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Optical shock and blow-up of ultrashort pulses in transparent media
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Ultrashort pulses can exhibit two distinctive types of singularity: self-focusing collapse and self-steepening
shock. We examine various ultrashort pulse propagation models and their relative effectiveness in explaining these
phenomena. In particular, the modified Kadomtsev-Petviashvilli equation of type 1 (MKP1) is examined in some
detail. We show that MKP1 is not simply a few-cycle pulse model but is valid in a more general broad spectrum
setting. Furthermore, we emphasize that the dispersion of the MKP1 model can result in poor estimation of
frequency-dependent phenomena, such as harmonic generation, which occur far away from the carrier frequency.
Some of this loss of accuracy can be removed by using a more general MKP1 dispersion relation.
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I. INTRODUCTION

Early theory on self-focusing and self-trapping of optical
beams made extensive use of the nonlinear Schrödinger
equation (NLSE) [1], with many results either motivated or
confirmed by experimental observations [2]. However, the
advent of ultrashort femtosecond lasers created a new range
of phenomena that could not be explained by the NLSE:
supercontinuum generation (SCG) [3], self-steepening shock
[4], harmonics [5], etc. Newer technology, such as carrier-
envelope offset phase-locked lasers [6], can produce pulse
durations on the order of an optical cycle; current research
efforts have centered on even shorter attosecond pulses [7].
The introduction of ultrashort propagation models [8–10] has
led to a significantly better understanding of the underlying
physics of such extremely short laser pulses.

This paper highlights three models that can propagate
few-cycle pulses and exhibit both blow-up and shock singu-
larity. Special attention is given to the modified Kadomtsev-
Petviashvilli equation of type 1 (MKP1) [8], which is as
fundamental to optics in the ultrashort pulse regime as the
NLSE is to optics in the longer pulse regime. Interestingly,
much of the theory developed for critical power and self-
similar collapse using the NLSE model [11] can be extended
to the blow-up theory of ultrashort pulses using the MKP1
model [12]; specifically, singularities in both models can be
analyzed either by utilizing their Hamiltonian structure or by
performing self-similar transformations.

In broad spectral regimes, there is little extra cost in
numerically resolving the details of a field compared with an
envelope, and it becomes simple to add or remove harmonic
generation and other field effects to a field model. This
argument is frequently given by proponents of propagating
the entire electric field rather than the envelope. On the
other hand, the nonlinear envelope equations (NEE’s) [9]
can propagate both ultrashort pulses and long pulses, which
makes them applicable over a wider range of problems.
Another reason MKP1 and other full-field models such as the
unidirectional pulse propagation equations (UPPE’s) [10,12]
have not been adopted as commonly as one might expect is

that historically, envelope models [13] have played a prominent
role in nonlinear optics; building on an established theory is
often preferential to the alternative of basing results on a newer
or lesser known theory.

Since MKP1 is a focus of our paper, we note that it
preceded both the NEE and UPPE models and that it has a
well-established mathematical theory. Despite this, we find
that the MKP1 is underutilized. Much of the literature on
MKP1 focuses on few-cycle pulses [8,12,14,15], yet in this
paper we simulate a self-focusing pulse with dozens of field
oscillations under the envelope and show that MKP1 works
well under these conditions. We also show that the generated
harmonic fields [16–18] can be inaccurate due to the MKP1
dispersion approximation, and we show how to improve this
accuracy.

II. OPTICAL PROPAGATION MODELS

Many important pulse propagation media such as air, water,
or silica glass can be regarded as isotropic and homoge-
neous throughout. This considerably simplifies the constituent
relations to Maxwell’s equations and sets the groundwork
necessary to reduce to a scalar propagation model. Assuming
one-way propagation in the forward z direction by taking field
reflections to be negligible is usually justified for high-power
beams. Under these conditions, Maxwell’s equations reduce
to the most general first-order z-propagated optical model,

∂zE(k⊥,z,ω) = ikz(ω)E(k⊥,z,ω)

+ i
ω2

2ε0c2kz(k⊥,ω)
PNL(k⊥,z,ω), (1)

where E is the electric field,

kz(ω) =
√

k2(ω) − k2
⊥

is the z component of the wave vector, and PNL is the non-
linear polarization. From this unidirectional pulse propagation
equation we can derive any first-order z-propagated model.
Our study will focus on three of these models, which are used
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in ultrashort pulse propagation: the UPPE model itself, the
nonlinear envelope equations, and the MKP1 equation.

The UPPE model has the advantage of generality over
both the NEE and MKP1 since the dispersion and nonlinear
polarization have not assumed a specific form and the full
electric field is propagated; using a specific medium model,
prescribing a nonlinear response, or converting from a field
equation to an envelope equation will put restrictions on what
we can expect to accurately model in terms of the beam
parameters and propagation environment. However, the gain
in computational speed (NEE) and ease of analysis (MKP1)
are compelling reasons to explore alternatives to the UPPE in
certain settings.

To elucidate connections between the three models we
derive NEE and MKP1 from the UPPE model. First, we men-
tion that connections between Maxwell’s equations, UPPE,
NEE, and other models not including MKP1 are established in
Ref. [10]. Connections between Maxwell’s equations, MKP1,
and NEE are established in Ref. [17]. Although much of the
information in the remainder of this section can be found
in these references along with Ref. [9], here we put a special
emphasis on the role of dispersion in broad spectrum pulses. In
particular, we clearly show that the dispersion approximations
of the NEE and MKP1 models are valid over a limited spectral
range; care must be taken when extrapolating results beyond
this range.

When a beam width is on the order of a single optical
wavelength, the transverse wave number k⊥ becomes quite
large and the beam undergoes nonparaxial propagation. Feit
and Fleck have shown that treating the wave number kz in
a nonparaxial manner, such as is done in the UPPE model,
provides a mechanism for arresting catastrophic self-focusing
collapse [19]. Often, high-power lasers will ionize a medium
prior to reaching such an extremely narrow waist [20]. When
this is the case, we make the paraxial propagation restriction
k⊥ � |k| and expand out kz:

kz(ω) ≈ k(ω) − k2
⊥

2k(ω)
. (2)

Supposing the medium nonlinearity is sufficiently weak [the
second right-hand side term in Eq. (1) is much smaller than
the first], then a paraxial beam implies

ω2

2ε0c2kz(k⊥,ω)
PNL ≈ ω2

2ε0c2k(ω)
PNL.

After some manipulations,

∂zE(k⊥,z,ω) = ik(ω)E − ick2
⊥

2n(ω)ω
E + iω

2ε0cn(ω)
PNL. (3)

Both the NEE and MKP1 make use of a central or reference
frequency of the pulse. Typically the reference frequency is
taken to be the carrier frequency at which the beam is driven.
However, during propagation the spectral peak may move
away from the chosen reference frequency; in fact, when
pulse splitting occurs, two distinct spectral peaks can form,
neither of which is at the carrier frequency of the pulse [21].
It is easy to think of other situations where the concept of
a central frequency may become ambiguous: third harmonic
(TH) generation, supercontinuum generation, colliding pulses
with differing center frequencies, etc. Having a spectral peak

away from the reference frequency is concerning, but it does
not necessarily mean the model is inaccurate. Assuming a
reference frequency ωR and Taylor expanding the two n−1(ω)
terms in Eq. (3) yields

∂zE(k⊥,z,ω)

= ik(ω)E − ick2
⊥

2n(ωR)ω

[
1 − n′(ωR)(ω − ωR)

n(ωR)
+ · · ·

]
E

+ iω

2ε0cn(ωR)

[
1 − n′(ωR)(ω − ωR)

n(ωR)
+ · · ·

]
PNL. (4)

A sufficiently well-behaved linear medium response will
satisfy

|n′(ωR)ωR| � n(ωR),

which is one of two explicit conditions necessary for the NEE
to be valid [9]. When considered with the other necessary
condition, Brabec and Krausz coined this the slowly evolving
wave approximation. The second condition concerns an
envelope and is not explicitly needed for the MKP1 model.
Both the NEE and MKP1 have a dispersion relation which
is only valid in the transparent region, well below resonant
frequencies and well above the plasma frequency. With this
additional restriction we have

∂zE(k⊥,z,ω) = ik(ω)E − ick2
⊥

2n(ωR)ω
E + iω

2ε0cn(ωR)
PNL,

(5)

a model that captures most optical mediums and realistic beam
parameters.

The dispersion relations for the MKP1 and NEE models are
given by

kMKP1(ω) = aω3 − b

ω
+ qω,

kNEE(ω) =
∞∑

m=0

k(m)(ωR)

m!
(ω − ωR)m .

For a better MKP1 dispersion approximation we can use the
generalized dispersion relation

kGMKP1(ω) =
∞∑

m=0

a2m+1ω
2m+1 −

∞∑
n=0

b2n+1ω
−2n−1. (6)

More details on the generalized MKP1 model are available
in Ref. [16]. Even with the additional terms, the MKP1
dispersion and the NEE dispersion are the weakest links in
the approximations to the general UPPE equation. This is
particularly true for few-cycle and broad spectrum pulses [22].

For fused silica, the UPPE dispersion consists of a
Sellmeier formula. An 800-nm pulse generates MKP1 and
NEE dispersion parameters of a = 3.1 × 10−42 s3/m, b =
4.0 × 1019 s−1/m, k2 = 3.6 × 10−26 s2/m, and k3 = 2.8 ×
10−41 s3/m, respectively. It can be seen that the dispersion
approximations are nearly identical around the carrier fre-
quency ω0 (Fig. 1). Close to the third harmonic, the index
of refraction of the UPPE and MKP1 models are similar but
the GVD is nearly twice as large in the UPPE model as it is in
the MKP1 model. Adding an a5 term to the MKP1 dispersion
does a good job of removing this discrepancy in the GVD.
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FIG. 1. (a) Fused silica index of refraction (b) and group velocity
dispersion. GVD corresponds to the second derivative d2k/dω2 of
the respective dispersion models.

For the GMKP1 model we compute a3 = 2.77 × 10−42 s3/m,
a5 = 1.1 × 10−74 s5/m, and b1 = 3.9 × 1019 s−1/m. As we
show in Sec. IV, accurate resolution of the third harmonic will
require the better fit of the GMKP1 dispersion relation.

After substituting the MKP1 dispersion relation into Eq. (5)
and transforming to time-domain real space, the MKP1 model
becomes

∂τ

(
∂zE − a∂3

τ E+ 1

2ε0cn(ωR)
∂τPNL

)
+bE = c

2n(ωR)
�⊥E,

(7)

where τ = t − qz. The a and b terms correspond to the
linear electronic and vibrational polarizations of the medium,
respectively. It should be noted that the change of variable
puts the system into a moving reference frame that does not
necessarily coincide with the group velocity of the pulse.

To obtain the NEE, we assume

E(x⊥,z,t) = E(x⊥,z,t)eik(ωR)z−iωRt + c.c.,

PNL(x⊥,z,t) = h(|E |)E(x⊥,z,t)eik(ωR)z−iωRt + c.c.,

where E is an envelope and h is a function corresponding to the
nonlinear response of the medium. After substituting the NEE
envelope and dispersion parameters into (5), and assuming a
sufficiently narrow spectrum, the spectral NEE is given as

∂zE(k⊥,z,�) = i
∑
m=1

k(m)(ωR)

m!
�mE − ick2

⊥
2n(ωR) (� + ωR)

E

+ i (� + ωR)

2ε0cn(ωR)
F{h(|E |)E}, (8)

where � = ω − ωR and F denotes a Fourier transform.
Converting to a time-domain real-space equation, we obtain

(
∂z + v−1

g ∂t

)
E(x⊥,z,t)

= i

2k(ωR)

(
1 + i

ωR

∂t

)−1

�⊥E + D(i∂t )E

+ ik(ωR)

2ε0n(ωR)2

(
1 + i

ωR

∂t

)
h(|E |)E, (9)

where v−1
g = k′(ωR) is the group velocity and the dispersion

operator is

D(i∂t ) =
∑
m=2

k(m)(ωR)

m!
(i∂t )

m.

There are two types of nonlinear effects that can compete:
nonlinear polarization, which causes a sufficiently powered
beam to undergo self-focusing collapse, and ionization, which
arrests collapse and prevents singularity formation. Since
shock formation and blow-up can occur with or without
medium ionization, we leave plasma defocusing out of our
equations and acknowledge that an important term that often
acts to regularize singularities is missing.

Another approximation we will make is to assume an
instantaneous nonlinear response of the electric field. In
Secs. III and IV we simulate beams with pulse widths of 50 fs
and 1.8 fs, respectively. The noninstantaneous Raman effect
of the 1.8-fs pulse should be negligible, but we would expect
some Raman response in the 50-fs case. However, unlike
plasma effects, the Raman effect is not expected to play a
significant role in the singularity dynamics of the system, and
we disregard it in our simulations.

To incorporate harmonic effects into our full-field MKP1
and UPPE propagators we use the nonlinear response function

PNL(x⊥,z,t) = 4
3ε0n(ω0)n2E

3(x⊥,z,t), (10)

where n2 is the Kerr nonlinear index of refraction. This
response will generate third and higher harmonic pulses.
Typically, the fundamental pulse is only weakly affected by the
harmonic signals it generates. If this is the case, and resolving
the harmonic signals themselves is not important to us, then
we can remove the harmonic signals by replacing Eq. (10)
with an NEE formulation of the nonlinear response:

PNL(x⊥,z,t) = 2ε0n(ω0)n2|E|2E(x⊥,z,t).

Alternatively, we can propagate spectral components that
reside between a range (ωmin,ωmax) and zero out unwanted
frequency content. Using this method we set ωmax < 3ω0

such that the third harmonic and higher harmonic frequencies
are not propagated along with the fundamental pulse. Unless
otherwise stated, this will be the method used to turn off
harmonic generation in simulations of the MKP1 and UPPE
field models.

While the NEE and UPPE can incorporate many kinds of
nonlinear response, the MKP1 model specifically uses a cubic
field term such as in Eq. (10). Therefore, we explicitly plug
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this into Eq. (7) to obtain

∂τ

(
∂zE + 2n2

c
E2∂τE − a∂3

τ E

)
+ bE = c

2n(ωR)
�⊥E.

(11)

This is MKP1 to within some nondimensional scalings.
Various generalizations of this model have been made. One
generalization already mentioned incorporates a better dis-
persion model. Another generalization models a circularly
polarized field [14]. In this paper we only consider linearly
polarized electric fields.

III. BLOW-UP

Conventionally, when studying singularities the equation
of interest is first nondimensionalized. Here we rescale the
variables in the MKP1 model such that Ẽ =

√
8LDF
3LNL

E√
I0

, τ̃ =
ωRτ , r̃ = r

w0
, z̃ = z

4LDF
, where I0 is the input field intensity,

w0 is the initial beam diameter, LDF is the diffractive length
scale, and LNL is the nonlinear length scale

LDF = k(ωR)w2
0

2
, LNL = c

ωRn2I0
. (12)

Substituting into (11), then dropping the tildes for convenience,
will yield

∂τ

(
∂zE + 3E2∂τE − A∂3

τ E
) + BE = �⊥E, (13)

with A and B defined as

A = LDF

Lds,H

, B = LDF

Lds,L

.

The length scales LDF and LNL have standard nonlinear optics
meanings [13] and are often used in conjunction with an initial
Gaussian pulse of the form

E(r,0,t) =
√

I0 exp

[
− t2

t2
p

− r2

w2
0

− iωRt

]
+ c.c. (14)

On the other hand, nonconventional dispersion length scales

Lds,L = ωR

4b
, Lds,H = 1

4aω3
R

, (15)

are produced when nondimensionalizing in this manner. The
Lds,L scale comes from low-frequency plasma effects and
Lds,H corresponds to high-frequency dispersion. Traditional
length scales are given by

LDS = t2
p

2k′′(ωR)
, L′

DS = t3
p

k′′′(ωR)
, (16)

which correspond to second- and third-order dispersion in the
NLSE and NEE envelope models.

Critical power is an important concept when analyzing
the blow-up singularity. When a beam input power becomes
greater than a certain threshold (Pin > Pth), then nonlinear
focusing overcomes diffraction, dispersion, and other defo-
cusing forces and the beam diameter begins to shrink. This
process feeds on itself by creating an ever more intense beam
core, hence stronger nonlinear focusing. Often diffraction is
the largest defocusing effect, so the power needed to overcome
it has special significance and is referred to as critical power.

Critical power can be associated with the Hamiltonian of
the NLSE system [23], and there is a similar connection to
the MKP1 model [12]. For convenience, a potential function
E = �τ is introduced. Then the wave action, Lagrangian, and
Hamiltonian of (13) are given by

N =
∫

�2
τ dτdx⊥, (17)

L = 1

2
�z�τ + �4

τ

4
+ A

2
�2

ττ − 1

2
(∇⊥�)2 − B

2
�2, (18)

H =
∫ [

(∇⊥�)2 − �4
τ

2
− A�2

ττ + B�2

]
dτdx⊥. (19)

Using the method of moments, a relationship for the transverse
waist of the beam can be expressed as

d2w2
eff

dz2
= 8H + 8

∫ [
A�2

ττ − B�2
]
dτdx⊥

N
, (20)

where

w2
eff =

∫
x2

⊥�2
τ dτdx⊥
N

.

When the right-hand side of (20) is negative, the transverse
beam diameter shrinks and the beam is in a collapsing state.
Since the quantity

A�2
ττ − B�2

is nonconserved, there are no guarantees that a beam in a
collapsing state will stay in a collapsing state unless the
conditions H < 0 and A = 0 are satisfied. Noting that

k′′
MKP1(ω) = 1

2LDFω
2
R

(
ω

ωR

)[
3A − B

(
ω

ωR

)2]

we see that the condition A = 0 corresponds to the anomalous
dispersion regime. However, it should be noted that anomalous
dispersion does not imply that A = 0 and setting A = 0 will
typically result in a dispersive medium that is not physically
realizable. Furthermore, the dispersion approximation will
become particularly bad over a large spectral range and a
collapsing pulse generates a broad spectrum. That is, we
need A = 0 to guarantee a mathematical blow-up singularity,
yet by setting A = 0 the model is no longer accurate for
pulses collapsing in a dispersive media. In terms of guaranteed
collapse behavior, Eq. (20) does not tell us much. We can make
some important qualitative observations, however. Regardless
of whether the dispersion is anomalous or normal, having a
negative Hamiltonian will make the system more susceptible
to collapse. If we consider a normally dispersive medium with
H < 0 and

|H | 	
∫ [

Aφ2
ττ − Bφ2

]
dτdx⊥,

then conceivably the field amplitude can grow significantly
before the Aφ2

ττ term begins to dominate and collapse is
arrested. Another observation comes from the fact that

φ4
τ ∼

(
LDF

LNL

)2

.

Consequently, increasing the beam intensity of the initial pulse
will reduce the Hamiltonian and enhance the likelihood of
blow-up.
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Suppose the medium is nondispersive and the electric field
takes a scalar monochromatic form

E(x⊥,z,t) = E(x⊥,z)eik(ωR)z−iωRt + c.c.

2
.

Then, in our transformed variables,

Ẽ(x̃⊥,z̃,t̃) = Ẽ(x̃⊥,z̃)e−it̃ + c.c.

2
, (21)

∂τ̃ Ẽ = −iẼe−it̃ + c.c.

2
, (22)

φ = iẼe−it̃ + c.c.

2
. (23)

The MKP1 model reduces to the time-independent NLSE
when the dispersion terms are dropped, and the nonlinear
polarization is altered to be proportional to |E|2 rather than
E3. Scalings in the nondimensional NLSE model are generally
chosen different than in the nondimensional MKP1. By
rescaling Ẽ such that

Ẽ =
√

2LDF

LNL

E√
I0

and dropping dispersive terms, the MKP1 model becomes

∂τ̃

(
∂z̃Ẽ + 4

3∂τ̃ Ẽ
3
) = �̃⊥Ẽ. (24)

Substituting (21) into the previous equation and ignoring third
harmonic terms yields the nondimensional NLSE

i∂zE + |E |2E + �⊥E = 0, (25)

where the tildes have been removed after substitution. Under
these conditions the corresponding NLSE action integral,
Lagrangian, and Hamiltonian are

N = 1

2

∫
|E |2dx⊥, (26)

L = 1

8
[iEzE∗ − iE∗

z E] + |E |4
8

− 1

4
|∇⊥E |2 , (27)

H = 1

2

∫ [
|∇⊥E |2 − |E |4

2

]
dx⊥, (28)

where again the tildes are removed after substitutions. For the
NLSE case, an initial Hamiltonian being negative assures us
the solution blows up. However, the minimum power required
for blow-up has more to do with the Townes beam than the
sign of the Hamiltonian [24]. Different beam geometries have
different critical powers. In particular, a Gaussian beam has
the critical power

Pcr = 3.77λ2
0

8πn0n2
.

Threshold power for collapse can be noticeably larger than
critical power due to dispersion.

For a Gaussian beam of pulse width tp = 50 fs, diameter
w0 = 30 μm, and intensity I0 = 2.7 × 1015 W/m2, blow-up
is simulated in silica glass (Fig. 2). The laser is run at
λ0 = 800 nm with an input power modestly above critical
power, Pin = 1.74Pcr. The nonlinear index of refraction is
set to n2 = 3.0 × 10−20 m2/W and the reference frequency
is selected equal to the carrier frequency ωR = ω0. All three
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FIG. 2. Self-focusing collapse in fused silica with initial field
E0 = √

I0 exp (−t2/t2
p − r2/w2

0 − iω0t) + c.c. and parameters tp =
50 fs, w0 = 30 μm, and I0 = 2.7 × 1015 W/m2. On-axis field and
envelope at (a) z = 0 mm and (b) z = 4.93 mm. (c) On-axis intensity
at z = 4.93 mm. (d) On-axis spectrum at z = 4.93 mm.

models are propagated using an ODE45 solver and assume
radial symmetry in the transverse dimension. For the blow-up
simulations, harmonic generation is effectively ignored by
setting the maximum frequency propagated to ωmax = 2.55ω0.

Shown in Fig. 2(a) is the initial field profile. Once prop-
agation is initiated, self-focusing causes the beam diameter
and pulse width to shrink. Figure 2(b) illustrates the temporal
compression of the beam, which coincides with a steepening of
the pulse toward the tail [4]. Collapse is arrested shortly after-
ward by pulse splitting [21]. The narrowing pulse width is also
associated with spectral broadening. Most of the broadening
occurs for frequencies above the carrier, an effect observed
experimentally during supercontinuum generation [25].

A comparison is made between the MKP1, UPPE, and
NEE models in Figs. 2(c) and 2(d). Clearly, differences in
the simulation results are insignificant. To some extent, which
model to pick becomes a matter of preference. We do point out
a few important details, however. First, the UPPE model is not
well suited for analysis compared with the NEE and MKP1
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models. Second, if during propagation the spectrum must be
resolved over a frequency range ∼ωR , then there is little to no
computational advantage for using an envelope model such as
NEE as compared with a field model such as MKP1 or UPPE.

We want to emphasize that while a 50-fs pulse is considered
ultrashort, there are more than a few carrier oscillations under
the envelope. We also note that for these pulse parameters, the
beam self-focuses until the pulse intensity is about 100 times
the initial intensity. Self-focusing of a pulse with only a couple
of cycles under the envelope induces relatively little blow-up.
Much of the literature on the MKP1 model highlights its use in
the few-cycle pulse regime. A more encapsulating description
of when the MKP1 is useful is in the extremely broad spectral
regime. This regime can include pulses that initially have a
narrow spectrum but broaden significantly during propagation,
as is true in our self-focusing blow-up case.

IV. SHOCK

The theory of shocks in physical settings has been well
established [26]. Here, we give an explanation of what causes

a shock in ultrashort optical pulses using MKP1 as an analytic
tool. First take a constant index of refraction n0 and assume
diffraction is negligible. Then, in the stationary reference
frame, the MKP1 model will take the form

∂zE + 2n2

c
E2∂tE + n0

c
∂tE = 0.

Considering characteristic curves in the (t,z) plane

dE

dz
= ∂zE + dt

dz
∂tE = 0,

we find

dt

dz
= n0 + 2n2E

2

c
.

Normalizing the electric field to intensity and time averaging
yields

dz

dt
= c

n0 + n2I
. (29)

Along any given characteristic line in the (t,z) plane, the
field E and hence intensity I and speed dz

dt
are constants. For
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FIG. 3. Self-steepening shock in fused silica with initial field E0 = √
I0sech(t/tp) exp(−r2/w2

0 − iω0t) + c.c. and parameters I0 = 5.0 ×
1017 W/m2, tp = 1.8 fs, and w0 = 10 μm. In each figure the pulse propagated 14.9 μm. Constant index of refraction n0 = 1.45 and no harmonic
generation: field (a) and spectrum (b). Index of refraction n(ω) as shown in Fig. 1 and third harmonic generation: field (c), spectrum (d), third
harmonic temporal profile (e), and frequency content of third harmonic (f).
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a Gaussian or hyperbolic secant initial pulse there is a central
peak with a decaying intensity as a function of distance from
the temporal center. Equation (29) shows that the center of the
pulse will follow a characteristic line traveling slower than
the front or tail of the pulse. As a consequence, energy from
the temporal center moves toward the tail, causing a steep edge
and optical shock. Energy in the front has a lower intensity and
travels faster than the peak of the wave front.

Consider a pulse propagated in fused silica at an op-
tical wavelength of 800 nm. For an initial field E0 =√

I0sech(t/tp) exp(−r2/w2
0 − iω0t) + c.c., with I0 = 5.0 ×

1017 W/m2, w0 = 10.0 μm, and tp = 1.8 fs, nonlinear effects
are relatively strong while diffraction is almost negligible.
To illustrate shock, harmonic generation is ignored and
simulations are run with a constant index of refraction. The
amount of steepening that can be obtained is increased by
using an NEE nonlinear polarization response (∼|E|2E) in the
field MKP1 and UPPE models. This enables us to propagate
frequencies larger than 3ω0 without having harmonic effects
enter the simulation. After propagating 14.9 μm, a large
temporal gradient emerges at the tail of the pulse as shown
in Fig. 3(a).

It should be noted that we have illustrated an “envelope
shock.” Both the UPPE and MKP1 can also undergo a “field
shock,” which corresponds to a steepening of the carrier wave
and a field profile that resembles a trapezoidal shape [27]. A
field shock is caused by a cascading of odd harmonics due
to a full-field nonlinear response (∼E3) and is strongest in a
nondispersive media. Similar to an envelope shock, dispersion
tends to regularize the amount of steepening that occurs in a
field shock.

When dispersion and a full-field nonlinear response are
taken into account, self-steepening occurs but to a much lesser
extent [Fig. 3(c)]. Dispersion is relatively weak compared to
nonlinearity LNL/LDS = 0.19 but clearly arrests an optical
shock from forming. A self-steepening length scale is given
by Lss = LNLωRtp [28]. Generally LNL � Lss, but in our case
the pulse is extremely short such that Lss = 4.2LNL. On the
other hand, Lss = 0.80LDS and a decent amount of dispersion
will happen before the pulse travels a shock distance of Lss.

Third harmonic effects are small compared to the main
pulse, which makes them hard to distinguish in the temporal
domain. However, they make the envelope slightly oscillatory,
and if we look at the spectrum in Fig. 3(d), TH generation
becomes easy to observe. Figure 3(f) zooms in on what we
will consider the TH spectral content of the MKP1, UPPE, and
GMKP1 field models. Taking the inverse Fourier transform of
the TH spectral content with the remaining spectrum set to
zero produces the TH temporal profile shown in Fig. 3(f).

The multiple peaks can be attributed to TH pulse splitting.
Farthest on the left is a temporal peak that travels along with
the fundamental field. The other peaks correspond to parts of
the TH pulse that split off and lag behind the main pulse.

From Figs. 3(e) and 3(f) we notice that the UPPE and
GMKP1 models produce nearly identical TH effects while
the MKP1 model predicts noticeably different TH effects.
This can be attributed to the differences in the dispersion
approximations of the MKP1 and GMKP1 models. MKP1
cannot approximate the Sellmeier formula for fused silica
accurately enough at the third harmonic, but by adding
additional terms as is done in the GMKP1 model we get a
better fit farther away from the carrier frequency and much
more accurate at the third harmonic.

V. CONCLUSIONS

Optical shock and self-focusing blow-up are two fun-
damental singularities of great interest in nonlinear optics.
Early theory and experimental work on singularities in optics
focused mainly on blow-up, but newer work in the ultrashort
pulse regime has emphasized the role of self-steepening and
shock. While NLSE theory and its connection to optics
has been thoroughly developed, a fuller understanding of
singularity formation of short pulses requires a more accurate
model. In this paper, we have illustrated three equations used
in ultrashort pulse propagation with an emphasis on the MKP1
model and its usefulness as an analytic tool.

We have shown that the restriction of MKP1 to few-cycle
pulses is unnecessary. Even when a few dozen cycles are under
the envelope, MKP1 can be as effective as the NEE and UPPE
in simulating self-focusing ultrashort femtosecond pulses. In
general, MKP1 can be an effective model for any system in
which a large spectral range must be propagated.

Commonly, MKP1 and other field models include effects
such as third harmonic generation. Accurately resolving a
third harmonic field requires propagating with a dispersion
model that is accurate at the third harmonic frequency. MKP1
dispersion can fail in this context, and it may be necessary to
use a more general dispersion expansion. Furthermore, if no
analysis of the model is needed, it may be best to simply stay
in the spectral domain and simulate using a model with an
exact dispersion relation such as UPPE.
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