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Superfluid drag of two-species Bose-Einstein condensates in optical lattices
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We study two-species Bose-Einstein condensates in quasi-two-dimensional optical lattices of varying geometry
and potential depth. Based on the numerically exact Bloch and Wannier functions obtained using the plane-wave
expansion method, we quantify the drag (entrainment coupling) between the condensate components. This drag
originates from the (short-range) interspecies interaction and increases with the kinetic energy. As a result of the
interplay between interaction and kinetic energy effects, the superfluid-drag coefficient shows a nonmonotonic
dependence on the lattice depth. To make contact with future experiments, we quantitatively investigate the drag
for mass ratios corresponding to relevant atomic species.
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I. INTRODUCTION

Owing to their many favorable features such as the absence
of defects and dynamic control of relevant parameters, optical
lattices constitute a versatile tool for controlling the properties
of atomic quantum fluids [1]. They have proven to be an
invaluable platform for studying quantum phase transitions
such as from a superfluid to a Mott insulator (SF-MI) [2,3] and
simulating many-body systems [4]. The high densities and low
temperatures required for investigating these quantum effects
are provided by Bose-Einstein condensates (BECs) [5–7].

While multicomponent BECs—and, especially, two-
component ones [8–10]—have attracted a great deal of interest
since the early days of BEC [11–13], the addition of the
optical-lattice environment [3,14,15] allows one to study
interesting transport properties of cold atoms in the superfluid
regime. One of them, which has so far not been given due
attention, is the superfluid drag in two-component BECs. Such
a nondissipative drag effect was first investigated by Andreev
and Bashkin [16] in the context of 3He-4He mixtures. A
microscopic theory of the drag between two weakly interacting
Bose gases was developed in the continuum limit [17] and
generalized to the non-Galilean invariant case as realized in an
optical lattice [18]. For a system of strongly interacting bosons,
the superfluid drag was investigated by means of Monte
Carlo simulations [19]. Drag effects have also been studied
in different systems. For instance, in electronic mesoscopic
systems Coulomb drag has been studied both theoretically and
experimentally [20].

In this work, we study the drag (entrainment coupling [21])
between two weakly interacting Bose gases in quasi-two-
dimensional optical lattices. We derive a formula for the
superfluid-drag coefficient valid for an arbitrary lattice and
evaluate it for different lattice geometries. In this manner we
extend the results presented in Ref. [18] where this has been
done for the special case of the three-dimensional cubic lattice.
This derivation proceeds by diagonalizing the Hamiltonian
using a Bogoliubov approximation and subsequent expansion
of the free energy in the superfluid velocities.

The band dispersions and interaction parameters needed
to evaluate the superfluid-drag coefficient are obtained nu-
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merically by means of a truncated plane-wave expansion of
the optical-lattice potentials. Using this numerically exact
approach, instead of the tight-binding approximation, we
obtain results that are reliable even in the limit of shal-
low optical lattices where superfluidity is assured for both
commensurate and incommensurate filling. As a result of
the interplay between the interaction and kinetic energies,
we find a nonmonotonic dependence of the superfluid-drag
coefficient on the optical-lattice depth. In contrast to Ref. [18],
where the mass ratio which maximizes the superfluid drag
was found to be around unity for an arbitrary lattice depth,
we find that the optimal mass ratio depends on the lattice
depth.

In addition to the two-dimensional square lattice, we
investigate the drag in the particularly interesting three-beam
lattices (3BL). These are two-dimensional optical lattices with
nonseparable potentials [22], created by three in-plane laser
beams [23]. One special case of 3BLs is the triangular optical
lattice, which has lately received attention in connection with
the experimental observation of the SF-MI transition [24].

The paper is organized as follows. In Sec. II we present
the theoretical description of two-species BECs in optical
lattices. At the same time we introduce the notations and
conventions to be used throughout the paper. We discuss
the two-species Bose-Hubbard model in Sec. II A; Sec. II B
is devoted to the numerical derivation of the parameters of
the model, while in Sec. II C we specify the optical-lattice
potentials under investigation. In Sec. III we generalize the
derivation of an expression for the superfluid-drag coefficient
at zero temperature, valid for an arbitrary lattice geometry.
The results for the superfluid drag in two different 3BLs and
the four-beam square lattice are presented and discussed in
Sec. IV. Finally, we conclude in Sec. V.

II. SYSTEM AND MODEL

In this section, we describe the model of a two-species BEC
in a quasi-two-dimensional optical lattice. We introduce the
Hamiltonian of the system (Sec. II A), outline the numerical
evaluation of its parameters (Sec. II B), and discuss the two-
dimensional optical lattices under consideration (Sec. II C).
For convenience, we set h̄ = 1 throughout the paper.
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A. Two-species Bose-Hubbard model

The single-band, two-species Bose-Hubbard model with
short-range on-site interactions reads [3]

H =
∑
ij,α

εα
ij b

†
iαbjα + 1

2

∑
i,αβ

Uαβb
†
iαb

†
iβbiβbiα. (1)

The operator b
†
iα (biα) creates (annihilates) a boson of compo-

nent α = A,B occupying a Wannier orbital centered at lattice
site Ri (i = 1,...,N ). In terms of the (three-dimensional)
Wannier functions Wα(r),

εα
ij =

∫
d3r W ∗

α (r − Ri)

[
− ∇2

2mα

+ V (r)

]
Wα(r − Rj ),

Uαβ = γαβ

∫
d3r|Wα(r)|2 ∣∣Wβ(r)

∣∣2
, (2)

where the diagonal and off-diagonal elements of εα
ij respec-

tively correspond to the on-site energies and the hopping
amplitudes. The potential V (r) includes the lattice potential
as well as a confinement in the z direction; γαβ ≡ 2π (mα +
mβ)aαβ/(mαmβ) is determined by the particle masses and the
s-wave scattering length aαβ .

We consider a one-dimensional optical lattice in the z

direction, which provides the aforementioned confinement.
Approximating the confining potential around one of the
minima leads to a harmonic potential with mass-dependent
frequency ωzα . As long as the corresponding oscillator length
lz ≡ (mωzα)−1/2 is small compared to the scattering lengths,
we can assume that the two-body collisions are not affected
by the confinement and Eq. (2) gives the correct interaction
parameters. For a sufficiently deep lattice in the z direction,
the Wannier functions can be written as

Wα(r,z) = W̃α(r)

(
mαωzα

π

)1/4

e−(mαωzα/2)z2
, (3)

where r is a two-dimensional vector. Hereafter, all the bold
letters denote two-dimensional vectors.

The z dependence of Uαβ can then easily be integrated out
and we are left with

Uαβ = γαβ

√
mαωzαmβωzβ

π (mαωzα + mβωzβ)

×
∫

d2r|W̃α(r)|2|W̃β(r)|2. (4)

To switch from a real-space (lattice) description to momen-
tum space, we use the Fourier-transformed boson operators
biα = N−1/2 ∑

k bkαe−ikRi . Inserting this relation into Eq. (1)
leads to

H =
∑
k,α

εkαb
†
kαbkα + 1

2N

∑
αβ

Uαβ

×
∑

k1,...,k4

b
†
k1α

b
†
k2β

bk3βbk4αδk1+k2,k3+k4 . (5)

The band dispersion εkα and the interaction parameters Uαβ

are calculated numerically as described below.

B. Plane-wave expansion

Using the expansion of the Bloch functions in the
reciprocal-lattice vectors G (V denotes the system volume),

	kα(r) = 1√
V

∑
G

Cα
k,G ei(k+G)·r , (6)

the Bloch eigenvalue problem can be recast as∑
G′

〈k + G|Hα
1 |k + G′〉Cα

k,G′ = εkαCα
k,G . (7)

Here |k〉 is shorthand for V−1/2eik·r , while Hα
1 denotes the

single-particle Hamiltonian which includes the kinetic energy
and the two-dimensional lattice potential (but not the confining
potential).

Taking into account a finite number NG of reciprocal-lattice
vectors leads to an eigenvalue problem of finite dimensionality.
The latter can be solved numerically to obtain the band
dispersion and the Bloch functions [25]. In our case, NG � 100
leads to the requisite numerical precision in the diagonalization
procedure for all the lattices.

To evaluate the interaction parameters Uαβ [cf. Eq. (4)], we
first compute the Wannier functions

W̃α(r) = 1√
N

∑
k

	kα(r). (8)

Because for each value of k the Bloch function is only defined
up to a phase factor, the last definition of the Wannier function
is not unique. Therefore, one has to choose a gauge 	kα →
eiφ(k)	kα which leads to localized Wannier functions [26,27].
The substitution [28]

	kα(r) → exp [−i Im ln 	kα(0)]	kα(r) (9)

gives rise to Bloch functions which have the same phase at
r = 0 for each k, leading to Wannier functions which are suf-
ficiently localized that inter-site interactions can be neglected.

C. The optical lattices

The optical lattices we investigate are two different 3BLs,
one with triangular geometry (3BTL) and one with square
geometry (3BSL), and the four-beam square lattice (4BSL).
Hereafter, the four-beam and three-beam lattice potentials are
respectively labeled by the superscripts 4B and 3B:

V 4B(r) = V0

2
[cos(2kLx) + cos(2kLy)],

V 3B(r) = V0

2
[cos(b1 · r) + cos(b2 · r)

+ cos([b1 + b2] · r)]. (10)

Here bi ≡ ki − ki+1 are the reciprocal-lattice vectors, where
ki denotes the wave vector of the ith laser beam with magni-
tude kL = 2π/λL. To produce the desired lattice geometries,
the lasers need to be red detuned [V0 < 0 in Eq. (10)]. The
magnitude of V0 is in principle dependent on the atomic
properties of the Bose components. In this work, however,
we consider systems where V0 is approximately equal for both
species. This is not an unreasonable assumption since such
systems are experimentally accessible [14].

The 4BSL is created by four laser beams of equal intensity
and polarization enclosing mutual angles of π/2 and has a
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lattice period of λL/2. For the 3BSL, the three laser beams
enclose the angles π/2, π/2, and π resulting in a lattice spacing
of λL/

√
2, while for the 3BTL all the enclosing angles are

2π/3 and the lattice spacing is 2λL/3. The different lattice
geometries are shown in Fig. 1.

Straightforward evaluation of the matrix elements of Hα
1 in

the plane-wave basis yields

〈k + Gl,n|Hα
1 |k + Gl,n〉 = 1

2mα

|k + Gl,n|2,

〈k + Gl1,n1 |V 4B(r)|k + Gl2,n2〉
= V0

4
(δl1,l2±1δn1,n2 + δl1,l2δn1,n2±1),

〈k + Gl1,n1 |V 3B(r)|k + Gl2,n2〉
= V0

4
(δl1,l2±1δn1,n2 + δl1,l2δn1,n2±1 + δl1,l2±1δn1,n2±1), (11)

where Gl,n ≡ lb1 + nb2 (l,n are integers) are the reciprocal-
lattice vectors. The diagonal matrix elements are independent
of the lattice potential, while the off-diagonal ones only depend
on the potential and are equal for all 3BLs.

III. DERIVATION OF THE SUPERFLUID-DRAG
COEFFICIENT

The derivation treated in this section generalizes Ref. [18];
details are therefore omitted. Considering the case where the
ground state (k = 0) is macroscopically occupied, the corre-
sponding boson creation and annihilation operators commute
to a very good approximation. Thus we can replace them by c

numbers [29]:

〈b0αb
†
0α〉 = 〈b†0αb0α〉 + 1 ≈ N0α = 〈b†0αb0α〉,
b0α ≈ b

†
0α ≈

√
N0α. (12)

We then neglect all the terms of higher order than bilinear in the
creation or annihilation operators of k �= 0 states. The resulting
bilinear Hamiltonian can be diagonalized by following the
procedure outlined in Ref. [30]. In terms of the Bogoliubov
quasiparticle operators βkσ , one obtains

H = H0 − 1

2

′∑
k,α

Eα
k +

′∑
k,σ

Ekσ

(
β
†
kσ βkσ + 1

2

)
, (13)

where the primed sum runs over all k �= 0 states and the two-
branch (σ = ±) excitation spectrum is given by

Ekσ = 1√
2

{
εA

k

(
εA

k + 2FA

) + εB
k

(
εB

k + 2FB

) + σ

√[
εA

k

(
εA

k + 2FA

) − εB
k

(
εB

k + 2FB

)]2 + 16F 2
ABεA

k εB
k

}1/2
. (14)

Here Fα = nαUαα, FAB = √
nAnB UAB, εα

k = εkα − ε0α ,
and Eα

k = εα
k + Fα; nα ≡ Nα/N is the particle density of

component α. It is easy to see that this spectrum is gapless.
Since the Bogoliubov approximation makes the assumption
of a small condensate depletion, only the superfluid phase can
be described by the obtained quantities [31].

For small superfluid velocities vα , the free energy of a
two-component Bose gas can be expanded as [16]

F = F0 + V
2

[
ρs

Av2
A + ρs

Bv2
B − ρd (vA − vB)2

]
, (15)

where ρs
α is the superfluid density of component α, while F0

denotes the terms independent of the superfluid velocities. At
zero temperature, the free energy is equal to the expectation

FIG. 1. (Color online) Optical-lattice potentials in units of the
recoil energy ER = k2/2mA with their minima set equal to zero.
(a) 3BTL, (b) 3BSL, and (c) 4BSL. For these plots V0 = −ER/2.

value of the Hamiltonian with no quasiparticles excited,

FT =0 = 〈H0〉 + 1

2

′∑
k

(
Ek+ + Ek− − EA

k − EB
k

)
. (16)

The superfluid density of a one-component system is
determined by its response to an externally induced superfluid
velocity [32]. To determine the drag, the corresponding two-
component generalization of this procedure reads [18]

k → k − mαvα,

εα
k → εα

k − mαvα · ∇kε
α
k + O

(
v2

α

)
. (17)

Using this transformation, the superfluid-drag coefficient can
be found by expanding the free energy in the superfluid
velocities. Considering the case of parallel superfluid flows,
we find

ρd = 1

V

′∑
k

2mAmBF 2
ABεA

k εB
k

Ek+Ek−(Ek+ + Ek−)3

(
∂ku

εA
k

)(
∂ku

εB
k

)
, (18)

where û denotes the direction of the superfluid flow and ∂ku
≡

û · ∇k stands for the corresponding directional derivative.
Note that the drag is always positive and independent of the
sign of the interspecies interaction. The last expression holds
for an arbitrary lattice.
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FIG. 2. (Color online) Superfluid drag for different lattices and
interaction strengths: (a) and (b) three-beam triangular lattice (3BTL),
(c) and (d) three-beam square lattice (3BSL), and (e) and (f) four-beam
square lattice (4BSL). The left column [(a), (c), (e)] corresponds
to weak interspecies interactions aAB = 30 a0 and the right column
[(b), (d), (f)] corresponds to strong ones, aAB = 64a0. Note the
different scales for the color scheme.

IV. RESULTS AND DISCUSSION

In the following, we present our findings for the superfluid
drag in different lattice geometries, for weak and strong
interspecies scattering. To obtain a dimensionless quantity,
we normalize the superfluid drag by ρA = NAmA/V . Su-
perfluidity at all lattice depths is assured by choosing an
incommensurate filling nA = nB = √

2 [9]. The intraspecies
scattering lengths are set to aAA = 100a0 (a0 is the Bohr
radius) and aBB = 65a0. We choose the superfluid flows to
be codirected in the x direction defined in Fig. 1 for all the
lattices. For the laser wavelength, which determines the lattice
spacing, we choose λL = 1064 nm. The results obtained for
the superfluid drag are shown in Fig. 2. Figures 2(b), 2(d), and
2(f) correspond to an interspecies interaction just below the
value where phase separation occurs [i.e., where the excitation
spectrum in Eq. (14) becomes imaginary].

Keeping the intraspecies interactions constant, the drag
effect is enhanced significantly with increasing interspecies
interactions. In contrast to the results of Ref. [18], however, we
find that the mass ratio which maximizes the drag depends on

FIG. 3. (Color online) Superfluid drag in a 3BTL as a function of
the lattice depth V0 for fixed mass ratios corresponding to the mixtures
87Rb-85Rb (mB/mA ≈ 1, solid), 87Rb-41K (mB/mA ≈ 2.2, dashed),
and 87Rb-23Na (mB/mA ≈ 3.8, dotted). Component B corresponds
to 87Rb in all three cases. The interspecies scattering length is set to
aAB = 64a0.

the lattice depth, varying significantly from unity as one goes
to shallower lattices (|V0| � 1ER). For clarity, cuts of Fig. 2(b)
for experimentally relevant mass ratios are presented in Fig. 3.

Although the magnitude of the superfluid drag varies
strongly with the lattice geometry, the qualitative behavior as
a function of the mass ratio and the lattice depth is the same:
for fixed mass ratio, the drag increases upon raising |V0| from
zero, reaches its maximum, and then decreases. Quantitatively,
this behavior is strongly dependent on the mass ratio.

The lattice-depth dependence of the drag can be ascribed to
a competition between the interaction and kinetic energies. As
|V0| increases, the interactions become stronger and the drag,
which depends quadratically on FAB , is enhanced. At the same
time, the bandwidth, incorporated in ρd through the derivative
of the single-particle dispersion, decreases with increasing

FIG. 4. (Color online) Superfluid drag in a 3BTL (not normalized
with nA) as a function of the particle densities for A = 85Rb and a
lattice depth V0 = −1.2ER , which maximizes the drag for this mass
ratio (see Fig. 3). The other parameter values are the same as in
Fig. 2(b). Component B corresponds to the more weakly interacting
species.
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lattice depth. This effect is strongly dependent on the particle
masses involved. A similar behavior can be observed upon
increasing mB for a fixed lattice depth. For a small mass ratio
the drag increases, because it is linear in mB , before it starts to
decay due to the decrease in kinetic energy.

Comparing the 3BSL with the 4BSL, one notices that in
the 4BSL the superfluid drag is much larger over a broader
range of lattice depths. This is consistent with the fact that the
hopping amplitudes are smaller and the SF-MI transition sets
in at much shallower lattices for the 3BLs [23]. A possible
explanation as to why the drag is stronger in the 3BSL than
in the 3BTL can be given if one envisions the drag as being
mediated by component A particles, dressed by a cloud of
component B particles, and vice versa. In this case one could
argue that the higher coordination number of the 3BTL leads
to more events whereby one of the particles within the cloud
splits off the dressed particle.

In addition to the above findings, we stress that for a
fixed mass ratio, the lattice depth V0 which maximizes the
drag seems to be independent of the particle densities nα . On
the other hand, the magnitude of ρd depends on the particle
densities as shown in Fig. 4. At fixed V0, this dependence itself
varies with the mass ratio. Comparing the density dependence
at V0 which maximizes the drag for the respective mass ratio,
we find that it hardly changes at all.

Finally, we note that for two components with the same
scattering length the drag always increases upon increasing
the particle number (data not shown). For two species with
different scattering lengths on the other hand, increasing the

number of the more strongly interacting particles can actually
lead to a decrease in the superfluid drag (see Fig. 4).

V. CONCLUSIONS

We have studied the drag between components of a two-
species BEC in optical lattices. To assure that our results are
valid even for shallow optical lattices, we did not make use
of the tight-binding approximation but used a numerically
exact approach instead. Consequently, we generalized the
previously derived expression for the superfluid-drag coeffi-
cient to arbitrary lattice geometries. To clarify the dependence
of the superfluid drag on the lattice geometry, we have
presented results for rectangular and nonrectangular lattices
with separable and nonseparable potentials.

We have demonstrated a nonmonotonic dependence of the
drag on the lattice depth that results from the competition
between two effects: the drag increases with the interspecies
interaction strength and is reduced upon decreasing the kinetic
energy. While the qualitative behavior of the drag is the same
for all the lattice geometries studied, its quantitative properties,
such as the magnitude, differ from one lattice to another. Our
study will hopefully motivate drag experiments with ultracold
atoms in optical lattices.
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