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Frequency spectrum of second-harmonic radiation excited by a Gaussian Schell-model beam
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The second harmonic (SH) radiation excited in a nonlinear crystal by a Gaussian Schell-model beam with a
broad frequency spectrum is analyzed. It is revealed that the frequency spectrum of the SH wave generated depends
on the bandwidth of the angular spectrum of the incoherent fundamental wave as well as on its beamwidth. The
influence of the fundamental wave beamwidth on the SH wave intensity is discussed. Analytical treatments and
numerical simulations of the nonlinear coupling equations are both presented.
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I. INTRODUCTION

The first experimental demonstrations of second harmonic
(SH) generation from incoherent light were performed in
the early works of McMahon and Franklin [1–3]. Recently,
the detectable SH radiation of continuous-wave incoherent
sources has been demonstrated starting with a microscopic-
size light-emitting diode chip, all the way up to distant objects
such as the Sun [4]. The coherence properties of an SH beam
generated by a monochromatic partially coherent pump were
analyzed by the authors of Refs. [5–7], and it was shown that,
under certain conditions, the conversion efficiency of the SH
beam can be significantly increased up to a factor of 2, as
compared to a coherent beam. In the last decade, the idea
of incoherent excitation of nonlinear optical processes has
resulted in several interesting theoretical works. It was shown
that a coherent signal can be generated from an incoherent
pump wave in the parametric generation process [8–10]. In this
interaction, the idler wave remains incoherent, and the process
takes place if the group velocities of two incoherent waves,
pump and idler, are the same and differ from the signal wave
group velocity. Afterwards, it was revealed that the generation
of a coherent wave by two incoherent waves with a continuous
spatial-temporal spectrum is possible in a quadratic nonlinear
medium when the angular dispersion of both incoherent
waves is properly chosen [11]. Experimental work [12] has
demonstrated that spatial as well as temporal walk-off effects
in a nonlinear crystal can result in an angular dispersion of SH
radiation excited by an incoherent pump. In general, the width
of the SH frequency spectrum is significantly influenced by
the spatial incoherence of the fundamental wave.

In this paper, we present a detailed analysis of the frequency
spectrum of the SH radiation excited by an incoherent pump.
In the time domain, the fundamental wave is assumed to be
a stationary random process. On the other hand, we assume
that in the space domain, the fundamental beam is partially
coherent and obeys a Gaussian Schell (GS) model [13].
We obtain that the SH frequency spectrum narrows with a
propagation through nonlinear medium, and it is revealed that
the frequency bandwidth depends on the bandwidth of the
angular spectrum of the incoherent fundamental beam as well
as on its beamwidth. In the case of a wide angular spectrum,
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the faster narrowing of the SH frequency spectrum is obtained
for smaller beamwidths of the fundamental wave.

The paper is organized as follows. The nonlinear coupling
equations and pump wave model are presented in Sec. II. In
Sec. III we solve the equations at low conversion efficiency,
and the results obtained from numerical calculations as well
as those of analytical consideration are presented in Secs. IV
and V. In Sec. VI the method utilized for the numerical
simulation of the nonlinear coupling equations for the input
GS model beam is provided. Finally, the conclusions are
drawn in Sec. VII.

II. NONLINEAR COUPLING EQUATIONS

Let us consider the second harmonic generation (SHG)
resulting from the GS model beam. In the case of type-I
noncritical phase-matching the nonlinear coupling equations
for fields Aj (t,x,z) read [14]

∂A1

∂z
= i

g10

2

∂2A1

∂t2
− i
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− σ1A

∗
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g20
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∂t2
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∂x2
+ σ2A

2
1, (1b)

where the indices j = 1,2 stand for the fundamental and SH
waves, respectively. The central frequencies of the waves obey
the relation ω20 = 2ω10, kj0, gj0 = (d2kj/dω2

j )ωj0 are the wave
number (k20 = 2k10) and group velocity dispersion coefficient
at the central frequency, respectively. uj0 = [(dkj/dωj )ωj0 ]−1

is the group velocity, ν = 1
u20

− 1
u10

is the walk-off parameter,

σj = defω
2
j0/(2c2kj0) is the coupling coefficient, def is the

effective quadratic susceptibility, and c is the speed of light. x

and z are Cartesian coordinates, and t is time. For simplicity
one transverse coordinate (y) was omitted.

Equations (1a) and (1b) can be solved analytically for low
conversion efficiency when the nonlinear term in Eq. (1a) can
be neglected. The solutions are found for spectral amplitudes
aj (�,p) which are a two-dimensional Fourier transform of the
fields Aj (t,x)

aj (�,p) =
∫ ∞

−∞

∫ ∞

−∞
Aj (t,x) exp[−i(�t − px)]dtdx, (2)

here � = ωj − ωj0 is the frequency shift with respect to the
central frequency, and p is a transverse wave vector. On the
other hand, the fields Aj (t,x) are an inverse Fourier transform
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of the spectral amplitudes aj (�,p)

Aj (t,x) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
aj (�,p) exp[i(�t − px)]d�dp.

(3)

We assume that at the input of a nonlinear medium (z = 0) the
field of the incoherent fundamental wave is A10(t,x), and its
correlation function has the form

〈A10(t1,x1)A∗
10(t2,x2)〉

= a2
0 exp

(
− (t2 − t1)2

τ 2

)
exp

(
− (x1 + x2)2

4d2
0

)

× exp

(
− (x2 − x1)2

d2
1

)
. (4)

So we assume that in the time domain, the fundamental wave
is a stationary one, and τ is the correlation time. On the other
hand, in the space domain, the fundamental beam is partially
coherent and obeys the GS model [13]. Here d0 is the beam
radius and d1 � d0 stands for the correlation radius. Then, by
use of Eq. (2), the correlation function of the spectral amplitude
a10(�,p) of the fundamental wave at the input of the nonlinear
medium can be written as

〈a10(�1,p1)a∗
10(�2,p2)〉

= 16π5/2a2
0

	�1	β0	β1
exp

(
− �2

	�2
1

)
exp

(
− (p1 − p2)2

	β2
0

)

× exp

(
− (p1 + p2)2

4	β2
1

)
δ(�1 − �2). (5)

Here 	�1 = 2
τ

is the frequency bandwidth of the fundamental
wave 	β0 = 2

d0
and 	β1 = 2

d1
. In general, the spectral ampli-

tude a10(�,p) obeys Gaussian statistics, and the components
of the frequency spectrum are δ correlated.

III. SOLUTION OF THE NONLINEAR COUPLING
EQUATIONS

We assume that the nonlinear term in Eq. (1a) can be
neglected. This assumption is correct when the conversion
efficiency in a SHG process is rather low. The Fourier
transform of Eqs. (1a) and (1b) gives

∂a1

∂z
= −i	1a1, (6a)

∂a2

∂z
= −i	2a2 + σ2T , (6b)

where 	1 = g10

2 �2 − p2

2k10
, 	2 = ν� + g20

2 �2 − p2

2k20
, and

T (�,p) = ∫ ∞
−∞

∫ ∞
−∞ A2

1(t,x) exp[−i(�t − px)]dtdx. The so-
lutions of Eqs. (6a) and (6b) are

a1(�,p) = a10(�,p) exp[−i	1(�,p)z], (7a)

a2(�,p) = σ2 exp[−i	2(�,p)z]

×
∫ z

0
exp[i	2(�,p)z]T (�,p,z)dz. (7b)

Making use of Eq. (3), Eq. (7b) can be written in the form

a2(�,p) = σ2

4π2
exp(−i	2z)

∫ ∞

−∞

∫ ∞

−∞
exp(−iF )

sin F

F

× a10(�1,p1)a10(� − �1,p − p1)d�1dp1, (8)

where

F = z

2
[	1(�1,p1) + 	1(� − �1,p − p1) − 	2(�,p)].

(9)

Next, taking into account that the spectral amplitude a10(�,p)
obeys Gaussian statistics, we find the correlation function
〈a2(�,p)a∗

2 (�′,p′)〉 of the SH radiation. Here we have
omitted the rather long calculations and only present the final
result
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)
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where sincF = sin F
F

and

F1,2(�1,p1,2) = α

[
g10

k10
�2

1 − p2
1,2

k2
10

+ h(�)

]
. (11)

Here α = k10z

2 = πn10z

λ10
is the normalized propagation length.

λ10 and n10 are the wavelength and the refraction index of the
fundamental wave, respectively, and h(�) = − ν�

k10
+ g10�

2

4k10
−

g20�
2

2k10
. Further we introduce into consideration the nonlinear

length of interaction

Ln = 1

σ2

√
〈|A10(0,0)|2〉

= 1

σ2a0
, (12)

see Eq. (4). Then the normalized spectral radiance G2(�,p) =
〈|a2(�,p)|2〉
〈|a10(0,0)|2〉 of the SH radiation can be written as

G2(�,p) = 2(z/Ln)2

π3/2	�1	β0	β1
exp

(
− �2

2	�2
1

− p2

2	β2
1

)

×
∫
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∫
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∫
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sincF1sincF2 exp

(
iα

(
p2

1 − p2
2

)
k2
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)
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(
−2
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0
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2	β2
1

)

× d�1dp1dp2. (13)
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It is obvious that the bandwidth of the angular spectrum of
the SH wave exceeds the bandwidth of the fundamental wave
by a factor of

√
2, and does not depend on the propagation

length. This is caused by noncritical type-I phase matching
which was assumed in the consideration. In the case of critical
phase matching the angular dispersion of the SH radiation
appears [12].

We note that the radiance of the SH radiation gener-
ated by the GS model beam depends on the beam radius
(d0 = 2

	β0
) of the fundamental wave also via the exponent

exp(iα p2
1−p2

2

k2
10

) in the integral (13). At d0 → ∞, 	β0 → 0, p1 ≈
p2, exp(iα p2

1−p2
2

k2
10

) → 1, and the dependence of the radiance

G2(�,p) on 	β0 disappears.

IV. SPECTRAL RADIANCE AND FREQUENCY
BANDWIDTH OF THE SECOND HARMONIC

RADIATION

Here we make use of Eq. (13) and calculate the spectral
radiance G2(�,p) and frequency bandwidth 	�2 of the SH

radiation. The calculations were performed for an Lithium
triborate (LBO) crystal in the case of noncritical type-I phase
matching in the x direction (θ = 90◦, ϕ = 0◦) at a temperature
of 387 K for a fundamental wavelength of λ10 = 1.1 μm. The
Sellmeier equations from Ref. [15] were adopted. In further
consideration, the normalized quantities a = 	�1

ω10
, b0 = 	β0

k10
,

b1 = 	β1

k10
, r = ma

b1
, δ = αb0b1, μ = αb2

0 were introduced,

here m =
√

ω2
10g10/k10 ≈ 0.063. The normalized frequency

bandwidth a of the fundamental wave was fixed to 0.1. The
parameters b0 and b1 (b0 � b1) characterize the beamwidth
and the angular spectrum of the GS model beam, respectively.
The parameter μ can be rewritten as μ = αb2

0 = z/Ld ,

where Ld = k10d
2
0

2 = λ10

πn10b
2
0

is a Rayleigh length of a coherent

Gaussian beam with a beam radius of d0. So, the quantity μ

characterizes the GS model beam envelope diffraction. By use
of the approximation sin F/F ≈ exp(−κ2F 2), κ ≈ 0.41, for
α � 1 and μ � 1 it is possible to simplify the integral (13).
As a result, for a spectral radiance of G20 = G2(0,0) we
find

G20 = (z/Ln)2

√
2π

∫ ∞

−∞

∫ ∞

−∞

exp
{−ξ 2

[
1 + δ2/

(
4R2

1

)] − η2 − 1
2κ2α2b4

1(ξ 2 − r2η2)2
}

R1(ξ,η)
dξdη, (14)

where R1(ξ,η) =
√

1 + κ2δ2

4 (3ξ 2 − r2η2). Further the Eq. (14)
obtained is used for the analytical evaluation of the spectral
radiance G20. The dependence of the spectral radiance G20

on the propagation length z in a nonlinear medium was
obtained by the numerical calculation of Eq. (13) and is
presented in Fig. 1. In the limit case z → 0 (α → 0, δ → 0,
R1 → 1) the dependence of the radiance with z is quadratic,
G20 ≈ 1√

2
( z
Ln

)2. In general, the variation of radiance depends
with a propagation on the quantities δ, r , and μ. When δ � 1,
r � 1 we have R1 ≈ 1, and

G20 ≈
√

2

π

(
z

Ln

)2 ∫ ∞

0
exp(−η2 − ε1η

4)dη, (15)

where ε1 = 1
2κ2α2m2a2. The integration in Eq. (15) gives

G20 = 1

4

√
2

π

(
z

Ln

)2 exp(1/(8ε1))√
ε1

K 1
4

[
1

8ε1

]
, (16)

where K is the modified Bessel function. So, the radiance
depends on the bandwidth of the frequency spectrum but does
not depend on the bandwidth of the angular spectrum of the
fundamental wave. In this case the spatial coherence of
the fundamental wave is rather high, curve 1 in Fig. 1(a).
The dependence of the radiance on the parameter b1 appears
when b1 increases. For example, at δ � 1, r � 1, Eq. (14) can
be written as

G20 ≈
√

2

π

(
z

Ln

)2 ∫ ∞

0
exp(−ξ 2 − ε2ξ

4)dξ, (17)

where ε2 = 1
2κ2α2b4

1. The integration in Eq. (17) again gives
Eq. (16) but with ε1 changed to ε2. If ε2 � 1, then G20 ≈
23/4�( 1

4 )( z
Ln

)2

4
√

πκαb1
, where � is the gamma function. The radiance

depends on the propagation length z as z3/2 and decreases
with an increase in b1, Fig. 1(b), curve 1. The influence of
the beam envelope diffraction parameter μ on radiance with
propagation is rather weak at δ � 1, compare curves 2 (δ =
0.05, μ = 5 × 10−4) and 3 (δ = 0.5, μ = 0.05) in Fig. 1(a) at
z/Ln = 0.5 (α ≈ 5 × 104). This influence becomes noticeable
at δ � 1, μ > 1, curves 4 (δ = 1.25, μ = 0.0125) and 5 (δ =
12.5, μ = 1.25) in Fig. 1(a), and is significant at μ � 1, curves
2 (δ = 5, μ = 0.05) and 3 (δ = 50, μ = 5) in Fig. 1(b) at
z/Ln = 0.5.

The frequency spectrum of the SH radiation is shown in
Figs. 2 and 3. Here the frequency spectrum is normalized
to its peak value. When the beamwidth of the fundamental
wave is rather large [b0 = 10−4, Fig. 2(a)], the bandwidth of
the frequency spectrum significantly depends on the angular
bandwidth of the fundamental wave. In this case, the influence
of the envelope of the fundamental beam can be neglected,
and the frequency bandwidth of the SH radiation increases
with an increase in the angular bandwidth of the fundamental
wave (parameter b1). This is caused by the possibility for
different frequency components to obey better noncollinear
phase-matching conditions when the angular spectrum is
broad. The influence of the angular spectrum of the funda-
mental beam on the frequency bandwidth of the SH radiation
becomes insignificant at b1 < 0.01, Fig. 2(b). At b0 → 0,
b1 → 0 and b0 � b1, exp(−2 (p1−p2)2

	β2
0

) → √
π
2 	β0δ(p1 − p2),
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FIG. 1. Dependence of the spectral radiance of the second
harmonic radiation on the propagation length. Ln = 2 cm, a = 0.1.
(a) b1: 0.001 (1), 0.01 (2,3), 0.05 (4,5). b0: 0.0001 (1,2), 0.001 (3),
0.0005 (4). 0.005 (5). (b) b1 = 0.1, b0: 0.0001 (1), 0.001 (2), 0.01 (3).

exp(− (p1+p2)2

2	β2
1

) → √
π
2 	β1δ(p1), where δ is the Dirac delta

function. Then Eq. (13) can be written as

G2(�,p) ≈ (z/Ln)2

√
π	�1

exp

(
− �2

2	�2
1

− p2

2	β2
1

)

×
∫ ∞

−∞
sinc2F (�1,�) exp

(
−2

�2
1

	�2
1

)
d�1,

(18)

where

F = α

(
g10

k10
�2

1 + h(�)

)
, (19)

and α ∼ z. In this case, the SH frequency bandwidth only
depends on the dispersion properties of the nonlinear crystal
and propagation length. It means that noncollinear interactions
can be neglected. The influence of the GS model beam
envelope diffraction on the frequency bandwidth of the SH
radiation increases with an increase in the parameter μ,
Fig. 3, curves 2 (μ = 0.05) and 3 (μ = 5) at z/Ln = 0.5.
The diffraction causes a significant narrowing of the SH
frequency spectrum, compare curves 1 and 3 [Fig. 3(b)]. At
μ � 1 we have α � 1/b2

0 � 1/b2
1, and the integral (13) can

FIG. 2. (a) Frequency spectrum of the second harmonic radiation
at z = 1 cm. (b) Dependence of the frequency spectrum bandwidth
	�2 on the crystal length. Ln = 2 cm, a = 0.1. b0 = 0.0001, b1: 0.1
(1), 0.01 (2), 0.001 (3).

be significantly simplified

G2(�,p) ≈ 2(z/Ln)2

π3/2	�1	β0	β1
exp

(
− �2

2	�2
1

− p2

2	β2
1

)

×
∫

�1

∣∣∣∣
∫

p1

sincF1 exp

(
iα

p2
1

k2
10

)
dp1

∣∣∣∣
2

× exp

(
− 2�2

1

	�2
1

)
d�1. (20)

An analysis of Eq. (20) shows that the main contribution of
sincF1 to the integral is obtained at p1 ≈ 0 and, as a result, we
find

G2(�,p) = 2(z/Ln)2

√
π	�1αb1b0

exp

(
− �2

2	�2
1

− p2

2	β2
1

)

×
∫ ∞

−∞
sinc2F (�,�1) exp

(
− 2�2

1

	�2
1

)
d�1, (21)

where F (�,�1) is given by Eq. (19). So, at μ � 1 the profile
of the SH frequency spectrum is the same as in the case of the
SH excited by a fundamental beam of high spatial coherence
(b1 → 0), see Eq. (18) and curve 3 in both Figs. 2(a) and 3(a).
This means that the noncollinear interactions are suppressed by
the beam envelope diffraction. On the other hand, the spectral
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FIG. 3. (a) Frequency spectrum of the second harmonic radiation
at z = 1 cm. (b) Dependence of the frequency spectrum bandwidth
on the crystal length. Ln = 2 cm, a = 0.1. b1 = 0.1, b0: 0.0001 (1),
0.001 (2), 0.01 (3).

radiance is reduced by a factor of v = αb1b0/2. For z/Ln =
0.5 and b1 = 0.1, b0 = 0.01 we find v ≈ 25, compare curves
1 [Fig. 1(a)] and 3 [Fig. 1(b)] at z/Ln = 0.5.

The influence of the GS model beamwidth on the SH
frequency bandwidth can be explained by an analysis of
the properties of the incoherent fundamental wave under
propagation. Making use of Eqs. (5) and (7a) the corre-
lation function of the spectral amplitudes a1(�,p) can be

written as

〈a1(�1,p1)a∗
1 (�2,p2)〉

= 〈a10(�1,p1)a∗
10(�2,p2)〉 exp

(
iα

p2
1 − p2

2

k2
10

)
. (22)

The subsequent calculation of the correlation function of the
field A1(t,x) gives

〈A1(t1,x1)A∗
1(t2,x2)〉

= a2
0√

1 + δ2
exp

(
− (t2 − t1)2

τ 2

)
exp

(
− (x1 + x2)2

4d ′2
0

)

× exp

(
− (x2 − x1)2

d ′2
1

)
exp

(
− i

(
x2

1 − x2
2

)
αb2

1

d ′2
0

)
, (23)

where d ′
1 = d1

√
1 + δ2, d ′

0 = d0

√
1 + δ2. In comparison with

the input fundamental wave [Eq. (4)] the correlation radius
as well as the beamwidth is increased by a factor of

√
1 + δ2

[13]. At δ � 1 we have d ′
0 ≈ d0δ, d ′

1 ≈ d1δ and αb2
1

d ′2
0

≈ 1
d2

0 μ
.

As a result, the influence of the beam envelope diffraction
on the SH frequency bandwidth with the increase of δ

gradually disappears. Simultaneously the spatial coherence
of the fundamental wave increases. In this case at μ � 1 the
bandwidth of the SH frequency spectrum becomes the same as
in the case of the SH excited by a fundamental beam of high
spatial coherence.

V. INTENSITY OF THE SECOND HARMONIC RADIATION

We define the intensity of the SH radiation as I2 =
〈|A2(t,x)|2〉. Then, calculating it at x = t = 0, normalizing
to the intensity of first harmonic I10 = 〈|A1(0,0)|2〉 = a2

0 and
making use of Eq. (10) we find

I20

a2
0

= 1

16π4a2
0

∫
�

∫
p

∫
p′

〈a2(�,p)a∗
2 (�,p′)〉d�dpdp′, (24)

where I20 = I2(0,0). The dependence of the intensity I20 on the
propagation length z in a nonlinear medium was obtained by
the numerical calculation of Eq. (24) and is presented in Fig. 4.
As earlier in Sec. IV the same quantities α, b0, b1, r , δ, and
μ were used. The integral (24) can be simplified for h(�) ≈
− ν�

k10
, Eq. (10), when the diffraction of the fundamental beam

envelope is neglected (μ � 1). As a result, we find

I20

a2
0

= 2

π

(z/Ln)2√
(1 + γ 2)(1 + δ2)

∫ ∞

−∞

∫ ∞

−∞

exp
(−ξ 2

[
1 + δ2/

(
4R2

2

)] − η2 − κ2α2b4
1

2(1+γ 2) (ξ
2 − r2η2)2

)
R2(ξ,η)

dξdη, (25)

where R2(ξ,η) =
√

1 + κ2δ2

2(1+γ 2) [(γ
2 + 3/2)ξ 2 − r2η2/2], γ =

2κ z
Lν

, and Lν = τ
|ν| = λ10

πac|ν| is the correlation length of the
interaction. For an LBO crystal at λ10 = 1.1 μm we have
c|ν| = 0.011 and Lν = 0.29 mm at a = 0.1. In the limit case
z → 0 (α → 0, δ → 0, γ → 0, R2 → 1) we find I20

a2
0

≈ 2( z
Ln

)2,

and the dependence of the SH intensity on the propagation
length is quadratic. The conversion efficiency of the SH beam

is increased up to a factor of 2, as compared to a coherent beam

[6]. When γ � 1, δ � 1, then R2 ≈ 1. If ε3 = κ2α2b4
1

2γ 2 � 1, the

integration in Eq. (25) gives I20/a
2
0 ≈ 2( z

Ln
)2/γ . The intensity

varies linearly with z and does not depend on b0 and b1. This
situation corresponds to curve 1 in Fig. 4(a). When ε3 � 1, the

integration in Eq. (25) gives I20

a2
0

≈ 21/4�( 1
4 )(z/Ln)2

b1
√

πκαγ
∼ z

b1
. In this

case the intensity decreases with the increase of a parameter
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FIG. 4. Dependence of normalized to a2
0 intensity of the second

harmonic radiation on the propagation length. Ln = 2 cm, a = 0.1.
(a) b1: 0.01 (1,2), 0.1 (3,4). b0: 0.00001 (3), 0.0001 (1,4), 0.001 (2).
(b) b1 = 0.1, b0: 0.0005 (1), 0.001 (2), 0.005 (3), 0.01 (4). (c) b1 =
0.01, b0 = 0.001.

b1. That is typical for curve 3 in Fig. 4(a). For γ � 1, δ ≈ 1,
and ε3 � 1 we find I20

a2
0

≈ 2(z/Ln)2

γ
√

(1+δ2)(1+δ2/4)
, and the increase of

the intensity I20 with z becomes slower, Fig. 4(a), curve 2. In
this case, the dependence of the intensity on the beamwidth of
the fundamental wave via the parameter δ appears. The typical
variation of the SH intensity with propagation in a nonlinear
medium for δ � 1 is shown in Figs. 4(b) and 4(c). First, at
δ � 1 the intensity varies with z linearly, and afterwards at
δ � 1 a saturation of the intensity is observed, and finally, the
intensity decreases. This decrease in SH intensity is caused by

significant narrowing of the SH spectrum due to diffraction of
the beam envelope, Fig. 3.

VI. NUMERICAL SIMULATIONS OF THE NONLINEAR
COUPLING EQUATIONS

To control the conditions of low conversion efficiency,
the Eqs. (1a) and (1b) were solved numerically without the
omission of the nonlinear term in Eq. (1a). The Fourier
split-step method [16] was implemented. The equations were
simulated M times and averaged values were found. The

FIG. 5. (a) Normalized to peak value frequency spectrum,
(b) intensity profile, and (c) angular spectrum of the fundamental
wave. Curve 1, gray line: theoretical curve, curve 2: with random
phases, curve 3: without random phases. a = 0.1, b1 = 0.1, b0 =
0.01. T = 20σt , N = 10. Average of M = 500 simulations.
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FIG. 6. Frequency spectrum of the second harmonic radiation.
Circles and squares: numerical simulation of Eqs. (1), gray lines:
Eq. (13). z = 1 cm, Ln = 2 cm. a = 0.1, b1 = 0.1. b0: 0.0001 (1 and
circles), 0.01 (2 and squares). Average of M = 100 simulations.

modified method of Ref. [17] was used for the simulation
of the input GS model beam with a broad frequency spectrum.
We note that the method which is described by the authors
of Ref. [17] is only suitable for a narrowband wave. In our
case, the frequency band is broad, a = 0.1. So, we made some
modifications of the method. The field of the input fundamental
wave was given as

A(x,t) ∝
N∑

j=1

�(x,t − tj ) exp(iKjx + iϕj ). (26)

The random phase ϕj was included into consideration, which
was absent in Ref. [17]. N is the number of pulses which arrive
at random times tj in the interval [−T/2,T /2]. The number N

is dictated by Poissonian statistics

p(N ) = N
N

N !
exp(−N ), (27)

where N is the average number of pulses in the interval. Kj

are random numbers which obey the Gaussian distribution

P (K) = exp

(
− K2

	β2
1

)
. (28)

Its variance corresponds to the correlation radius of the beam
d1 = 2/	β1. �(x,t) is factorized into spatial and time parts

�(x,t) = exp

(
− x2

σ 2
x

)
exp

(
− t2

σ 2
t

)
, (29)

where σx = √
2d0 and σt = τ/

√
2.

The calculated frequency spectrum, intensity profile, as
well as the angular spectrum of the fundamental wave for a =
0.1 are presented in Fig. 5. The curves labeled 3 correspond
to the method of the authors of Ref. [17] and the curves 2
to the modified method. As we can see the last curves fit the
theoretical Gaussian profiles well, which are given by Eqs. (4)
and (5).

The frequency spectra of the SH radiation obtained by
numerical simulations of Eqs. (1a) and (1b) are presented in
Fig. 6. The spectra are compared to the ones obtained by
Eq. (13), which are also presented in Fig. 3(a), and a good
agreement was obtained.

VII. CONCLUSION

The SH radiation generated in a nonlinear crystal by
a GS model beam with a broad frequency spectrum was
analyzed. It is revealed that the frequency spectrum of a
SH wave depends on the propagation length as well as
on the bandwidth of the angular spectrum and beamwidth
of the fundamental wave. With a rather small propagation
distance, the SH frequency bandwidth increases with an
increase in the bandwidth of the angular spectrum of the
fundamental wave. This is caused by noncollinear phase
matching of the various frequency components in the case of
a broad angular spectrum. With an increase in the propagation
distance, diffraction of the fundamental beam envelope takes
place, and a significant narrowing of the SH frequency
spectrum occurs. On the other hand, the bandwidth of the
SH angular spectrum is increased by a factor of

√
2 in

comparison with the bandwidth of the angular spectrum of the
fundamental wave and does not depend on the propagation
length. This is a typical case for noncritical type-I phase
matching.

The spectral radiance of an SH wave increases with
its propagation in a nonlinear medium. The variation of
SH intensity is rather complicated. First, the SH intensity
increases with its propagation. Afterwards, the diffraction of
the fundamental beam envelope takes place and as a result
saturation and a decrease in SH intensity are observed. This
is caused by a narrowing of the SH frequency spectrum under
propagation.

The modified method of the authors of Ref. [17] was
implemented for the simulation of an input GS model beam
with a broad frequency spectrum. A good agreement between
the results of the numerical simulations of Eqs. (1a), (1b),
and (13) was obtained.
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