The permittivity tensor ←→ε and permeability tensor ←→μ are
diagonal in cylinder coordinates (r,θ,z) [27–29], which is
different from the anisotropy in Cartesian coordinates [30].
According to the full-wave electromagnetic theory and nu-
merical simulations, we show that the scattering efficiency
of the nanocylinder may take on unusual behavior such as
Qsca ∼ 1/q and Qsca ∼ q7, in comparison with Rayleigh
scattering Qsca ∼ q3 [6].

The paper is organized as follows. In Sec. II, the full-wave
electromagnetic theory is established for radially anisotropic
nanocylinders. In Sec. III, in the long-wavelength limit, we
derive the conditions for the Rayleigh and non-Rayleigh
scattering. Numerical results are described in Sec. IV. Some
conclusions and discussion are given in Sec. V.

II. FULL-WAVE ELECTROMAGNETIC THEORY

We consider the electromagnetic wave scattering from
a radially anisotropic cylinder of radius a made of the
material with relative permittivity tensor ←→ε and relative
permeability tensor ←→μ embedded into surrounding media
with the relative permittivity ε1 and relative permeability
μ1, as shown in Fig. 1. For radial anisotropy, the relative
permittivity and permeability tensors are expressed as in
cylindrical coordinates (r,θ,z) [27–29,31],

←→ε =
⎛
⎝εr 0 0

0 εt 0
0 0 εz

⎞
⎠ and ←→μ =

⎛
⎝μr 0 0

0 μt 0
0 0 μz

⎞
⎠ . (1)

Without loss of generality, the time dependence of a
harmonic electromagnetic wave is assumed to be e−iωt . Based
on Maxwell equations, the time-independent part of local
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FIG. 1. (Color online) Geometry of a radially anisotropic cylin-
der. The incident wave propagates in the direction of k.

electric and magnetic fields can be written as

∇ × H = −iωε0
←→ε E , (2)

∇ × E = iωμ0
←→μ H , (3)

where ε0 and μ0 are, respectively, the permittivity and
permeability of vacuum. In cylindrical coordinates, Eqs. (2)
and (3) become

1

r

∂Hz

∂θ
− ∂Hθ

∂z
= −iωε0εrEr,

∂Hr

∂z
− ∂Hz

∂r
= −iωε0εtEθ , (4)

1

r

∂

∂r
(rHθ ) − 1

r

∂Hr

∂θ
= −iωε0εzEz,

and
1

r

∂Ez

∂θ
− ∂Eθ

∂z
= iωμ0μrHr,

∂Er

∂z
− ∂Ez

∂r
= iωμ0μtHθ , (5)

1

r

∂

∂r
(rEθ ) − 1

r

∂Er

∂θ
= iωμ0μzHz.

When a transverse-magnetic (TM) incident wave, defined
by a wave vector k, with its magnetic field polarized
along the z direction, impinges on the anisotropic cylin-
der, we have Hr = 0 and Hθ = 0. In this situation,
with Eqs. (4) and (5), the magnetic field Hz can be
written as

1

r

[
∂

∂r

(
r

εt

∂Hz

∂r

)]
+ 1

r2

∂

∂θ

(
1

εr

∂Hz

∂θ

)
+ k2

0μzHz = 0. (6)

Inserting the solutions of the form Hz = � (r) � (θ ) into the
above equation, we get

d2�

dθ2
+ n2� = 0, (7)

r2 d2�

dr2
+ r

d�

dr
+

(
k2

0εtμzr
2 − n2 εt

εr

)
� = 0. (8)

For the incident TM wave, the incident magnetic field Hz can
be expanded as Hz = ∑∞

n=−∞ inJn(k0r)einθ , where Jn(. . . ) is
the nth-order Bessel function. Note that Eq. (7) admits the
solutions �(θ ) ∼ e±inθ (n = 0, ±1, ±2, . . . ) and Eq. (8) is a
generalized Bessel equation.

When n′ (≡ n
√

εt/
√

εr ) is an integer, the solutions for
Eq. (6) inside and outside of the anisotropic cylinder are
expressed as

H in
z =

+∞∑
n=−∞

incnJn′ (k2r)einθ , r < a,

(9)

H out
z =

∞∑
n=−∞

in[Jn(k1r) + bnHn(k1r)]einθ , r > a,

where k1 = √
ε1

√
μ1k0, k2 = √

εt
√

μzk0, Hn(. . . ) is the nth-
order Hankel function of the first kind, and bn, cn are the
undetermined coefficients. For absorptive magnetodielectric
materials, the imaginary part of the components of permittivity
and permeability tensors such as εr(t) and μr(t) are positive,
and their square roots should be chosen to keep both the
imaginary part of the relative refractive index np = √

εt
√

μz

and the real part of wave impedance Z = √
μz

√
μ0/(

√
εt

√
ε0)

positive. For more details, we refer the readers to
Refs. [32,33].

If the boundary conditions are that Eθ and Hz are continu-
ous at r = a, we can derive the scattering coefficient bn,

bn = −
√

εt/
√

ε1J
′
n (k1a) Jn′ (k2a) − √

μz/
√

μ1Jn (k1a) J ′
n′ (k2a)√

εt/
√

ε1H ′
n (k1a) Jn′ (k2a) − √

μz
√

μ1Hn (k1a) J ′
n′ (k2a)

(n = 0, ± 1, . . . ). (10)

Equation (10) reduces to the scattering coefficient for the isotropic cylinder [6]. However, when n′ (≡ n
√

εt/
√

εr ) is not an
integer, the solutions inside and outside of the cylinder should be described as

H in
z =

−1∑
n=−∞

incnJ−n′ (k2r) einθ +
∞∑

n=0

indnJn′ (k2r) einθ , r < a, H out
z =

∞∑
n=−∞

in [Jn (k1r) + bnHn (k1r)] einθ , r > a.

(11)
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Then, one obtains

bn =

⎧⎪⎨
⎪⎩

−
√

εt /
√

ε1J
′
n(k1a)Jn′ (k2a)−√

μz/
√

μ1Jn(k1a)J ′
n′ (k2a)√

εt /
√

ε1H ′
n(k1a)Jn′ (k2a)−√

μz/
√

μ1Hn(k1a)J ′
n′ (k2a) (n � 0),

−
√

εt /
√

ε1J
′
n(k1a)J−n′ (k2a)−√

μz/
√

μ1Jn(k1a)J ′
−n′ (k2a)√

εt /
√

ε1H ′
n(k1a)J−n′ (k2a)−√

μz/
√

μ1Hn(k1a)J ′
−n′ (k2a) (n < 0).

(12)

Similarly, for the transverse-electric field, the scattering coefficient an can be written as

an = −
√

μt/
√

μ1J
′
n (k1a) Jn′ (k2a) − √

εz/
√

ε1Jn (k1a) J ′
n′ (k2a)√

μt/
√

μ1H ′
n (k1a) Jn′ (k2a) − √

εz/
√

ε1Hn (k1a) J ′
n′ (k2a)

(13)

for an integer n′ (≡ n
√

μt/
√

μr ), and

an =

⎧⎪⎨
⎪⎩

−
√

μt/
√

μ1J
′
n(k1a)Jn′ (k2a)−√

εz/
√

ε1Jn(k1a)J ′
n′ (k2a)√

μt/
√

μ1H ′
n(k1a)Jn′ (k2a)−√

εz/
√

ε1Hn(k1a)J ′
n′ (k2a) (n � 0),

−
√

μt/
√

μ1J
′
n(k1a)J−n′ (k2a)−√

εz/
√

ε1Jn(k1a)J ′
−n′ (k2a)√

μt/
√

μ1H ′
n(k1a)J−n′ (k2a)−√

εz/
√

ε1Hn(k1a)J ′
−n′ (k2a) (n < 0),

(14)

for a noninteger n′, with k2 = √
εz

√
μtk0. Here we mention

that regardless of whether n
′

is an integer, these coefficients
are symmetrical, that is, an = a−n and bn = b−n for n > 0.

The scattering efficiency Qsca is defined as [15]

Qsca = 2

k1a

∞∑
n=−∞

|bn|2 (for TM wave), (15)

Qsca = 2

k1a

∞∑
n=−∞

|an|2 (for TE wave). (16)

III. RAYLEIGH AND NON-RAYLEIGH SCATTERING
IN THE LONG-WAVELENGTH REGION

In this section, we consider the long-wavelength limit
or small cylindrical case, that is, k1a = √

ε1
√

μ1ωa/c =√
ε1

√
μ1q 	 1 and k2a = √

εt
√

μzωa/c = √
εt

√
μzq 	 1.

In this connection, Eq. (15) converges very fast, and the
effective scattering from the anisotropic cylinder is mainly
determined by n = 0 and n = ±1 terms. Let us express
the scattering coefficients b0 and b1 (b−1 = b1) for TM
polarization as [14]

bn = −Rn(Rn + iSn), (17)

with

Rn = √
εt/

√
ε1J

′
n(

√
ε1

√
μ1q)Jn′(

√
εt

√
μzq)

−√
μz/

√
μ1Jn(

√
ε1

√
μ1q)J ′

n′ (
√

εt

√
μzq),

Sn = √
εt/

√
ε1Y

′
n(

√
ε1

√
μ1q)Jn′(

√
εt

√
μzq)

−√
μz/

√
μ1Yn(

√
ε1

√
μ1q)J ′

n′ (
√

εt

√
μzq),

where Yn(. . . ) is the nth-order Neumann function. For the
small cylindrical case, the relevant functions admit a simple
form,

J0(x) ≈ 1 −
(

x

2

)2

+ 1

4

(
x

2

)4

, J1(x) ≈ x

2
− 1

2

(
x

2

)3

,

Y0(x) ≈ 2

π
ln

x

2
, Y1(x) ≈ − 2

πx
. (18)

On the other hand, for a noninteger n′, we adopt

Jn′ (x) ≈
(

x

2

)n′[
1

	(n′ + 1)
− 1

	(n′ + 2)

(
x

2

)2

+ 1

2	(n′ + 3)

(
x

2

)4]
,

J
′
n′ (x) = Jn′−1(x) − n′

x
Jn′(x), (19)

where 	(. . . ) is the Euler γ function.
Thus, for b0, we have

R0 =
(

− √
εt

√
μ1 + μz

√
εt√

μ1

)(
q

2

)

+
[

1

2

(
ε1μ

3/2
1

√
εt − μ2

zε
3/2
t√

μ1

)

+ (
ε

3/2
t

√
μ1μz − ε1μz

√
μ1

√
εt

)](
q

2

)3

,

S0 =
√

εt

ε1
√

μ1

2

πq
, (20)

and

R1 = 1

	(
√

εt/
√

εr )

(√
εt

√
μz

2
q

)√
εt /

√
εr
{

1

2

(√
εr√
ε1

−
√

ε1√
εt

)

+
[√

ε1
√

εrμz

4
+ ε

3/2
1 μ1

16
√

εt

− 3μ1
√

ε1
√

εr

16

−
√

ε1
√

εtμz + √
εrεtμz/

√
ε1

8(
√

εt/
√

εr + 1)

]
q2

}
,

S1 = 1

	(
√

εt/
√

εr )

(√
εt

√
μz

2
q

)√
εt /

√
εr
{(

2

πq2

)

×
( √

εr

ε
3/2
1 μ1

+ 1√
ε1μ1

√
εt

)
−

√
εrμz

π
√

ε1μ1

+ μz

√
εt/(

√
ε1μ1) − εtμz

√
εr/

(
μ1ε

3/2
1

)
2π (

√
εt/

√
εr + 1)

}
, (21)

for b1.
(1) The Rayleigh case: Generally, after keeping the leading
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FIG. 2. (Color online) (a) Log-log plot of the scattering efficiency
vs size parameter q. (a) μz = 10 (blue dotted line), μz = 100 (black
solid line), and μz = 1000 (red dashed line). Other parameters are
εr = 0.5 and εt = 2. (b) μz = 1 and

√
εr

√
εt = 1 such as εr = 0.5,

εt = 2 (blue dotted line), εr = 0.05, εt = 20 (black solid line), and
εr = 0.005, εt = 200 (red dashed line).

orders in R0(1) and S0(1), we have

b0 ≈ i
π

4
(μz − μ1)ε1q

2 and

b1 ≈ i
π

4

(
√

εr/
√

ε1 − √
ε1/

√
εt )

1/(μ1
√

ε1
√

εt ) + √
εr/(ε3/2

1 μ1)
q2. (22)

The substitution of above equation into the Eq. (15) leads to

Qsca ≈ q3

8
√

ε1
√

μ1

⎧⎨
⎩2

∣∣∣∣∣∣
(
√

εr/
√

ε1 − √
ε1/

√
εt )π

√
εr/

(
ε

3
2
1 μ1

) + 1/(
√

ε1μ1
√

εt )

∣∣∣∣∣∣
2

+π2|(μz − μ1)ε1|2
⎫⎬
⎭, (23)

which is quite similar as the behavior for the scattering
efficiency for isotropic nanocylinders such as Qsca ∼ q3.
In other words, with decreasing q, the scattering efficiency
is decreased and should vanish as q → 0, as expected.

(2) The non-Rayleigh vanishing case: If we let μz = μ1,
the first term in R0 vanishes, and higher order in q should be
taken into account. At the same time, when

√
εr

√
εt = ε1, the

first term in R1 vanishes, and the second term for q4 should be
considered. As a result, we arrive at

b0 = iπ
ε1μ

2
1(εt − ε1)

32
q4 and

FIG. 3. (Color online) The distribution of the magnetic fields both inside and outside of the anisotropic cylinder for εr = 0.5 and εt =
2 (

√
εr

√
εt = 1) for Rayleigh behavior: (a) q = 0.001 and μz = 10; (b) q = 0.0001 and μz = 10. For non-Rayleigh vanishing behavior:

(c) q = 0.001 and μz = 1, (d) q = 0.0001 and μz = 1.
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b1 = i
π

16

(
ε2

1μ
2
1

2
+ ε2

1μ
2
1εt

ε1 + εt

)
q4. (24)

Then, one obtains

Qsca ≈ π2q7

512
√

ε1
√

μ1

[
2

∣∣∣∣ε2
1μ

2
1 + 2ε1μ

2
1εt

(εt/ε1 + 1)

∣∣∣∣
2

+ ∣∣ε1μ
2
1(εt − ε1)

∣∣2
]
. (25)

In this case, one observes the unusual dependence of Qsca

on q; that is, Qsca ∼ q7. As q → 0, one may observe that
Qsca should vanish much faster than the one for the Rayleigh
case. Therefore, it is possible to realize faster vanishing of the
scattering efficiency with the anisotropic cylinders, resulting
in better transparency than with isotropic cylinders.

(3) The non-Rayleigh diverging case: If the condition√
εr

√
εt = −ε1 is satisfied, we have

b0 = i
π (μz − μ1)ε1

4
q2 and

b1 = 1

i {μz/(πμ1) + εtμz/ [πμ1(ε1 − εt )]} − 1
. (26)

Then, one observes the other unusual behavior, that is,

Qsca ≈ 4√
ε1

√
μ1

1

q

1

1 + |μz/ (πμ1) + εtμz/ [πμ1 (ε1 − εt )]|2
.

(27)

In contrast to the above vanishing behavior of Qsca with
decreasing q, we expect to observe the divergence of Qsca

as q → 0.
Moreover, we can resort to the effective medium theory

in the long-wavelength limit. That is to say, the anisotropic
cylindrical nanowire can be regarded as an equivalent one with
isotropic effective permittivity εe and permeability μe [29].
To derive them, we replace ε1 and μ1 with εe and μe in the
dominant scattering coefficients b0 and b1 for TM polarization,
and let b0 and b1 equal zero [34]. We then have
√

εt/
√

εeJ
′
0(kea)J0(k2a) − √

μz/
√

μeJ0(kea)J
′
0(k2a) = 0,

(28)
√

εt/
√

εeJ1
′(kea)J√

εt /
√

εr
(k2a)

−√
μz/

√
μeJ1(kea)J

′√
εt /

√
εr

(k2a) = 0, (29)

with ke = √
εe

√
μeω/c. Using Eqs. (18) and (19), we obtain

μe = μz and εe = √
εr

√
εt . (30)

IV. NUMERICAL RESULTS

To verify our analytical theory, we numerically calculate
the scattering efficiency with the full-wave electromagnetic
theory based on Eqs. (10), (12), and (15). For simplify, we
consider that the surrounding media is a vacuum with ε1 =
μ1 = 1, and then we have k1a = q and k2a = √

εt
√

μzq.
With our full-wave EM theory, we first study two cases

in which the scattering efficiencies exhibits the vanishing
behavior when q tends to zero, as shown in Fig. 2. We
find that for ordinary anisotropic physical parameters, the

FIG. 4. (Color online) (a) Log-log plot of the scattering efficiency
vs size parameter q for different parameters: (i) εr = −0.5, εt = −2,
and μz = 1 (violet dotted line), (ii) εr = −0.5, εt = −2, and μz = 10
(black solid line), (iii) εr = −2, εt = −0.5, and μz = 1 (red dashed
line), and (iv) εr = −2, εt = −0.5, and μz = 10 (green dashed and
dotted line). Distributions of the magnetic field: (b) q = 0.001 and (c)
q = 0.0001. Other parameters are εr = −0.5, εt = −2, and μz = 1.

scattering efficiency obeys the Rayleigh law Qsca ∼ q3 [see
Fig. 2(a)]. However, for

√
εr

√
εt = ε1 = 1 and μz = μ1 = 1,

Qsca exhibits a fast decrease with decreasing q and obeys
unusual scattering Qsca ∼ q7 [see Fig. 2(b)]. Hence, those
asymptotic behavior of all curves is consistent with our
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FIG. 5. (Color online) The distribution of the electric [(a), (c), and (e)] and magnetic [(b), (d), and (f)] fields for q = 0.001: (a) and (b)
Rayleigh vanishing behavior for εr = 0.5, εt = 2, and μz = 10; (c) and (d) non-Rayleigh vanishing behavior for εr = 0.5, εt = 2, and μz = 1;
and (e) and (f) non-Rayleigh diverging behavior for εr = −0.5, εt = −2, and μz = 1.

analytical predictions. Moreover, from Fig. 2(b), one can
obtain much lower Qsca by the suitable adjustment of the radial
anisotropy.

In Fig. 3, we perform the Comsol multiphysics simulation
to calculate the distribution of the magnetic field inside
and outside the anisotropic cylinders for Rayleigh and non-

Rayleigh vanishing cases. For both Rayleigh [see Figs. 3(a)
and 3(b)] and non-Rayleigh [see Figs. 3(c) and 3(d)] cases,
one clearly observes that the outside scattering magnetic
fields becomes weak with decreasing the size parameter q,
as expected. Moreover, the scattering magnetic fields under
the non-Rayleigh condition (see the right column) are much
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weaker than those under the Rayleigh condition (see the
left column). Physically, the anisotropic nanocylinder acts as
a magnetic monopole under the Rayleigh condition, while
it acts as a magnetic dipole for the non-Rayleigh case.
Actually, according to our anisotropic effective medium the-
ory, under non-Rayleigh conditions, anisotropic nanocylinders
can be regarded as isotropic with the effective permittiv-
ity εe = 1 and the effective permeability μe = 1 [29]. In
other words, such anisotropic cylindrical scatter behaves
as that of an isotropic cylinder made of a vacuum. As a
consequence, one may observe much suppressed scattering
efficiency [11,35].

In Fig. 4, we investigate the scattering efficiency based on
the full-wave solutions and the corresponding distribution of
fields based on the Comsol simulation under the non-Rayleigh
diverging condition

√
εr

√
εt = −1. It is evident that Qsca

exhibits anomalous superscattering such as Qsca ∼ q−1 instead
of Rayleigh scattering Qsca ∼ q3. In detail, Qsca is increased
with the reduction of the size parameter q. Note that the
total scattering cross section in this case σsca ∼ Qscaq is still
independent of q. From the near-field diagram [see Figs. 4(b)
and 4(c)], we further find that the scattering magnetic field is
large for small q and the field-enhancement is concentrated
on the surface of nanocylinders. The strong field localization
is a result of surface plasmon electric resonance. Actually,
for isotropic cylinders, the surface plasmon resonances take
places at ε2 + ε1 = 0, where ε2 is the permittivity of the
isotropic cylinder. For radially anisotropic cylinders, the
surface plasmon resonance arises at

√
εr

√
εt + ε1 = 0, which

can be easily understood because the effective permittivity of
the anisotropic cylinder εe equals

√
εr

√
εt .

In the end, we aim to study the original physics in the
asymptotic behavior of the scattering efficiency as q → 0.
For this purpose, we plot the distributions of both electric
and magnetic fields for the Rayleigh case, the non-Rayleigh
vanishing case, and the non-Rayleigh diverging case in Fig. 5.
Under the Rayleigh and non-Rayleigh vanishing conditions, it
turns out that the distribution of the electric fields is almost
the same and resembles the electric dipole excitation [see
Figs. 5(a) and 5(c)]. However, the distribution of the magnetic
fields is quite different, although the magnitude of the magnetic
fields is very weak. The anisotropic cylinder behaves as a
magnetic monopole for the Rayleigh case [see Fig. 5(b)],
whereas it is treated as a magnetic dipole for the non-Rayleigh
vanishing case [see Fig. 5(d)]. The magnitude of the scattering
magnetic field for non-Rayleigh case is about five orders less
than that of the one for Rayleigh case and is almost zero.
Therefore, under the non-Rayleigh vanishing condition, the
radially anisotropic cylinder is almost transparent. On the

other hand, under the non-Rayleigh diverging condition that√
εr

√
εt + 1 = 0 [see Figs. 5(e) and 5(f)], surface plasmon

electric resonance produces large enhancement of electric field
and corresponding enhancement of the magnetic field near the
interface between the anisotropic cylinder and the air, resulting
in the anomalous superscattering.

V. CONCLUSIONS

In this paper, we develop a full-wave electromagnetic theory
to investigate the EM scattering from radially anisotropic
nanocylinders. Under certain conditions, both analytical and
numerical results show that the scattering efficiency Qsca can
exhibit non-Rayleigh vanishing asymptotic behavior (Qsca ∼
q7) and non-Rayleigh diverging behavior (Qsca ∼ 1/q) instead
of the traditional Rayleigh scattering (Qsca ∼ q3) as q → 0.
Under non-Rayleigh vanishing conditions

√
εr

√
εe = ε1 and

μz = μ1, the anisotropic cylinders exhibit abnormally low
EM scattering section and hence are almost transparent.
On the other hand, for

√
εr

√
εt = −1, the surface electric

plasmon resonance arises and scattering electric and magnetic
fields are enhanced, resulting in superscattering efficiency.
Therefore, our study may provide insight into the general
electromagnetic properties of anisotropic nanoparticles and
nanometamaterials.

Some comments are in order. The unusual behavior we
obtained is related to nondissipative cases. In real dissipative
systems where Im(εi) or Im(μi) is not zero, it is difficult
to observe the reported non-Rayleigh behavior [12,13]. Our
preliminary studies show that it is still possible to observe
such unusual behavior if the absorptive terms are smaller
than the critical ones, dependent on the size parameters q.
As a consequence, one should use materials with much small
absorption or realistic materials with optical gain in order to
realize such unusual asymptotic properties experimentally. In
addition, the radial anisotropy may provide us freedom to
investigate extraordinary scattering diagram, near-field energy
flux, and Fano resonance of the nanostructures.
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