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Light-propagation management in coupled waveguide arrays: Quantitative experimental and
theoretical assessment from band structures to functional patterns
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We assess the band structure of arrays of coupled optical waveguides both by ab initio calculations and
by experiments, with an excellent quantitative agreement without any adjustable physical parameter. The
band structures we obtain can deviate strongly from the expectations of the standard coupled mode theory
approximation, but we describe them efficiently by a few parameters within an extended coupled mode theory.
We also demonstrate that this description is in turn a firm and simple basis for accurate beam management in
functional patterns of coupled waveguides, in full accordance with their design.
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I. INTRODUCTION

Arrays of weakly coupled optical waveguides are simple
realizations of the ubiquitous paradigm of the lattice of coupled
objects. Their ability to mimic complex systems—atomic
or others—with a very small number of elements makes
them remarkably fruitful model systems for demonstrating
fundamental effects such as quasifree propagation of light,
diffraction engineering [1–3], Bloch oscillations, quantum
mechanical decay, Anderson localization, and Rabi oscilla-
tions [4–9], as well as routing optical signals [10–12]. In
a further step, following the introduction of “defects” in
arrays [13], we have proposed the systematic patterning of the
coupling for engineering the propagation of guided light [14].
Inside this structured metamaterial, wave packets or “beams”
can be redirected by interfaces [15,16], guided by channels
[17], focused by lenslike patterns, steered by control beams,
etc. This global framework, which we call “guidonics” in
analogy to electronics or free-space optics, offers many beam
management configurations and applications. However, they
depend critically on the capacity to model the propagation of
beams in a simple but accurate way.

Indeed a key to the success of weakly coupled waveguide
arrays is the general claim that they can be treated by the
standard coupled mode theory (CMT), whose main assumption
is a weak coupling between first-neighbor waveguides only.
This allows drastic approximations so propagation can be
described by simple equations—the discrete Schrödinger
equations—involving only a single parameter, the coupling
coefficient C. However, most actual arrays, which aim at
high couplings providing strong effects and short devices
for high density and low losses, do not operate in the
true weak-coupling regime [18]. Anyway CMT is unfit for
describing advanced effects such as multiband effects, gap or
Floquet-Bloch solitons, and multiband or multigap solitons
or vortices [19]. Hence the full and accurate determination
of array band structures is nonetheless required to go beyond
mere qualitative assessments and to describe and demonstrate
on a quantitative basis the various effects.

Waveguide arrays, being one-dimensional (1D) periodic
systems, are best described by the Floquet-Bloch (FB) analy-
sis. We consider 1D lattices of identical, straight, parallel, and

monomode waveguides, with the period S. X and Z axes are,
respectively, normal and parallel to the waveguide axis. FB
modes with a wave envelope exp(iKxX + iKzZ) propagate
freely when Kx and Kz are related by the diffraction relation
Kz(Kx), also called the dispersion relation. This perturbation
of the quasiparabolic relation of the nonstructured space
described by a mere effective index involves allowed bands
and forbidden gaps (see an example in Fig. 1), as in any 1D
photonic band-gap system. This set of bands constitutes the
band structure. In the CMT approximation for weak couplings,
only the upper band is considered and it has a cosine shape.

Although FB modes cannot be implemented as such,
they form a very efficient basis for the description of light
propagation, with the band structure as a backbone. Indeed as
we demonstrate in Sec. IV the shape of a band directly controls
the propagation of beams within the array. The calculation and
experimental validation of this structure—and especially the
most relevant upper band—are therefore key issues. However,
surprisingly enough, very little has been reported about its
calculation and its experimental measurement (see an extended
bibliography in the next section), and still less—a single
article [20]—about the convergence of the two approaches,
with disappointing results for the upper band.

We concentrate the present work on this experiment-model
convergence, keeping in mind that, beyond the basic determi-
nation of the properties of homogeneous arrays, the analysis
scheme—calculation combined with experimental probing
method—must also remain efficient on advanced patterned
arrays involving a combination of several band structures. Our
results demonstrate that an excellent convergence can indeed
be obtained on homogeneous arrays. Our demonstration relies
(i) on the development of a specific two-dimensional effective-
index model validated on the upper band by reference to results
of ab initio calculations and (ii) on original fully quantitative
measurements performed on well-characterized arrays.

In the following, we first review and analyze the principles,
the advantages, and the drawbacks of the known schemes
used to probe the band structure of waveguide arrays, and
especially the “head-on” scheme that we favor as giving the
best experimental signature of the upper bands (Sec. II).
We next describe our own calculation of the band structure
(Sec. III) and our prediction of experimental signatures using
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FIG. 1. (Color online) Typical band structure of a waveguide
array (see details in caption of Fig. 3). The blue partial curves
labeled B0, B1, and B2 are the bands. The continuous purple curve
is the diffraction relation of the equivalent planar waveguide. Dashed
horizontal lines indicate the levels of the planar waveguides and the
dash-dot line is the level of the isolated ridge waveguide.

the calculated bands combined with a beam propagation
framework (Sec. IV). After a description of our experimental
setup and of our test waveguide arrays, we compare the data
we obtain on homogeneous arrays with our expectations, in the
two polarizations and over a wide range of coupling constants
(Sec. V). The excellent quantitative agreement obtained is dis-
cussed in Sec. VI. It validates both calculation and experiment
and clarifies the ways various bands are excited depending
on initial conditions, thus giving a criterion to safe operation
within the upper band. It also conclusively confirms the
nonweak nature of the coupling in standard literature arrays.
Therefore even the simplest propagation properties such as the
propagation direction of a weakly divergent beam cannot be
forecast within CMT alone but requires the straightforward
extension (eCMT) we proposed in a previous work [18]. We
finally report in Sec. VII preliminary results showing that
this whole framework enables us to predict accurately the
signatures of various guidonic functional patterns.

II. PROBING THE BAND STRUCTURE

Various schemes have been proposed to probe the arrays’
band structure (Fig. 2). They all rely on the excitation of
“beams” localized in a limited but rather large (waist � S)
region of space, which can then be expressed as wave packets,
i.e., as the combination of FB modes with a limited extension
in {Kx ,Kz} around the initial {Kx0,Kz0}.

The first and by far most widely used coupling scheme
is the “head-on coupling” [21] from air at the Z = 0 plane
of a Gaussian free-space beam with a large waist W0 and
an initial wave vector Kx0 set by its incidence angle θ

(Kx0 = 2πsinθ/λ). Setting Kx0 corresponds to a vertical cross
section of the band structure [Fig. 2(a)], which selects one
wave vector {Kx0,Kz

[m](Kx0)} per band m. As explained in

FIG. 2. (Color online) Schematics of selection rules for the three
coupling schemes. The folded bands (dark blue lines) are those of an
array described in Sec. III (Fig. 3). (a) Head-on coupling: Injection
is made from air and sets Kx0; three guidonic beams are generated
at wave vectors noted by purple dots, with directions indicated by
arrows. The green lower parabolic line is the diffraction relation of
air, shown on a shifted scale. (b) Lateral coupling: Injection is made
from air to the lower planar waveguide (light blue left-hand-side
region, middle light blue parabolic diffraction relation) and coupling
to the array selects Kz0. Only one guidonic beam is generated
since a backward-going beam cannot exist. The light blue upper
parabolic line is the diffraction relation of the upper planar waveguide.
(c) Prism coupling: Light is coupled evanescently from the total
reflection face of an adjacent prism. The angle ψ between the
incidence plane and array sets a first quasivertical selection line
(dotted quasivertical red line). Scanning the incidence angle ϕ on
the prism scans the modulus of {Kx0,Kz0} (red parabolic curves
are isomodulus curves corresponding to three values of ϕ), and at
resonance, both line and curve intersect with a band (purple dot).

detail in the next sections, one observes after propagation an
output intensity profile I (X), which is a combination of beam
patterns whose position and width probe the first and second
derivatives of the bands. Scanning θ and hence Kx0 yields
the I (Kx0,X) map which we will address as the experimental
guidonic signature (GS) of the waveguide array.

A second similar scheme suggested by Zengerle [22]
and implemented by Mandelik et al. [23–25] is the “lateral
coupling,” i.e., injection from air at the Z = 0 plane with
an incidence angle θ into a waveguideless region of index
ninj at the X = 0 plane, and then to the array. When
this beam encounters the array, it sets an initial wave
vector Kz0 = 2π/λninj cos[asin(sinθ/ninj)]. In this horizontal
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cross-section scheme [Fig. 2(b)], only one single band
m is excited, and even though several wave vectors
{Kx0

[m](Kz0),Kz0} are obtained, only one forward beam is
observed due to the periodicity of the band. Here again, the
derivatives of this band can be extracted from the output profile
map I (Kx0,X). The two first schemes resemble conventional
ray refraction measurement.

In the third well-known “prism coupling” scheme imple-
mented on waveguide arrays by Rüter and co-workers [20],
[26] the whole array is excited by optical tunneling of a very
wide external beam through an air gap between a prism and the
waveguide array [Fig. 2(c)]. Since the excitation is delocalized
in the array plane, both Kx0 and Kz0 are set by the angle
ϕ of incidence on the prism and the angle ψ of the array
with the total reflection plane. In view of the small useful Kz

range, ψ approximately sets Kx0 and scanning ϕ scans the
modulus of {Kx0,Kz0} and hence Kz0. The guidonic beam
generated is not monitored. Information is carried by the loss
seen on the reflected beam or coupling efficiency, which rises
when the wave vector {Kx0,Kz0} lies in a band and therefore
can actually propagate in the array. The signature is here an
I (Kx0,Kz0) map. This scheme rather resembles absorption
spectroscopy.

All three schemes have their advantages and drawbacks.
The prism coupling scheme is obviously the most straight-
forward and efficient: The whole band structure can be re-
constructed by merely pointing transmission maxima. Single-
channel excitation has been obtained with this scheme [27],
which permits selective excitation of a given zone in patterned
arrays. On the other hand, this scheme requires a complex
setup involving especially a prism with an index larger than
the effective index of the upper band, which is not altogether
obvious. For the widely used III-V semiconductor arrays,
this would require, for instance, a large silicon prism. From
published data, resolution and accuracy for the upper band also
do not seem to be high enough. In addition, close contact of
the prism with the array may be a noticeable perturbation to
FB wave propagation.

The lateral coupling scheme also scans the whole band
structure, though the key upper band is out of reach when light
is not injected from a higher-index region but more simply
from the continuum [23–25]. It yields only derivatives of the
band structure, which is not altogether inconvenient since they
describe what is really important experimentwise, the direction
and divergence of beams. Accuracy and resolution seem
correct, but no quantitative analysis has ever been reported.
The analysis of patterned arrays—or at least of the simple
ones where C is varied only in the X direction—would not
be easy since that lateral injection can only be made in the
leftmost or rightmost pattern and not directly in inner patterns.

Finally, if the head-on coupling scheme seems a priori
less efficient—it does not reveal band gaps, and combines
information from all bands—it naturally probes the upper
band and it is also by far the easiest to implement and the
most promising for application to advanced guidonic patterns.
Therefore this scheme remains the most widely used and
several articles we have reviewed now have reported early
implicit experimental signatures.

In a pioneering work [3] Eisenberg et al. used various
AlGaAs waveguide arrays tilted with respect to the normal

to the interface in order to vary Kx0, a substitute method
for changing the incidence angle. Only a few points of
the Brillouin zone separated by Kx0S = π/2 were probed.
A comparison of experimental output profiles with CMT
expectations showed a fair qualitative agreement, except
at high Kx0 where second-band excitation was suspected.
Pertsch et al. [21] presented the first complete GS of polymer
waveguide arrays in the Kx0S [–3/2π ,3/2π ] range. The result
was rather compatible with CMT, which allowed to extract a
coupling coefficient. No indication of second-band excitation
was noted. Beam deviation-divergence formulas were cited,
but no attempt at fitting the data was made. Mandelik et al.
[23] reported the first GS in the [0,2π ] range showing
explicitly and quite clearly the second-band excitation at high
Kx0S on AlGaAs waveguide arrays. Though calculated band
structures were shown, no comparison between calculation and
experiment was made. On similar AlGaAs waveguide arrays
Sukhorukov et al. [28] reported a qualitative description of GS
features (position, width, coupling efficiency) and a GS. Meier
et al. [29] reported a GS in the [–π ,π ] range showing a clear
deviation from CMT, as seen from the strongly nonsine shape
of the trace, without interpretation or calculation. A similar
observation was reported by Suntsov [30]. Iwanow et al. [31]
reported another GS in the [–π ,π ] range on periodically-poled
lithium niobate; agreement with CMT was correct both on the
deviation and on the divergence variations, but using a mere ad-
justable coupling coefficient. Two other articles have reported
GSs involving soliton formation [32] or interface modes [30].
In conclusion, as we already stated, to our knowledge there
is at present almost no theoretical assessment of the GSs
and no successful quantitative comparison between calculated
and experimental GSs. This is nevertheless a prerequisite for
the design and validation of functional patterns. In the next
sections, we show how the models we devised to predict the
GSs and their experimental confirmation close this gap.

III. CALCULATION OF THE BAND STRUCTURE

Several calculations have been developed to predict
guidonic band structures, though most of them—e.g., the
extension of Yeh’s method [33] in a transverse dimension [23],
[34], solution of paraxial wave equations [35]—have not been
compared with experimental data. To our knowledge the only
one which has indeed been tested is the resolution of wave
equations with a finite difference method [20], which gives a
good prediction of the second and third band, but oddly enough
a poor one of the upper band.

We implemented a full calculation of the band structure in
three steps. We first used band sampling [18] by determining
the modes of a few-waveguide system [36] through finite-
element method (FEM) solution of Maxwell’s equations. This
method is quite straightforward and robust, but it provides
mostly only the confined bands since the other bands are
hidden among unwanted modes. With this reference, we
validated [18] another method, also limited to the upper
band, that allows us to calculate arrays of strip-loaded
(“shallow-ridge”) waveguides or buried-bars waveguides. This
extension of CMT (eCMT) includes the influence of second
neighbors and mode overlaps. It uses only the isolated
waveguide mode as a basis for analytical calculations of the
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complete upper band. Within CMT, the upper band has a
cosine shape Kz = βiw + 2Ccos(KxS) where βiw is the
propagation constant of the isolated waveguide and the GS
appears as a sine-shaped trace. The eCMT band shape involves
additional dimensionless η, ξ , and ζ parameters that describe,
respectively, the nearest-neighbor overlap, the self-coupling,
and the next-nearest-neighbor coupling:

Kz = βirw + C
2 cos(KxS) + ξ + 2ζ cos(2KxS)

1 + 2η cos(KxS)
. (1)

Those two calculations, FEM and eCMT, have in turn been
validated on a wide range of experimental data based on
diffraction of a narrow beam in the upper band. The latter
can be explained by FB wave propagation over the whole
band. They are nicely accounted for using an effective CMT
with an apparent coupling coefficient Capp [37] which reflects
the overall width of the band, not its actual shape. It is one
aim of the present paper to give better insight into the band
structure, the shape of the bands, and the beam propagation
effects which demand to go beyond CMT and effective CMT.

Although very efficient, neither FEM nor eCMT provides
us with the lower bands. For this purpose we have developed
an original code for shallow-ridge waveguides that we call the
two-dimensional effective-index (2DEI) model. This model is
based on Yeh’s theory [33] extended in a transverse dimension,
and is inspired by electronic structure studies for superlattice
miniband calculations in semiconductors with nonparabolic
dispersion relations. In a first step, we use a transfer matrix
method along Y to calculate effective indices for two different
planar waveguides corresponding either to the initial unetched
layer stack (the limit case of infinitely wide ridges) or to
the fully etched stack (the limit case of zero-width ridges)
which give the upper and lower confinement effective index,
respectively. Then we apply again Yeh’s approach along X

to an infinite lattice with alternating effective-index values
according to the desired ridge width and separation distance.
Along both X and Y , the matching conditions at the interfaces
depend on the polarization, either transverse electric (TE) or
transverse magnetic (TM). In the X direction, they are only
satisfied on the average over the interface areas.

A good description of the upper bands can be expected
for strongly monomode planar structures and shallow ridges
which exhibit weak polarization mixing, provided the higher-
order planar modes, e.g., those confined in the substrate, re-
main far enough from the coupling region and can be neglected
because they are strongly evanescent at the interfaces. This
condition can be true even in the continuum below the lower
confinement effective index of the planar structures. When
applied to our structures, possible limitations of the accuracy of
our code arise from two main factors. 2DEI considers only the
localized states as a basis and not the delocalized ones which
are all the more important as one considers lower bands. 2DEI
also separates arbitrarily TE and TM polarizations, with the
same shortcomings. In practice, small discrepancies with the
FEM method arise regarding band shifts and overlap integrals
at short distances (see Sec. VI). Actually, projection onto a
single planar mode in the etched and unetched regions is
an approximation which cannot provide truly exact profiles
for the FB modes in the vicinity of the interfaces between
the two regions. A much larger basis would be required to

FIG. 3. (Color online) Folded band structure of an InP/InGaAsP
waveguide array with S = 7.5 μm (see Sec. V) for λ = 1.55 μm and
TE polarization. The three light blue (light gray) curves are obtained
from the 2DEI model, the blue dots from ab initio FEM calculations,
and the dark blue (dark gray) curve from the extended-CMT model.
Lines indicate the levels of the planar waveguides (dashed lines) and
of the isolated ridge waveguide (dotted line).

satisfy the matching conditions and this would give rise to
renormalization effects (band shifts) and changes of short
distance correlations (overlap integrals at small interguide
spacings).

Figure 3 shows a typical example obtained on a waveguide
we use in the experiments. Compared to the reference given by
the combination of FEM and eCMT calculations, the position
and shape of the upper band and of part of the second band
are correctly predicted, to a small vertical shift. This shift
is nevertheless unimportant since actual beam effects depend
only on the derivatives of the bands as we will see in Sec. IV.

The agreement between FEM and 2DEI calculations can
be assessed on a more quantitative basis in the framework
of eCMT by comparing the eCMT parameters (C, η, ξ , and
ζ ) calculated by either method from the respective upper
bands. The values obtained for the test arrays used here
in the TE polarization are shown in Table I. Taking FEM
data as a reference, 2DEI overestimates the nonorthogonality
coefficient η in the most coupled arrays, as expected from
the above discussion. However, the overall agreement on
the eCMT parameters is quite satisfactory. In particular, the
apparent coupling coefficient Capp can be correctly deduced
from the vertical extension of the band.

Finally our 2DEI model provides us through a simple and
fast calculation with the best possible FB modes in the chosen
projection basis and, as experiments will also demonstrate,
with correct values of (i) the shapes of the various bands
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TABLE I. eCMT band parameters extracted from fits of the FEM
and 2DEI band in TE polarization. �β/4 is 1/4 of the band vertical
extension and Capp from experiments (Ref. [37]).

S C �β/4 Capp

μm mm−1 η ξ ζ mm−1 mm−1

5 FEM 1.77 0.32 0.13 0.24 2.42 2.70
5 2DEI 1.77 0.45 0.09 0.19 2.57
7.5 FEM 0.76 0.20 0.05 0.09 0.85 0.86
7.5 2DEI 0.67 0.23 0.03 0.07 0.77
9 FEM 0.45 0.14 0.03 0.05 0.48 0.48
9 2DEI 0.38 0.15 0.02 0.04 0.41

Kz
[J ](Kx), not only the upper one, and (ii) the overlap of

the corresponding modes with a broad enough Gaussian input,
and hence the optical input coupling efficiencies. We now show
that based on this information, the envelope of the GS can be
fully determined without any additional parameter.

IV. FROM THE BAND STRUCTURE TO
THE GUIDONIC SIGNATURE

Guidonic signatures have not yet been fully modeled as
such. However, ingredients necessary for predicting them
knowing the band structure can be found in the literature
(see, for instance, [3,21,28,38]). In this section, we assemble
these ingredients and additional ones in a rigorous fashion
based on the description by FB waves and show that guidonic
signatures can be derived analytically from the results of the
band structure calculation. Our complete derivation relies on
a very general projection principle and it is therefore valid for
any kind of waveguide array.

Following launching at Z = 0 with an initial wave vector
Kx0 in a Gaussian amplitude envelope of waist W0, several
beams are generated, each one corresponding to a single band
J . Those beams are the combination of FB modes with a
limited extension in Kx around the initial wave vector Kx0

and hence around Kz(J ,Kx0) selected by the selection rules
of Fig. 2(a). We consider reasonable conditions of well-
collimated beams (2πW0 � S), negligible overlap between
different band modes—a significant overlap occurs only near
the Brillouin zone critical points—and weak wave vector
dependence of the periodic parts U of the FB modes. Under
these conditions, we show in Appendix A that the output
intensity for band J can be written as:

I (J,Kx0,X,Y,Z) ≈ |U (X,Y )|2T (J,Kx0)

× S2

πW0W (Z)
e
−2[ X+D1Z

W (Z) ]2 , (2)

where T is the optical input coupling efficiency, D1 and D2

are the first and second derivatives of band J at Kx0, and the
waist evolution is

W (J,Kx0,Z) = W0

√
+

(
2D2Z

W 2
0

)2

. (3)

This intensity distribution first reflects the transversal
intensity pattern |U (X,Y )|2 of the underlying (J ,Kx0) FB
mode, which can be distinctly observed experimentally when
the individual waveguides are well separated (see the data

for S = 9 μm and S = 7.5 μm in Fig. 6). Since we wish to
describe rather wide beams spreading over several waveguides,
in the following we omit this term and consider only the other
ones, i.e., we use an envelope description. Propagation of wide
beams can then be treated within general wave theory by a
calculation analog to its counterpart in free-space optics. As
seen from Eq. (2) each beam corresponding to a single band
propagates along a straight line with a Gaussian divergence.
Its specific properties are as follows: mean wave vector
{Kx0,Kz(J ,Kx0)}, mean direction given by X/Z = −D1(J ,
Kx0), divergence given by Eq. (3), and coupling efficiency
T (J ,Kx0) given by the overlap of the mode with the input field.
Though formally similar to conventional Gaussian beams,
guidonics beams have nontrivial behaviors. Due to the shape
of the bands, the beam deviation has an upper limit, and the
divergence depends on Kx0; it even vanishes at inflection
points of the bands (diffractionless propagation [3]).

After propagation up to the sample length Z = L, the
envelope of the output profile appears as a combination of
Gaussian patterns corresponding to the various excited bands
[see top of Fig. 2(a)] which can be reconstructed by the above
formulas. The model GS is taken as the I (Kx0S,X/L) map.
It thus deals with dimensionless data and readily displays the
first derivative D1 of the bands and the tangent of the deviation
angle. The model GS involves various traces weighted by
the coupling efficiencies. Around Kx0S = 0 (unstaggered
mode), only the upper band is excited. Around Kx0S = π ,
its contribution begins to vanish to be replaced by the second
band contribution [38], in turn replaced by the third one around
Kx0S = 2π (Fig. 4, top).

It may be stressed that for most of our arrays and for most of
the literature structures we could analyze, the upper-band trace
differs significantly from what is expected in the genuine weak-
coupling approximation (Fig. 4, bottom). The GS trace is then
a distorted sine with a vertical span scaled by 4CS (4CappS, in
fact). Since in most literature data 0.01 <CS < 0.001 (CS � 1
is indeed a prerequisite for the CMT) the spans and actual
beam deviation angles are small (<1.5◦). For large beams,
the vertical width of the trace (i.e., the width of the output
beam) is constant while for medium-sized beams, it oscillates
between maxima for Kx0S =pπ and minima (=W0/Z, i.e., no
divergence) for Kx0S = π/2 + pπ , following the variations
of D2 which is scaled by 2CS2. These considerations also
help scaling the experimental conditions. Obtaining clearly
the first derivative from the deviation obviously requires the
deviation to be larger than the width due to the minimum
waist 2CS>W0/L, i.e., W0/S< 2CL or W0/S<L/Lc, where
Lc is the average coupling length; in view of literature data
this means W0/S<10. On the other hand, too narrow a beam
induces too large a divergence at Kx0S = pπ , which again
blurs the information; hence a condition W0/S>1.5. The
optimum visibility is thus obtained at medium waists.

V. EXPERIMENTAL SETUP AND RESULTS

Our test strip-loaded waveguide arrays involve an
InP/InGaAsP “shallow-ridge” design. All details on their
structure and on their properties are given in Refs. [18,37].
They are typical of the most widely used waveguides,
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FIG. 4. (Color online) (Top) Typical envelope GS calculated
using the 2DEI band structure of Fig. 3 combined with the beam
framework at W0/S∼2. The contributions of the three upper bands
are shown. Their center is marked by lines labeled B0, B1, and B2.
(Bottom) CMT approximation obtained by taking for the shape of the
upper band a mere cosine curve with the same amplitude as the real
band.

i.e., semiconductor-based ones. Array periods are 5, 7.5, or
9 μm. The experimental setup is sketched in Fig. 5.

Light from a 1.55-μm laser diode is input in the array
via a polarization controller (polarizer plus λ/2 and λ/4
wave plates) tuned for instance to the horizontal (//X, TE)
polarization and the cleaved end of a microstructured fiber,
designed to have a single mode of large waist W0 = 15μm
(ThorLabs). This fiber is mounted on a rotation stage, the
center of which lies in the input face of the array. The fiber
end is located 80 μm away from this face, i.e., well inside the
Rayleigh range (1.5 mm). We then expect a correct excitation
by a tilted plane wave with a W0 waist. W0/S lies between 1.5
and 2.8, i.e., within the correct range of medium input waists
deduced in Sec. IV.

Due to its circular input shape, light is also coupled to
the substrate and a small part of it reaches the output end.

FIG. 5. (Color online) Sketch of the optical experimental setup.

Propagation length is L ∼ 3 mm. Considering the apparent
coupling coefficients Capp, the reduced propagation lengths
L · (Capp) vary between 1.5 and 8.5, i.e., approximately three
to 16 coupling lengths. Considering the divergence, we note
that the maximum value of D2 approximated by 2CappS

2

lies between one and three times W 2
0 /L. Divergence should

therefore remain limited.
The output face of the array is imaged onto an ir camera

through a 8× microscope objective and a polarizing cube
tuned to either TE or TM polarization detection. Its center
profile is stored after background subtraction. We can super-
impose unambiguously the transmitted output pattern on the
array pattern by directly shining 1.55-μm light on the output
face. An analyzer cube suppresses any contribution of the
unwanted polarization on output. This setup also allows us to
visualize the input pattern. It is quite well approximated by a
Gaussian mode of waist W0 = 14 μm, in fair agreement with
the expected value.

GSs are obtained by recording the output profile—i.e., a
section of the output image along the center line of the modes
of the waveguides—during ±10◦ scans of the input angle.
Figure 6 shows typical results together with the corresponding
simulations.

Except for a faint oblique trace of waveguiding in the
substrate, most of the light at the output is concentrated
in the waveguide region. Polarization studies confirm the
polarization dependence of the coupling, and the very weak
mixing: Upon injection by a given polarization, no contribution
of the other one is detected on output, to within an accuracy
of a few percent.

VI. DISCUSSION

The quantitative agreement between experiment and calcu-
lation is excellent for either polarization, while it must be
stressed here again that calculations involve no adjustable
parameter. The shape of the simulated GSs do superimpose
on the experimental ones which confirms that our calculation
gives an excellent prediction of the upper band—which was
expected—and also of the second band. The agreement on
divergence features is qualitatively correct: The low divergence
at inflection points of the bands—maxima of the GS trace—
shows as a marked intensity increase as expected. The excellent
agreement between model and experiment also fully validates
the technological process, which we previously checked using
only Capp [37], i.e., the X/L span of the GS trace.

The succession of GSs also exemplifies clearly the pro-
gressive distortion of the upper band with increasing coupling,
and hence the drift away from the genuine weak-coupling
GS pattern (sine-shaped trace) to a medium-coupling pattern
(distorted sine-shaped trace), and ultimately towards a fully
coupled bulklike pattern (quasilinear trace).This is an explicit
well-documented experimental demonstration of this effect.
We can assess this effect on a quantitative basis in a
simple analytical way using eCMT. The eCMT parameters
of Table I demonstrate clearly the magnitude of the effect
of second-order couplings: η is always important, and the
other correction parameters, ζ and ξ , are rapidly no longer
negligible.
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FIG. 6. (Color online) Guidonic signature of the test arrays for
S = 9μm in TE polarization (input and output); ridge width is 2.0 μm.
Propagation length is 3.15 mm. (a) Experimental data. (b) Model
GS obtained by 2DEI calculation plus beam envelope framework
(see Secs. III and IV). Curves indicate the center of the traces, or
derivative of the bands. (c) Superposition of experimental data with
isointensity contours of the model for intensities at −2.5, −5.0,
−7.5, and − 10 dB from the maximum; the oblique gray line is the
signature of waveguiding in the substrate. Other panels same as (c)
for other periods and polarizations.

Another important point is confirmed by the experiment.
Using the appropriate medium input waists (Sec. IV), after

reduced propagation lengths L · (Capp) which vary between
1.5 and 8.5, i.e., approximately three to 16 coupling lengths,
we do obtain well-defined beams with the expected deviation.
This is demonstrated by the limited vertical width of the traces
in the GSs. Furthermore, in the range of the Kx0S scan, only
the upper band and the next one are efficiently excited, and the
transition from upper-band excitation to lower-band excitation
around Kx0S = π is quite clear. Hence all possible beam
directions in the upper band—the branch between the first
negative minimum and the first positive maximum of the GS—
can be generated by head-on coupling in a pure way, i.e.,
without exciting any other band. Therefore we can indeed
accurately steer beams across waveguide arrays as required
for light flow management and guidonic functions, thanks to
our determination of the band structure. More precisely, the
band shapes and the relative positions of the band edges make it
possible to anticipate, respectively, the beam directions and the
incidence angles where total internal reflection effects begin to
occur. Based both on the knowledge of the band structure and
on the beam management, we can now address the application
of the head-on GS to patterned arrays and report preliminary
results showing they can also be well predicted within our
framework.

VII. PERSPECTIVES: THE SIGNATURE
OF PATTERNED ARRAYS

Patterned arrays can be separated into two classes. In the
first one, zones are large enough for beams to propagate
according to the band structure of the corresponding infinite
array. The simplest one is the junction between infinite zones
(Fig. 7). Their envelope GS can then be predicted by our
model with successions of interface crossings obeying space
and phase conservation rules [14] and beam propagations; both
can be calculated analytically knowing the band structures.
Figure 7(b) shows that prediction is quite correct. After
downward incidence (Kx0 < 0), starting from Kx0S = 0
(normal incidence of the white arrow in inset) and increasing
Kx0, we successively observe (i) pure transmission, as long
as the beam reaches the output facet before the interface;
then (ii) total reflection up to the critical angle, following
the same dispersion relation but in the reverse direction;
(iii) predominant refraction, the transmitted beam following
the dispersion relation of the upper array; and (iv) return
to pure reflection. Besides providing a good prediction of
the experiment, the model clearly helps us understand these
successive effects. As we see in the following, a still better
fit can be obtained by solving numerically eCMT propa-
gation equations, at the expense of this important physical
insight.

The other class of patterns involves narrow zones—at least
one—in which beam models are no longer useful. The most
simple example of such patterns is the channel, equivalent of
the optical waveguide, formed by a zone of high C surrounded
by zones of low C (see Fig. 8).

We have shown [14] that mode analysis can be of some
help here by pointing out critical points, but GSs can no
longer be fully predicted. We have to rely on numerical simula-
tions using eCMT coupled propagation equations, neglecting
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FIG. 7. (Color online) (a) GS of the interface between a S = 5 μm
zone (bottom) and a S = 7.5 μm region (top) in TE polarization; ridge
width is 1.5 μm. Injection (dotted white line) is made 30 μm below the
interface (dashed blue line). (b) Model envelope deduced from 2DEI
data, taking into account only the upper band; regions corresponding
to transmitted, refracted, and reflected beams are marked by green
(light gray), blue (white), and purple (dark gray) arrows and lines.
(c) Results of numerical simulation using eCMT. (d) and (e) same
as (b) and (c), but using CMT. Right: Superposition of experimental
data with isointensity contours of the corresponding calculation for
intensities at −2.5, −5.0, −7.5, and −10 dB from the maximum.

FIG. 8. (Color online) (a) GS of the channel formed by a S = 5 μm
zone between S = 9 μm zones (top) in TE polarization; ridge width is
1.5 μm. The channel is marked by the blue horizontal lines. Injection
is made at its center. (b) Results of numerical simulation using eCMT.
The red (dark gray) line is the trace of the low-C array; the green (light
gray) line is the trace of the high-C array. (c) same as (b), but using
CMT. Right: Superposition of experimental data with isointensity
contours of the simulation for intensities at 0.8, 0.6, 0.4, and 0.2 of
the maximum.

contradirectional propagation. Those equations express the
variation of a, the vector of the modal amplitudes of the
individual waveguides, according to

O
∂

∂Z
a = iC · a, (4)

where O and C are the overlap and coupling matrices. Within
CMT, O is the identity matrix and C is tridiagonal with
only C coefficients on the two diagonals. Within eCMT,
O is tridiagonal with ones on the main diagonal and ηC

coefficients on adjacent diagonals, and C is pentadiagonal with
ξC coefficients on the main diagonal and C and ζC coefficients
on the four adjacent diagonals. The coefficients for each pattern
are those of the corresponding infinite pattern determined
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as described in Ref. [18], with special combinations at the
interfaces (see Appendix B). Figures 8(b) and 8(c) show
that prediction by eCMT using only the upper band renders
quite well most features of the experiment, while mere CMT
fails heavily. Note that this is also the case for the interface
pattern [Figs. 7(c) and 7(d)], eCMT yielding significantly
better overall agreement than the beam propagation approach
because evanescent contributions at the interfaces are taken
into account. Rather distinct mechanisms for total internal
reflection in CMT and eCMT together with the different beam
steering effects in either framework explain the dissimilar GSs
and will be discussed elsewhere in more detail.

Finally, these data and calculations confirm that our
patterned arrays do implement the designed functions of beam
steering and beam guiding.

VIII. CONCLUSION

In this paper, we assess the band structure of coupled waveg-
uide arrays on a quantitative basis. We report the calculation
of this structure for shallow-ridge waveguide arrays, using
the specially designed 2DEI method. Its combination with a
collimated beam propagation technique allows us to predict
the experimental signature of homogeneous arrays, i.e., the
output deviation profile vs input wave vector map. Such a map
provides a global view of propagation in the bands over the
whole reciprocal space, in contrast to the usual transmission
measurements after full diffraction of a narrow beam. The
excellent quantitative agreement with actual experiments
validates both calculation and experiment and clarifies the
ways various bands are excited depending on initial conditions,
thus giving a criterion to safe operation within the upper band
while overlooking the other ones. It also definitely confirms
the nonweak nature of the coupling in standard literature
arrays, as anticipated theoretically. This means that even
the simplest propagation properties such as the propagation
direction of a weakly divergent beam, although keeping
full significance, cannot be forecast within CMT alone. The
high couplings required for getting strong effects and short
devices could therefore have proven unusable due to excessive
design complexity. However, the straightforward extension
(eCMT) of CMT we propose accounts for actual propagation
behaviors while remaining straightforward enough to design
beam management guidonic devices by simple numerical
means. Indeed, we show preliminary results which confirm that
our approach remains operative on low-complexity patterned
arrays, and that elementary guidonic functions such as steering
and guiding can be implemented.
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APPENDIX A

We sketch here the calculation of output intensity following
excitation of a waveguide array by a Gaussian beam of
light. The derivation justifies our envelope calculation for

propagation within the arrays and we spell out the necessary
hypotheses. With the corresponding reasonable approxima-
tions, we thus establish that light flow can be treated along
propagation in a homogeneous array as in a continuous
medium and as a set of beams whose existence, direction,
and divergence are deduced from the band structure.

The incident excitation field with initial wave vector Kx0

can be decomposed into a sum of Bloch modes of the bands
{J} of the array

aKx0 (X,Y,Z = 0) =
∑
J,Kx

RJ,Kx
eiKxXU (J,Kx,X,Y ), (A1)

and propagates according to the diffraction relation of the band
structure:

aKx0 (X,Y,Z) =
∑
J,Kx

RJ,Kx
eiKxXU (J,Kx,X,Y )eiKz(J,Kx )Z.

(A2)

For a Gaussian profile excitation field

aKx0 (X,Y,Z = 0) =
√

2

πWxWy

e−(X2/W 2
x )e−(Y 2/W 2

y )eiKx0X,

(A3)

RJ,Kx
=

√
2

πWxWy

∫∫
U ∗(J,Kx,X,Y ) e−iKxXe−(X2/W 2

x )

× e−(Y 2/W 2
y )eiKx0XdXdY

=
∑

p

U ∗
p(J,Kx)e− W2

x (Kx−Kx0+pG)2

4 , (A4)

where the bar denotes averaging in the Y direction, G is the
basis vector of the reciprocal lattice in the X direction, and
Up(J ,Kx ,Y ) are the Fourier coefficients of U (J ,Kx ,X,Y ). Kx

is in the first Brillouin zone and Kx0 can take any value.
The projection of the incident field on mode (J ,Kx) thus has
replicas around the successive orders of the reciprocal lattice
Kx0 = Kx + pG with amplitudes U ∗

p(J,Kx).
Propagation of the modes in the Z direction according to

Eq. (A2) gives the output amplitude

aKx0 (X,Y,Z) = S

2π

∑
J

∫ π/S

−(π/S)
dKx

∑
p

Fp(J,Kx,X,Y )

× e− W2
x (Kx−Kx0+pG)2

4 eiKxX+iKz(J,Kx )Z, (A5)

where Fp(J,Kx,X,Y ) = U (J,Kx,X,Y )U ∗
p(J,Kx).

Assuming a large waist Wx (2πWx � S), integration is
extended to infinity and the amplitudes nearby each order p,

033811-9



MOISON, BELABAS, LEVENSON, AND MINOT PHYSICAL REVIEW A 86, 033811 (2012)

i.e., the Fourier transforms

aKx0,p(X,Y,Z) ≈ S

2π

∑
J

∫
dKxFp(J,Kx,X,Y )

× e− W2
x (Kx−Kx0+pKS )2

4 +iKxX+iKz(J,Kx )Z, (A6)

are calculated independently. Indeed, for a given band J ,
interferences can only occur in vanishing Gaussian tails and
only a single p contributes significantly to the sum over p of
Eq. (A5).

This Fourier transform can be approximated developing Kz

around Kx0–pG to second order,

Kz(J,Kx) ≈ Kz(J,Kx0) + D
(J,Kx0)
1 (Kx − Kx0 + pG)

+ D
(J,Kx0)
2

2
(Kx − Kx0 + pG)2, (A7)

and Fp to first order since, in weakly and moderately coupled
arrays and with the exception of shallow bands, the periodic
part of the Bloch modes only slowly depends on the wave
vector. Hence

aKx0 (X,Y,Z) ≈ S

π

∑
J

{
Fp

[
J,K

(D1 ,D2)

x0 (Z,X),X,Y
] + 2i

�X(J,Kx0)

[W (J,Kx0)(Z)]2

∂Fp

∂Kx

[
J,K

(D1 ,D2)

x0 (Z,X),X,Y
]}

×
√

π

W 2
x − 2iD

(J,Kx0)
2 Z

e−{(�X(J,Kx0))2/[W (J,Kx0)(Z)]2}ei[Kx0X+(K
(J,Kx0)
z −Kx0)Z+K

(D1 ,D2)
x0 (Z,X)�X(J,Kx0)], (A8)

where

K
(D1,D2)

x0 (Z,X) = Kx0 − 2
�X(J,Kx0)2D

(J,Kx0)
2 Z

W 2
x [W (J,Kx0)(Z)]2

(A9)

is a position dependent wave vector,

�X(J,Kx0) = D
(J,Kx0)
1 Z + X (A10)

is the distance from envelope center along the propagation
direction and

W (J,Kx0)(Z) = Wx

√
1 +

(
2D

(J,Kx0)
2 Z

W 2
x

)2

(A11)

reflects the evolution of the envelope width. The output
amplitude is thus a linear superposition of modes from the
different bands with a Gaussian envelope and wave vector
slowly dependent on distance from beam center. Extra phase
shifts due to diffraction are also added to the phase expected
from single-mode propagation. Except for particular excitation
wave vectors Kx0, located at Brillouin zone edges, the beams
of the different FB modes do not overlap spatially because they
are diffracted in different directions (D(J,Kx0)

1 varies with J ). As
a result, far enough from such wave vectors, the modes do not
interfere and a single mode J contributes. Then, neglecting the
wave vector dependence of the FB modes in the vicinity of Kx0,
the guided output intensity profiles behind a one-dimensional
waveguide array excited by a Gaussian beam can be
written

I (J,Kx0,X,Y,Z) ≈ |U (J,Kx0,X,Y )|2|U ∗
p(J,Kx0)|2

× S2

πWxW (J,Kx0,Z)
e
−2

(
X+D1(J,Kx0)Z

W (J,Kx0 ,Z)

)
2 ,

(A12)

where the superscripts (J ,Kx0) are lowered for clarity.
In Eq. (A12), |U (J,Kx0,X,Y )|2 and the Gaussian profile

reflect the underlying FB mode and its envelope, respec-
tively. Finally, making use of the normalization condition∑

q |Uq(J,Kx0)|2 = 1, a field coupling efficiency into mode
J at wave vector Kx0 can be written as

T (J,Kx0) = |Up(J,Kx0)|2. (A13)

APPENDIX B

We detail here on the example of an interface between two
semi-infinite arrays I and II of coupling constants C1 and C2,
the choices of the elements of matrices C and O. From Ref. [18]
and using a hat to denote nonreduced coupling coefficients
ξ̂ = ξC and ζ̂ = ζC, the parameter ξ̂1 in a homogeneous array
referred to as I is proportional to

2〈101〉I = 〈01̄0〉I + 〈010〉I. (B1)

At an interface between two arrays I and II having identical
ridges but different separation distances between them, ξ̂ is
proportional to

〈01̄0〉I + 〈010〉II, (B2)

so that

ξ̂ = ξ̂1 + ξ̂2

2
. (B3)

The other ξ̂ coefficients are equal to their value in the
homogeneous arrays I or II.

Then, the ratio of second to first neighbor coupling
coefficients in an array, I for instance, can be expressed as
a function of coupling ratios as

ζ̂1

C1
= 〈1̄01〉I + 〈002〉I

〈001〉I
= 〈002〉I

〈001〉I

(
1 + 〈1̄01〉I

〈002〉I

)
. (B4)

The coupling ratio before the parentheses is first order
(second order over first order) in evanescent coupling, whereas
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that within the parentheses is 0th order. If evanescent coupling
between the individual waveguides can be characterized by a
single evanescence distance Le, the 0th-order coupling ratios
do not depend on the ridge separation S, or s = S/Le, while
first-order ratios vary as e−s . As a result,

ζ̂2

C2

C1

ζ̂1
= e−(s2−s1). (B5)

Then, for an interface waveguide, the second- to first-
neighbor coupling coefficient ratio toward array II is

ζ̂

C
= 〈022〉II

〈011〉II

(
1 + 〈012〉II

〈022〉II

)
= ζ̂2

C2
, (B6)

where C = C2, so that ζ̂ = ζ̂2. For a waveguide in array I
immediately adjacent to the interface, the same ratio toward

array II is

ζ̂

C
= 〈1̄11〉I−II

〈1̄00〉I

(
1 + 〈1̄01〉I−II

〈1̄11〉I−II

)

= 〈1̄11〉I−II

〈1̄11〉I
× 〈1̄11〉I

〈1̄00〉I

(
1 + 〈1̄01〉I

〈1̄11〉I

)

= e−(s2−s1) ζ̂1

C1
= ζ̂2

C2
, (B7)

where C = C1, so that

ζ̂ = ζ̂2
C1

C2
. (B8)

Such rules have to be combined when a waveguide belongs
to several categories, e.g., when it is an interface and also
adjacent to another interface, or adjacent to two distinct
interfaces.
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D. Kip, Opt. Express 15, 4663 (2007).

[31] R. Iwanow, R. Schiek, G. Stegeman, T. Pertsch, F. Lederer,
Y. Min, and W. Sohler, Opto-Electronics Rev. 13, 113 (2005).

[32] Y. Linzon, Y. Sivan, B. Malomed, M. Zaezjev, R. Morandotti,
and S. Bar-Ad, Phys. Rev. Lett. 97, 193901 (2006).

[33] P. Yeh, A. Yariv, and C. S. Hong, J. Opt. Soc. Am. 67, 423
(1977).

033811-11

http://dx.doi.org/10.1038/nature01936
http://dx.doi.org/10.1038/nature01936
http://dx.doi.org/10.1364/OPEX.13.001780
http://dx.doi.org/10.1364/OPEX.13.001780
http://dx.doi.org/10.1103/PhysRevLett.85.1863
http://dx.doi.org/10.1103/PhysRevLett.83.4752
http://dx.doi.org/10.1103/PhysRevLett.83.4756
http://dx.doi.org/10.1103/PhysRevLett.101.143602
http://dx.doi.org/10.1103/PhysRevLett.101.143602
http://dx.doi.org/10.1038/nature05623
http://dx.doi.org/10.1038/nature05623
http://dx.doi.org/10.1103/PhysRevLett.100.013906
http://dx.doi.org/10.1103/PhysRevLett.100.013906
http://dx.doi.org/10.1364/OE.16.010309
http://dx.doi.org/10.1103/PhysRevLett.87.233901
http://dx.doi.org/10.1103/PhysRevLett.87.233901
http://dx.doi.org/10.1063/1.1857071
http://dx.doi.org/10.1103/PhysRevE.70.026602
http://dx.doi.org/10.1103/PhysRevE.70.026602
http://dx.doi.org/10.1364/OE.11.003404
http://dx.doi.org/10.1364/OE.11.003404
http://dx.doi.org/10.1364/OL.34.002462
http://dx.doi.org/10.1364/OL.34.002462
http://dx.doi.org/10.1109/JQE.1987.1073395
http://dx.doi.org/10.1088/1367-2630/10/10/103020
http://dx.doi.org/10.1088/1367-2630/10/10/103020
http://dx.doi.org/10.1364/OE.17.003148
http://dx.doi.org/10.1364/OE.18.007157
http://dx.doi.org/10.1364/OE.18.007157
http://dx.doi.org/10.1103/PhysRevLett.81.3383
http://dx.doi.org/10.1364/OL.31.002768
http://dx.doi.org/10.1364/OL.31.002768
http://dx.doi.org/10.1103/PhysRevLett.88.093901
http://dx.doi.org/10.1080/09500348714551531
http://dx.doi.org/10.1103/PhysRevLett.90.053902
http://dx.doi.org/10.1103/PhysRevLett.92.093904
http://dx.doi.org/10.1364/OPEX.13.001762
http://dx.doi.org/10.1364/OPEX.13.001762
http://dx.doi.org/10.1103/PhysRevA.77.013818
http://dx.doi.org/10.1103/PhysRevA.83.063816
http://dx.doi.org/10.1364/OE.18.027493
http://dx.doi.org/10.1364/OE.18.027493
http://dx.doi.org/10.1103/PhysRevLett.92.093901
http://dx.doi.org/10.1103/PhysRevLett.92.163902
http://dx.doi.org/10.1364/OE.15.004663
http://dx.doi.org/10.1103/PhysRevLett.97.193901
http://dx.doi.org/10.1364/JOSA.67.000423
http://dx.doi.org/10.1364/JOSA.67.000423


MOISON, BELABAS, LEVENSON, AND MINOT PHYSICAL REVIEW A 86, 033811 (2012)
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