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Collision of one-dimensional fermion clusters
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We study cluster-cluster collisions in one-dimensional Fermi systems with particular emphasis on the nontrivial
quantum effects of the collision dynamics. We adopt the Fermi-Hubbard model and the time-dependent density-
matrix renormalization-group method to simulate collision dynamics between two fermion clusters of different
spin states with contact interaction. It is elucidated that the quantum effects become extremely strong with the
interaction strength, leading to the transmittance being much more enhanced than expected from the semiclassical
approximation. We propose a concise model as an application of the Bethe ansatz, which unveils the origin of
the quantum effects and also explains the overall properties of the simulation results clearly. This model provides
an intuitive perspective of the collision dynamics with contact interaction. Some potential applications, such as
repeated collisions, are addressed.
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I. INTRODUCTION

Recently, the nonequilibrium dynamics of cold atoms has
attracted much attention because cold-atom systems are ideal
as isolated quantum systems which can be experimentally
designed [1]. In cold-atom systems, Feshbach resonance [2]
has enabled experimentalists to modify the strength and sign
of interactions between atoms. The dynamics of quantum
quench [3–6] has been explored by suddenly changing the
trap potential and the interaction, and also theoretically the
quantum-quench dynamics has been studied [7–20].

Of these experiments, the dynamics of collision and mixing
of two fermion clouds released from spin-dependent traps [21]
motivates us to study collision dynamics between two fermion
clusters in one-dimensional Fermi systems. For such one-
dimensional collision dynamics, we have recently proposed
a semiclassical model [22], so the fully quantum results
and the semiclassical results can be theoretically compared.
Thus, the differences between the two results, which we call
the quantum effects, can be calculated. The one-dimensional
collision dynamics [22–24] has been numerically studied from
the interest in that experiment. It has been shown that the
sign of the interaction does not affect the dynamics and that
nontrivial quantum effects are dominant when the interaction
is strong.

Analytically, the Bethe-ansatz exact solution [25–28] has
successfully explained the properties of the static and ho-
mogeneous quantum systems with contact interaction in one
dimension. In these integrable systems, the collision process
can be expressed as a set of independent one-to-one collisions,
so the wave functions are factorized. Thus, the physical
quantities of the system can be analytically calculated with
the quantum effects included. In particular, the Bethe ansatz
has extensively been used for the exact treatment of the static
or thermodynamic properties. Also, important progress has
been made in the calculation of the correlation functions [25].

However, the Bethe ansatz cannot be straightforwardly
applied to the dynamics in nonsteady or inhomogeneous
systems although the essence of the collision processes
is contained in the Bethe ansatz. A complete analysis in
the collision dynamics in these systems is essential for an

understanding of the quantum nonequilibrium dynamics since
collision dynamics is one of the basic concepts of dynamics.

In this study we simulate the cluster-cluster collision dy-
namics in one-dimensional spin-1/2 Fermi systems with con-
tact interaction and calculate the quantum many-body effects in
the collision dynamics. Then we propose a quantum-collision
model based on the idea of the Bethe ansatz, which contains
only the one-to-one collision parameters. This model, which
we call the independent-collision model (ICM), reproduces
the simulation results well and fully elucidates the quantum
effects of the collision dynamics, extremely enhancing the
transmittance at strong interaction. The essence of the ICM is
based on the Bethe ansatz idea, which can intuitively explain
the collision dynamics with contact interaction although the
ICM is an approximate description of the collision. We address
two applications of the ICM, interaction-sign effects and
repeated collisions.

II. SIMULATION

We conduct simulations of collision dynamics and cal-
culate reflectance and transmittance of the clusters in one-
dimensional spin-1/2 Fermi systems. Initially, n fermions
per spin are trapped by spin-dependent potentials separately
(Fig. 1) (n � 6 for numerically exact results). Both trap
potentials are harmonic, and they have the same shape but
are spatially separated. The mass of a fermion is m, the trap
frequency of the harmonic potentials is ω (the oscillation
cycle is T = 2π/ω), and the interaction strength between the
fermions is zero. So the typical width of the particle-density
tails is η = √

h̄/mω. We set the distance between the centers
of the initial potentials as 2D = 10η � η so that the overlap
between the two clusters is negligible. The center of the spin-
down (up) trap potential is x = −D = −5η (x = D = 5η).

At t = 0, we suddenly change the trap potentials into
a new shared potential, V (x) = 1

2mω2x2. Simultaneously,
we switch on the contact interaction between spin-up and
spin-down fermions as uδ(xd − xu), where xd (xu) is the
location of a spin-down (up) particle. Then the two clusters
start moving towards each other without significantly changing
their shapes, and they collide around x = 0 at t = T/4 with
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FIG. 1. (Color online) Initial particle density and trap potential at
n = 6 and initial spin-down density at n = 1, n = 2, and n = 3.

an average momentum |p| = mωD. Finally, depending on
the interaction strength u, they are reflected to the initial
location or travel to the opposite location by t = T/2, and
the particle density around x = 0 is almost zero again. So
the number of reflected particles N ref

n (u) and the number of
transmitting particles N tra

n (u) are obtained by counting the
spin-down (up) particle number in x < 0 and x > 0 (x > 0
and x < 0). We obtain the reflectance Rn(u) = N ref

n (u)/n

and the transmittance Tn(u) = N tra
n (u)/n [Rn(u) + Tn(u) =

1]. Clearly, Rn(0) = 0,Tn(0) = 1, and Rn(∞) = 1,Tn(∞) = 0
because the system is one dimensional.

We discretize the system to adopt the one-dimensional
Fermi-Hubbard model and apply the time-dependent density-
matrix renormalization-group (t-DMRG) method [29–31]
to simulate the dynamics. We take 199 sites numbered
−99,−98, . . . ,+98,+99 at regular intervals; the site −50
(+50) is the initial location of the potential center for spin-
down (up) atoms. The lattice constant is δx = 2D/100 =
0.1η, which is small enough so that the umklapp scattering
can be neglected. The value of the trap potential at site i is
Vi,σ (t) = 1

2mω2(xi − σD)2 (σ = − for spin-down particles
and σ = + for spin-up). The discretized Hamiltonian is

Ĥ (t) = − h̄2

2mδx2

∑

i,σ

(â†
i,σ âi+1,σ + â

†
i+1,σ âi,σ )

+ u

δx

∑

i

n̂i,+n̂i,− +
∑

i,σ

Vi,σ (t)n̂i,σ ,

where âi,σ annihilates an electron with spin σ on site i

and n̂i,σ ≡ â
†
i,σ âi,σ . We calculate the time evolution by this

Hamiltonian starting from the ground state of the system by
the t-DMRG method up to t = T/2 in which the time step is
10−5T and the maximum discarded eigenvalue of the reduced
density matrix is ε < 10−12. The simulation is conducted
in the following range of parameters: the fermion number
n � 6 and the contact-interaction strength 2−5 � u/uc � 25

(uc = 2h̄p/m).
Figure 2(a) shows the reflectance Rn(u) obtained by the

DMRG simulation for 2−5 � u/uc � 1. The figure implies
Rn(u) ∝ u2 in the small-u limit. We also plot the ratio
Rn(u)/R1(u) in Fig. 2(b) to evaluate the many-body effects.
It is observed that Rn(u) � nR1(u) is approached in the limit
of u → 0. In this limit, almost all particles transmit, and a
particle collides with the n particles of different spin before
it reaches the opposite side. So in the semiclassical picture,
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FIG. 2. (Color online) (a) Reflectance obtained by DMRG sim-
ulation Rn(u) (dots) and that by ICM RICM

n (u) (lines) (log scale on
x and y axes). (b) Reflectance ratio obtained by DMRG simulation
Rn(u)/R1(u) (dots) and that by ICM RICM

n (u)/RICM
1 (u) (lines) (log

scale on x axis).

the reflectance is nR1(u) because the number of the reflected
particles is approximately n2R1(u). Therefore, there is no
quantum effect in this limit [22]. On the other hand, Fig. 3(a)
shows the transmittance Tn(u) from the DMRG simulation
for 1 � u/uc � 25. The figure shows Tn(u) ∝ u−2 in the
large-u limit. We plot the ratio Tn(u)/T1(u) in Fig. 3(b),
which illustrates Tn(u) � nT1(u) as u → ∞. In this limit,
since almost all particles are reflected, in most cases a particle
collides with another particle of different spin just once during
a cluster-cluster collision. So in the semiclassical case, the
number of the transmitting particles is almost nT1(u), so the
transmittance is T1(u). Therefore, there are strong quantum
effects in this limit [22], and the transmittance in the quantum
case is n times larger than in the semiclassical case. These
quantum effects are calculated by the difference between the
semiclassical and quantum-simulation results, but their origin
has not been understood. However, in this study a sufficient
explanation of these quantum effects is given by a concise
model below.
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FIG. 3. (Color online) (a) Transmittance obtained by DMRG
simulation Tn(u) (dots) and that by ICM T ICM

n (u) (lines) (log scale on
x and y axes). (b) Transmittance ratio obtained by DMRG simulation
Tn(u)/T1(u) (dots) and that by ICM T ICM

n (u)/T ICM
1 (u) (lines) (log

scale on x axis).

III. MODEL

We propose the independent-collision model to explain the
simulation results. This model is regarded as an application of
the Bethe ansatz [25–28] to inhomogeneous systems as will
be discussed later.

We start from the simplest case, the one-to-one collision
dynamics, which can be easily calculated. The initial wave
function is |↓↑〉, meaning that a spin-down (up) particle is
on the left (right). When the spin-down-particle wave packet
with momentum p and the spin-up-particle wave packet with
momentum −p collide, |↓↑〉 splits into ρ |↓↑〉 (reflection
term) and τ |↑↓〉 (transmission term), and the momenta are
reversed, where we approximately have ρ = u/(iuc − u) and
τ = iuc/(iuc − u). The theoretical reflectance RICM

1 (u) and
transmittance T ICM

1 (u) are approximately calculated by the
coefficients of |↓↑〉 and |↑↓〉 as

RICM
1 (u) = |ρ|2 = u2

u2
c + u2

, T ICM
1 (u) = |τ |2 = u2

c

u2
c + u2

.

Next, we regard the multiparticle cases as a series of one-to-
one collisions. In this system, the initial wave function can be
expressed as a Slater determinant for spin-polarized particles.
We set up the single-particle wave functions of spin-down
particles as ϕ−1(x),ϕ−2(x), . . . ,ϕ−n(x) and those of spin-up
particles as ϕ1(x),ϕ2(x), . . . ,ϕn(x). So the initial wave func-
tion of the whole system is ψ = (n!)−1|ϕ−i(x−j )|↓|ϕi(xj )|↑,
where the variables in the determinant | · |↓(| · |↑) belong to
spin-down (up) particles. We can take these single-particle
wave functions not only as the eigenstates of the initial
Hamiltonian but also as the localized wave functions created
by a unitary basis transformation. It is convenient to use the
localized single-particle wave functions to analyze the cluster-
cluster collision. Because of the contact interaction, there is no
difference in the shapes of the single-particle wave function
before and after a one-to-one collision. However, the whole
wave function splits into the unchanged part (transmission
term) and a spin-flipped part (reflection term) after a one-to-
one collision. Therefore, if the n2 one-to-one collisions occur
independently, the time evolution of the system is described by
(i) the time evolution of the single-particle wave functions and
(ii) the splits of the wave functions at the one-to-one collisions.
The time evolution (i) occurs in each ϕ±i(x), and the form
of ϕ±i(x) is changed, but this evolution does not change the
expression of ψ = (n!)−1|ϕ−i(x−j )|↓|ϕi(xj )|↑. On the other
hand, at the time evolution (ii), the wave function splits into the
transmission term and the reflection term. When the particle a

and the particle b collide, ψ splits into τψ + ρFa
b ψ (Fa

b is the
flip operator of ϕa and ϕb). Even when a and b have the same
spin, this relation is applicable because τ + ρFa

b = 1 for the
particles of the same spin.

We assume that ϕi(x) is localized at xi (x−n < · · · < x−1

and x1 < · · · < xn), that the time evolution (i) is expressed as
the motion of xi , and that ϕi independently collides only with
the wave functions of the reversed momentum localized at the
same location. This assumption of the independent-ordered
collision, which corresponds to the factorizability of the
Bethe ansatz [25–28], is supported also numerically later.
Since the movement of xi is similar to the case of classical
dynamics, the ordering of the collisions is the same (see Fig. 4,
which is discussed below). The initial wave function of the
whole system is expressed as ψ = |↓−n · · · ↓−1↑1 · · · ↑n〉,
meaning that there are spin-down particles at xi (i < 0) and
spin-up particles at xj (j > 0) and that the ordering of the
wave function in the Slater determinant is adjusted to the
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FIG. 4. (Color online) Collision order in ICM at n = 3. S−ij is
the one-to-one collision between ϕ−i and ϕj , and ψk is the wave
function after the kth set of collisions. Simultaneous collisions are
commutative.
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one-dimensional ordering of xi . The first one-to-one collision
occurs between x−1 and x1. So the wave function splits into

τ−11 |· · · ↓−2↓−1↑1↑2 · · ·〉 + ρ−11 |· · · ↓−2↑−1↓1↑2 · · ·〉 ,

but the order of x−1 and x1 is reversed, so the expression

ρ−11 |· · · ↓−2↓1↑−1↑2 · · ·〉 + τ−11 |· · · ↓−2↑1↓−1↑2 · · ·〉
corresponds to the spatial-spin distribution in which ρ−11 and
τ−11 are the collision parameters between the two wave packets
of x−1 and x1. Simultaneous collisions are commutative, so we
can assume that one of them occurs earlier. The next collision
is assumed to be between x−2 and x1 (simultaneously x−1 and
x2), and then |· · · ↓−2↓1↑−1↑2 · · ·〉 is not changed, but for
the sign of the Slater determinant, the spatial-spin distribution
expression is

|· · · ↓−2↓1↑−1↑2 · · ·〉 = − |· · · ↓1↓−2↑−1↑2 · · ·〉 .

By omitting the ordering of xi from this expression, we
obtain a simplified expression of the system wave function.
It is possible to calculate the outcome of the cluster-cluster
collision by calculating the system wave function after n2

one-to-one collisions between all possible combinations of
xi (i < 0) and xj (j > 0) because the single-particle wave
functions evolve as those of free particles and they collide n

times during the half-cycle of the oscillation.
Using the simplified expression, the cluster-cluster collision

is calculated in the following process. The initial wave function
is simplified as |↓ · · · ↓↑ · · · ↑〉 with n ↓’s and n ↑’s. The
cluster-cluster collision is described by a series of one-to-one
collisions. For a collision between ↓ and ↑, the wave function
splits into a reflection term (amplitude ρij ) and a transmission
term (amplitude τij ). For a collision between two particles of
the same spin, the wave function is multiplied by −1. The
ordering of the one-to-one collisions is the same as in classical
dynamics, shown in Fig. 4. The first collision occurs at the
center of the system, and the second collisions occur at the
locations next to the center (n � 2). The third collisions arise
at the center and at the two locations away from the center
(n � 3). Finally, all the particles have reversed momenta, and
then collision dynamics finishes. The external parameters of
the ICM are only ρij and τij , which are of the one-to-one
collision. Since the calculations for large n are complicated,
we numerically compute the ICM reflectance RICM

n (u) and the
ICM transmittance T ICM

n (u), where approximately ρij and τij

are set as constants (ρ and τ ).
The ICM focuses on the dynamics of the localized single-

particle wave packets, namely, if the centers of the wave
functions of the same spin are separated from each other by
a distance on the order of their typical width, the effect of
the interaction at the time of the collision between the centers
of the wave functions of different spins is independent of the
effects of collisions occurring at other parts of the system.

This idea is analytically supported by the Bethe ansatz
[25–28]. In the static case, the one-dimensional collision
process of clusters can be divided into the independent one-to-
one collisions. In fact, the two-body contact interaction makes
the derivative of the many-body wave function discontinuous
at the point where two particles coincide. In the static
Bethe-ansatz solution, the effect of the contact interaction
for each pair of up-spin and down-spin is independent of

each other so that the wave function is factorized [25–28];
the one-to-one collisions can be calculated independently. The
ICM is equivalent to the approximate factorizability in the
dynamics of the wave packets.

IV. DISCUSSION

We plot the reflectance obtained by the ICM RICM
n (u) in

Fig. 2(a) and the ratio RICM
n (u)/RICM

1 (u) in Fig. 2(b) for
u/uc � 1. The figure exhibits that RICM

n (u) agrees fairly well
with Rn(u) (the DMRG simulation loses accuracy in the
limit of u → 0), and the ICM is valid in the region. We
discuss the asymptotic behavior of RICM

n (u) as u → 0. In
this limit, the dominant terms of RICM

n (u) are the coefficients
of the single-reflection wave functions (wave functions after
only one reflection) since almost all particles transmit in this
limit. The coefficients of the single-reflection wave functions
are ρτn−1, and the number of the single-reflection wave
functions is n2, so RICM

n (u) � n2|ρτn−1|2/n � n(u/uc)2 is
the asymptotic form. This analytical calculation is free from
the interference effects, so the absence of quantum effects
in the limit of u → 0 is supported by the ICM. Figure 3
also shows the ICM result T ICM

n (u) [Fig. 3(a)] and the ratio
T ICM

n (u)/T ICM
1 (u) [Fig. 3(b)] for 1 � u/uc. The figure shows

that T ICM
n (u) is consistent with Tn(u) (the difference comes

from the quantum fluctuation of the collision location and the
collision momentum), so the ICM is correct in the region
too. The asymptotic behavior of T ICM

n (u) in the limit of
u → ∞ is dominated by the coefficient of the component with
a single transmission, |↓ · · · ↓↑↓↑ · · · ↑〉. The coefficient
is ρn−1τ (1 + ρ2 + · · · + ρ2n−2), so in the limit of u → ∞
for fixed n, T ICM

n (u) � |ρn−1τ (1 + ρ2 + · · · + ρ2n−2)|2/n �
n(u/uc)−2 is the asymptotic form. Differently from the small-
u case, this term contains the interference effect. In the
semiclassical picture in which all the horizontally aligned
segments of the particle trajectories in Fig. 4 are independently
spin down or spin up at some probability determined by
the previous stage, the interference vanishes, and the trans-
mittance becomes |ρn−1τ |2(12 + |ρ2|2 + · · · + |ρ2n−2|2)/n �
(u/uc)−2. Therefore, the quantum transmittance is n times
larger than the classical transmittance. Thus, the ICM explains
the quantum effects in the large-u limit.

The ICM is consistent with the DMRG simulation, but we
have assumed the independent-ordered collision to derive the
ICM. To support this assumption numerically, we have also
studied the following system. Initially, n fermions per spin
are trapped separately, and the parameters of the particles are
the same as those in the DMRG simulation of a cluster-cluster
collision (Fig. 5). However, the trap potentials of both spins are
not harmonic, but the combination of two harmonic potentials
and the distance between these harmonic potentials is d. The
harmonic centers of the spin-down (up) particles are at x =
−D, − D − d (x = +D, + D + d) (D = 5η).

At t = 0, we suddenly give a momentum p to the spin-
down particles and a momentum −p to the spin-up particles
(p = mωD), and simultaneously, we switch off the trap
potentials and set the contact interaction between spin-up
and spin-down fermions as uδ(x1 − x2). The two clusters start
moving at the velocity |v| = p/m, and they collide at x = 0;
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FIG. 5. (Color online) Initial particle density and trap potential at
n = 2 and d = 4η.

then we calculate the reflectance Rdist
n (u,d). Except for the

difference in the distribution of the momentum or the decay
of the wave function, Rdist

n (u,0) should reproduce Rn(u). To
simulate the system, we use the same method under the same
condition as in the DMRG simulation above, excepting the
following conditions. We calculate the time evolution up to t =
(2D + d)/(v − 2

√
mωh̄/m) for n = 2, u/uc = 0.5,1.0,2.0,

and 0 � d � 4η (
√

mωh̄ is the initial momentum variation).
We take 299 sites numbered −149,−148, . . . ,+148,+149 at
regular intervals, but the lattice constant δx = 0.1η is the same.
The result of the simulation is that |Rdist

n (u,d) − Rdist
n (u,0)| is

under 1.5% for all u, so we conclude that the initial particle
distribution has little effect on collision dynamics. Thus, if
we calculate the cluster-cluster collision, we can simplify the
system by assuming that initially the fermions are indepen-
dently localized and independently collide. In the simplified
dynamics, the wave function of the system splits after every
independent collision, and the ordering of the independent col-
lisions is the same as in classical dynamics. Therefore, the as-
sumption of the independent-ordered collision is numerically
supported.

As an application of the ICM, we discuss the effects
of the interaction sign in the cluster-cluster collision. In
one-dimensional collision dynamics, the sign of the contact
interaction u does not affect the dynamics [22,23], and this
property can be explained by the ICM. The imaginary unit
i is contained only in ρ and τ in the ICM. Since physical
quantities such as particle density are real, the values of these
quantities are not changed if we substitute −i for i. After the

substitution, ρ(u) and τ (u) become ρ(−u) and τ (−u). This
proves that the physical quantities do not depend on the sign
of the interaction.

Another application of the ICM is the repeated cluster-
cluster collision under the harmonic potential in which the kth
collision occurs at (k − 1)T/2 < t < kT/2. The dynamics of
the multiple cluster-cluster collisions has been simulated by
Peotta et al. [24]; the motion of the center of mass is a linear
function of t in a region of strong interaction. We simulate
this multiple cluster-cluster collision by the ICM and calculate
the wave function after the kth collision by using the final
state after the (k − 1)th collision as the initial state. We use
their system parameters [24] and assume the location of the
localized wave functions x−i = −D − [i − (N + 1)/2]η and
xi = D + [i − (N + 1)/2]η (i > 0). Thus, we obtain results
that agree very well with their Fig. 3(b). Therefore, the ICM
is also useful for simulating the dynamics of the multiple
cluster-cluster collisions.

V. CONCLUSION

In summary, using the time-dependent density-matrix
renormalization-group method and the Fermi-Hubbard model,
we have calculated the collision dynamics between two
fermion clusters with contact interaction. We have introduced
the independent-collision model for cluster-cluster collisions,
which is based on the essence of the Bethe ansatz. We have also
numerically checked the validity of the model by showing that
the initial distribution of particles does not affect the collision
dynamics. The independent-collision model has reproduced
the simulation results and explained the large enhancement in
the transmittance at strong interaction. Furthermore, we have
demonstrated its potential applications to the interaction-sign
effect and the repeated collision dynamics.
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