
PHYSICAL REVIEW A 86, 033823 (2012)

Quantum metrology with entangled spin-coherent states of two modes
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Recently, Gerry et al. [Phys. Rev. A 79, 022111 (2009)] studied the violation of the Bell-Clauser-Horne-
Shimony-Holt inequality for two-spin systems, prepared in an entanglement of spin-coherent states, the so-called
entangled spin-coherent states (ESCSs), and found maximal violations for a large class of states. In this paper,
using the Holstein-Primakoff realization (HPR) of angular momentum algebra, we present an improved phase
estimation scheme employing ESCSs and demonstrate that increasing the spin number gives the smallest variance
in the phase parameter in comparison to NOON states under perfect and lossy conditions. The phase sensitivity
of this interferometric scheme with parity detection on one of the output states is discussed.
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One of the most exciting recent applications of quantum-
information theory has been to the field of metrology. There is
a great deal of work on optimal phase estimation addressing the
practical problems of state generation, loss, and decoherence
[1–6]. Caves [1] showed that quantum-mechanical systems can
in principle produce greater sensitivity over classical methods,
and many quantum parameter estimation protocols have been
proposed since then [7]. Correlated quantum states can be
used to achieve a resolution in metrology that surpasses the
precision limits achievable with uncorrelated probes, while
producing a significant result of both fundamental and practical
relevance as first put forward by Caves [1]. The potential use-
fulness of entangled states in overcoming the shot-noise limit
in precision spectroscopy was proposed in Ref. [8], and the first
experimental results concerning precision measurements using
entangled input states have been presented recently [9]. Given
a quantum state, the ultimate limit on the attainable precision
is provided by the quantum Cramér-Rao bound (QCRB)
via the quantum Fisher information (QFI) [10], an abstract
quantity that measures the maximum information about a
parameter φ that can be extracted from a given measurement
procedure. Early theoretical efforts in quantum metrology
centered around designing quantum states that saturate this
bound. Since the mathematical treatment of the lower bound
in physical problems has been clarified, the best resource for
phase estimation has been discussed [5,11].

The way in which a state of N photons is prepared is
closely related to the uncertainty of the parameter estimation:
if prepared in a disentangled state then the phase estimate
scales as 1/

√
N [12], which is usually referred to as a standard

quantum limit or shot-noise limit. However, this limit can be
surpassed by exploiting signature quantum properties such as
entanglement, as demonstrated in recent experiments [13,14].
In idealized cases, the minimal uncertainty achievable scales
with the Heisenberg limit 1/N , an enhancement of a factor of
1/

√
N [15], which can be achieved by making use of NOON

states [16]. Achieving a sub-shot-noise limit or the Heisenberg
limit depends on the nature of the input states and the detection
strategy of the output measurement.

The Heisenberg limit is to be the ultimate precision in
optical phase estimation; however, it is yet an unsolved
problem if this limit can be reached in the presence of noise.
Many efforts have been made to improve the robustness against
particle loss because the resultant mixed state loses phase
information rapidly. Recent implementations have provided
the potential advantages of nonlinearities and the importance
of the query complexity for quantum metrology [17], where
the appropriate resource count in different states is needed for
the same phase operation [18]. In this paper, we illustrate the
attractive feature of spin-coherent states of a single-mode field
for the phase estimation problem in the absence and presence
of photon losses. We show, surprisingly, that at an increasing
spin number, these states lead possibly to a lower precision than
the NOON state, but they are more robust with respect to loss
rate. Here, in loss regime, both arms of the interferometer are
subject to photon losses which can be modeled by fictitious
beam splitters (BSs) inserted at arbitrary locations in both
channels. Furthermore, we discuss the phase sensitivity of the
interferometric scheme with a realistic measurement approach
on one mode of the output state.

In the realm of optics, there has recently been much interest
in the use of two-mode maximally entangled number states,
sometimes called NOON states, given by

|�N 〉ab = 1√
2

(|N〉a|0〉b + |0〉a|N〉b) . (1)

These maximal entangled states are very useful in quantum
metrology with a small number of photons. However, it
remains a challenge to obtain a practical high NOON state
in linear (or even nonlinear) optics. Even if high NOON states
become achievable, a critical consideration is that these states
are extremely fragile to particle loss because the resultant
mixed state loses phase information rapidly.

The phase optimization is related to QFI by the QCRB for
the output states as

δφ � 1√
FQ

. (2)
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The QFI has been employed in many physical applications [19]
and is defined as

FQ = Tr[ρ(φ)L2], (3)

where ρ(φ) is the density matrix of the system, φ is the
parameter to be measured, and L is the quantum score
(symmetric logarithmic derivative) which is defined by

∂ρ(φ)

∂φ
= 1

2
[Lρ(φ) + ρ(φ)L] . (4)

We focus on input states as the ESCS introduced recently by
Gerry et al. [20] in the context of the optical fields using HPR.
The spin-coherent states given in terms of a set of single-mode
Bose annihilation and creation operators are associated with
the HPR form of the spin Lie algebra. This HPR is given by
the operators

Ĵ+ = â†√(2j − n̂), Ĵ− =
√

(2j − n̂)â, Ĵz = n̂ − j,

(5)

satisfying the commutation relations

[Ĵ+,Ĵ−] = Ĵz, [Ĵ±,Ĵz] = ∓Ĵ±, (6)

where it is further assumed that â and â† satisfy the Bose
algebra

[
â,â†] = 1. The number j is, of course, the total angu-

lar momentum quantum number, and the angular momentum
states |j,m〉 are related to the Bose number states |n〉 according
to |j,m〉 ∼ |n〉, n = j + m. Note that only number states for
n = 0,1, . . . ,2j participate in forming representations for the
spin algebra for a fixed j . The Hilbert space of the Bose
operator is truncated in this sense.

Now, we aim to find the input state that allows performing
phase estimation with the best precision possible, i.e., yielding
the highest value of the QFI. In particular, we consider the
pure two-mode input state, superposition of macroscopic spin-
coherent states which can be understood as a superposition of
NOON states, given by

∣∣� int
E

〉
ab

= Nξ,j

(1 + |ξ |2)j

∞∑
n=0

ξn

n!
[(Ĵ a

+)
n + (Ĵ b

+)
n
]|0〉a|0〉b

= Nξ,j [|ξ,j 〉a|0〉b + |0〉a|ξ,j 〉b], (7)

where the normalization factor Nξ,j is given by

Nξ,j =
[

2 + 2

(1 + |ξ |2)2j

]− 1
2

. (8)

The spin-coherent state in mode i can be rewritten in terms of
the number states per the HPR as

|ξ,j 〉i = 1√
1F

(−)
0 (2j,|ξ |2)

2j∑
n=0

[
(2j )−n

n!

] 1
2

ξn|n〉i , (9)

where (A)−n is a negative Pochammer symbol: (A)−n =
A(A − 1) · · · (A − n + 1); (A)0 = 1, and 1F

(−)
0 (A,x) =∑A

n=0(A)−nx
n/n! is the “negative” hypergeometric function.

The parameter ξ = e−iϕ tan (θ/2) ranges over the entire
complex plain; 0 � |ξ | < ∞. These spin-coherent states have
been considered by Markham and Vedral [21] for generating
entanglement from a beam splitter and are essentially those
built upon the HPR of the angular momentum operators
given in terms of Bose operators for a single-mode field.
The corresponding spin-coherent states of the form originally

BS

BS

Input state

FIG. 1. (Color online) Interferometric phase estimation scheme
for the ESCS. Channel a acquires a phase φ relative to channel b.
After applying a shift phase U (φ) in mode a, the parity measurement
is performed.

considered by Radcliff turn out to be just the single-mode
binomial states [22]. The number of Fock states included in
the superposition is finite but tends to infinity in the limit that
the spin goes to infinity.

Let us consider an interferometer with two arms a and b, as
shown in Fig. 1. An initial ESCS, |� int

E 〉, is prepared in modes
a and b and acquires a phase φ in the channel b relative to the
channel a by a unitary operation, U (φ) = exp(iφb̂†b̂), where
b̂ is the creation operator in mode b. The unitary operator
applying in the input state leads to the following output state:∣∣�out

E

〉
ab

= [1a ⊗ U (φ)]
∣∣� int

E

〉
ab

= Nξ,j [|ξ,j 〉a|0〉b + |0〉a|ξeiφ,j 〉b]. (10)

The QFI for the pure state |�out
E 〉ab is given by

FQ = 4
[〈
|
〉ab − ∣∣〈
∣∣�out

E

〉
ab

∣∣2]
, (11)

where |
〉ab = ∂|�out
E 〉ab/∂φ.

Let us first consider the situation with no loss of photons,
the optimal phase estimation of the pure state is analytically
achieved. For the state NOON, we find that δφN � 1

N
, and for

the ESCS,

δφE � 1 + |ξ |2
2
√

2jNξ,j |ξ |{1 + 2j |ξ |2[1 − (Nξ,j )2]} 1
2

. (12)

To compare the phase uncertainty for the ESCS with NOON,
we take into account an equivalent resource case for the states
[2]. Considering the same average photon number for mode a

given by

nN = nE = N

2
= (Nξ,j )2ns, (13)

where ns = 2j |ξ |2/(1 + |ξ |2) = j (1 − cos θ ) is the average
photon number of the spin-coherent state.

Then, the phase uncertainty for the ESCS can be compared
with respect to N for the state NOON as displaced in Fig. 2.
The solid green line is for the state NOON, the dotted blue
line (j = 1), the dashed-dotted red line (j = 3), and the solid
black line (j = 20) are for the ESCS. Two interesting features
appear. The first is that the phase uncertainty provides a
different order as functions of N for small numbers of spin
j , with δφE initially smaller than δφN for smaller photon
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FIG. 2. (Color online) The lower bound on the uncertainty of
phase, given by QFI in Eq. (12), as function of average photon number.
Blue (dotted line): ESCS for j = 1; red (dotted-dashed line): ESCS
for j = 3; black (solid line): ESCS for j = 20; green (solid line):
NOON state. Surprisingly, the ESCS is better than the NOON state
for a wide range of photon numbers when the spin number becomes
significantly larger.

number N ; but for the other ranges of significantly larger N ,
δφE becomes larger than δφN . In addition, the critical values
Nc for which δφE = δφN increase with increasing spin j .
The second feature of interest is that when the spin number
becomes significantly larger, we can see that δφE ≈ δφN for
large values of N , which means that the ESCS becomes
approximately equivalent to the NOON state, being dominated
by the NOON amplitude at N = ns . On the other hand, we
find that δφE is less than δφN for small values of N due to the
superposition property of the input state, where |� int

E 〉 contains
2j + 1 NOON states including N values exceeding ns . From
these results, the superposition property provides an advantage
for the ESCS at large spin values with small ns . In this way,
the addition of more particles increases the total spin number
and makes then the system with better sensitivity of phase
estimation. For a detailed example, considering N = 5 for
the NOON state with nN = 2.50 and ns = 5 with nE ≈ 2.50
for the ESCS state in the large spin limit case, so the values
of the corresponding optimal phase are equal to δφN = 0.20
and δφE ≈ 0.17. We then demonstrate that increasing the spin
number actually improves the phase uncertainty of the ESCS
and can beat the Heisenberg limit given by NOON, which
could be of significant utility in quantum metrology.

We now discuss the parity measurement, which detects
whether the number of photons in a given output mode is even

or odd. The measurement is applied in mode b, the uncertainty
in the estimation of the phase shift �φ upon measurement of
the parity operator �̂b = (−1)n̂ is given by Ref. [23]

(�φ)2 = (��b)2

(|∂〈�̂b〉/∂φ|)2
, (14)

where (��b)2 = 〈�̂2
b〉 − 〈�̂b〉2 = 1 − 〈�̂b〉2 since �̂2

b = 1.
For the input state (7), the expectation value of the parity
operator is

〈�̂b〉 = 2 + (1 + |ξ |2eiφ)2j + (1 + |ξ |2e−iφ)2j

2 + 2(1 + |ξ |2)2j
, (15)

from which we readily evaluate the phase uncertainty. This is
plotted in the dotted-dashed line of Fig. 3. We can clearly see
that the parity measurement on the ESCS does not saturate the
optimal phase uncertainty given by the QCRB for this state,
but it still beats the Heisenberg limit given by the NOON state.

In the following, we shall determine a lower bound for the
uncertainty of the parameter estimation employing ESCSs in
the realistic scenario of the photon loss. In other words, we
wish to see how the ESCSs resist to photon loss in comparison
with the NOON state for different values of spin j in the
presence of loss. To this end, we apply two BS transformations
characterized by the transmission rate T , considering the
scenario of equal losses in both arms of the interferometer,
i.e., T1 = T2 = T , with loss modes c and d located after the
phase operation. After the transformations, the obtained output
mixed state ρab

out, given by performing a partial trace over the
modes c and d of the BSs, is evaluated for the estimation of
phase uncertainty.

When the output state is a mixed state ρout
E , the QFI is given

by

FQ =
∑
i,j

2

λi + λj

∣∣〈λi |∂ρout
E

/
∂φ|λj 〉

∣∣2
, (16)

where λi and |λi〉 are the eigenvalues and eigenvectors of ρout
E ,

respectively.
After applying the BSs, the output state is written by |�〉 ≡

ÛBSac
ÛBSbd

|�out
E 〉|0〉c|0〉d . Tracing over modes c and d, the

mixed state can be written in four components:

ρout
E = (2j )!(Nξ,j )2

(1 + |ξ |2)2j

1∑
nm

ρnm, (17)

where

ρT
00 =

2j∑
p=0

2j∑
p′=0

min(2j−p,2j−p′)∑
m=0

1√
(2j − m − p)! (2j − m − p′)!

ξpξp′
T

p

2 T
p′
2√

p!p′!
|ξ |2m(1 − T )m

m!
[|p〉1|0〉2 1〈p′| 2〈0|],

ρT
01 =

2j∑
p=0

2j∑
p′=0

eipφ

√
(2j − p)! (2j − p′)!

ξpξp′
T

p

2 T
p′
2√

p!p′!
[|0〉1|p〉2 1〈p′| 2〈0|],

(18)

ρT
10 =

2j∑
p=0

2j∑
p′=0

e−ip′φ
√

(2j − p)! (2j − p′)!
ξpξp′

T
p

2 T
p′
2√

p!p′!
[|p〉1|0〉2 1〈0| 2〈p′|],

ρT
11 =

2j∑
p=0

2j∑
p′=0

min(2j−p,2j−p′)∑
m=0

ei(p−p′)φ
√

(2j − m − p)! (2j − m − p′)!
ξpξp′

T
p

2 T
p′
2√

p!p′!
|ξ |2m(1 − T )m

m!
[|0〉1|p〉2 1〈0| 2〈p′|].
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FIG. 3. (Color online) Phase sensitivity with parity detection for
ESCS interferometry as function of average photon number. The red
dotted-dashed line shows the optimal phase estimation given by Eq.
(14) for j = 20, while the green dashed line and black solid lines
show the optimal phase estimation with QFI for ESCS and NOON,
respectively.

Here, the transmission rate parameter in the BSs characterizes
the robustness of phase estimation for the input state against
the photon loss. To calculate QFI for the mixed state ρout

E , we
need to evaluate the eigenvalues and eigenvectors. Then the
QFI can be calculated numerically using Eqs. (16) and (17).

In Fig. 4, the optimal phase estimations for the ESCS and
the NOON states are plotted and compared. We find that
increasing the spin number actually improves the optimal
phase estimation of the ESCS, which would be expected to
have strong nonclassical properties including nonlocality [20],
over that of NOON for different values of the transmission
rate parameter, which could be of significant utility under loss
conditions. This effect wins out because the photon losses in
both modes do not destroy the superposition effects provided

FIG. 4. (Color online) Optimal phase uncertainty achieved with
N = 5 for equal losses in both arms, i.e., photon losses can be
modeled by inserting fictitious beam splitters with transmissivities
Ta = Tb = T into both channels of the interferometer which couple
the two-mode to an uncorrelated environment. Blue (dashed line):
ESCS for j = 3; red (dotted-dashed line): ESCS for j = 10; black
(solid line): ESCS for j = 20; green (solid line): NOON state. As
the spin number increases, δφN is significantly bigger than δφE while
δφN approaches δφE ≈ 0.20 at T = 1. The optimal phase estimation
for the NOON state is already known (see Refs. [5,6]).

FIG. 5. (Color online) Phase uncertainty for symmetric
(Ta = Tb = 0.6) losses for ESCSs and optimal N-photon states. Red
(dashed line): ESCS for j = 20; blue (solid line): optimal N-photon
states. As N increases, δφE becomes approximately equivalent to
δφoptimal.

by spin-coherent states, while for the NOON state a loss of
photons renders the state useless for phase estimation. We
note that when T is very close to unity, the density matrix
is approximately equal to ρout

E ≈ ρ1
01 + ρ1

10, and the minimal
phase uncertainty value of the ESCS follows that of the
NOON state. Moreover, we find that the ESCS contains phase
estimation even in the large loss rate T � 1. In addition, we
find that this state is more robust in the presence of losses than
other optimal states for the whole range of transmission rate
parameters [5,24].

Finally, we compare the phase uncertainty for the ESCSs
to the rigorous asymptotic bound in Ref. [25] in the realistic
scenario of particle loss. The results are illustrated in Fig. 5.
As we can see, in the limit of large photon numbers N, the
ESCSs become approximately equivalent to the optimal N-
photon states. However, interestingly, δφoptimal is significantly
bigger than δφE for small N. From these results, the ESCSs
effectively offer an advantage over the optimal states.

In summary, we have studied the phase uncertainty of the
ESCS under perfect and lossy conditions. By analytical and
numerical analyses, we have shown that while increasing the
spin number, our system provides an improvement in the phase
estimation compared to NOON and other states, which could
be of significant utility in quantum metrology. We have shown
that even the parity detection does not saturate the QCRB
of the interferometric scheme, and the ESCS still beats the
Heisenberg limit provided by the NOON state. This should
offer experimentalists, looking to implement interferometry
with ESCS, more options with a better sensitivity. The ESCS
states allow us to beat the Heisenberg limit with a fixed
and finite mean number of particles. This possibility arises
because of the combination of two effects. First, performance
estimators, such as QFI, may be a nonlinear function of
the photon number for nonclassical states, even if we are
dealing exclusively with linear processes. Second, the use of
probes in states (ESCS), including coherent superpositions
of NOON states with different photon numbers, shifts the
number distribution to larger photon numbers. Interestingly,
beating the split-resource Heisenberg limit is very appropriate
when the number of repetitions is large because the mean
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number of photons of the probe is small, as is usually
the case for quantum states of interest in metrology. These
results may provide a new perspective on quantum metrol-
ogy, possibly replacing previously acclaimed performance
limits.

Realistic quantum systems are not closed, therefore it is
important to study the robustness of phase uncertainty when
the system loses its coherence due to interactions with the
environment. An important future investigation will be the

study of the effects of finite-temperature Markovian and non-
Markovian environments on the dynamics of phase estimation.
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