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Finite-temperature phase diagram of quasi-two-dimensional imbalanced Fermi gases beyond
mean field
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We investigate the superfluid transition temperature of quasi-two-dimensional imbalanced Fermi gases beyond
the mean-field approximation, through the second-order (or induced) interaction effects. For a balanced Fermi
system the transition temperature is suppressed by a factor ≈2.72. For imbalanced Fermi systems, the polarization
and transition temperature of the tricritical point are significantly reduced as the two-body binding energy |εB |
increases.
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I. INTRODUCTION

The domain of advanced and accurate experimental tech-
niques of laser cooling and magnetic trapping, as well
as imaging of neutral ultracold two-spin-component atomic
Fermi gases, has permitted several crucial investigations in
these systems. One of the very important studies achieved
is the crossover from the Bardeen-Cooper-Schrieffer (BCS)
phase of weakly bound Cooper pairs to the Bose-Einstein
condensate (BEC) phase of strongly bound diatomic molecules
in three-dimensional (3D) trapped Fermi gases [1–3].

The lowering of dimensionality in many-body quantum
systems opens a window for the appearance of interest-
ing phenomena, such as the (yet unexplained) effect of
high-temperature superconductivity in two-dimensional (2D)
cuprates. Thus, the trap geometry, which is also currently under
full control, is fundamental in the use of ultracold atomic gases
in the simulation of condensed-matter systems, such as layered
2D strongly correlated superconductors.

As examples of very recent experimental achievements
in cold balanced Fermi systems in low dimensions, more
specifically in 2D, we highlight the report of the measurement
of the density profile and temperature of a 2D gas of atoms [4],
pairing in a harmonically trapped 2D atomic Fermi gas
in the regime of strong coupling [5], and the detection of
a many-body pairing gap above the superfluid transition
temperature (the pseudogap phenomenon) [6]. To the best of
our knowledge, up to now the only experimental investigations
with imbalanced 2D Fermi gases concerns the Fermi polaron
problem, in which a single spin-↓ atom interacts strongly with
a Fermi sea of spin-↑ atoms [7].

According to the Mermin-Wagner-Hohenberg-Coleman
(MWHC) theorem [8], the long-range order is destroyed
by fluctuations in uniform, 2D systems. This prohibits the
formation of a superconducting phase with a homogeneous
order parameter, associated with the breaking of a continuous
symmetry. Nevertheless, 2D systems may undergo a phase
transition to a state with quasi-long-range order via the
Berezinskii-Kosterlitz-Thouless (BKT) transition [9]. Since
this transition does not require symmetry breaking, it is not
forbidden by the MWHC theorem.
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By taking into account the phase fluctuation effect, the
BKT transition has been investigated in 2D balanced [10,11]
as well as imbalanced systems [12]. In all these works a strong
dependence of the BKT transition temperature TBKT on the
two-body energy |εB | has been found. Below TBKT pairs of
vortices and antivortices surge, and will eventually condense
as the temperature is lowered [10–12].

The direct consequence of the MWHC theorem is that
one should find Tc = 0 for the phase transition temperature
between the normal and superfluid phases in a pure 2D
system. However, quasi-2D systems (as, for example, a stack of
planes where tunneling between different planes is completely
suppressed by a large trapping potential, constituting effective
3D systems) may exhibit a superfluid phase transition at a
finite Tc with no conflict with the MWHC theorem [13].

In this paper we study the finite-temperature (T ) ground
state of a quasi-2D atomic Fermi gas with chemical poten-
tial imbalance, beyond the mean-field approximation. The
standard mean-field calculation does not take into account
the effects of the medium on the two-body interaction. This
correction, considered first by Gorkov and Melik-Barkhudarov
(GMB) [14], has been referred to as induced interactions [15],
and was found to suppress the mean-field critical temperature
of a 3D balanced Fermi gas by a factor ≈2.22 [14–17].
In addition, it has been shown that the GMB correction
substantially reduces the order parameter in 2D and 3D lattices
[18]. The influence of induced interactions in a 3D imbalanced
Fermi gas has been taken into account in Ref. [19], and it was
found that the polarization P and the transition temperature
T of the tricritical point are both reduced from the mean-field
results by a factor of about 2.22, meaning that the transition
temperature suppression is comparable with the one found for
the spin-balanced configuration.

The possibility of the Fulde-Ferrel-Larkin-Ovchinnikov
(FFLO) state with modulated order parameter [20] is ignored
in this work. As in Refs. [14–18,21], we consider only pairing
between atoms with equal and opposite momenta.

The paper is organized as follows: In Sec. II we obtain
the finite-temperature thermodynamic potential of the model
in the mean-field approximation. In Sec. III we review some
basic zero-temperature mean-field results which will be used
later. In Sec. IV we construct the finite-temperature phase
diagram beyond the mean-field approximation through the
GMB correction. We conclude in Sec. V.
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II. THE MODEL HAMILTONIAN AND THE MEAN-FIELD
THERMODYNAMIC POTENTIAL

We start by considering a 2D nonrelativistic dilute system of
fermionic atoms of mass M , with two hyperfine states labeled
as σ = ↑,↓. This spin-↑ and -↓ mixture could, in principle,
be obtained in 2D experiments with the two lowest hyperfine
states of 40K [5,6], or with 6Li atoms, as in the 3D experiments
[22–24]. Their single-particle dispersion relations are given by
ξk = h̄2k2

2M
. Throughout the paper we set h̄ = 1. The quasi-2D

system can be modeled by the following pairing Hamiltonian:

H = H0 + Hint, (1)

where

H0 =
∑

k,σ=↑,↓
εσ
k ψ†

σ (k)ψσ (k) (2)

is the kinetic (free) part of H and Hint is given below. ψ†
σ (k) and

ψσ (k) in Eq. (2) are the creation and annihilation operators,
respectively, for the ↑ and ↓ particles. To assure population im-
balance in the system, we have introduced different chemical
potentials for the species σ as μσ = μ + σh, where σh ≡ ±h.
Then, the chemical potential μσ fixes the number densities nσ

of the different fermions. The new dispersions for the free
species σ , relative to their Fermi energies, are εσ

k ≡ ξk − μσ .
The interaction Hamiltonian is given by

Hint = g
∑
k,k′

ψ
†
↑(k)ψ†

↓(−k)ψ↓(−k′)ψ↑(k′), (3)

where the bare coupling constant g is negative, to express
the attractive (s-wave) interaction between the spin-↑ and -↓
fermionic atoms.

After the mean-field (MF) approximation and the diagonal-
ization of the expression for HMF, we arrive at the following
expression for the thermodynamic potential, from which all
thermodynamical quantities of interest can be obtained:

� = −�2

g
+

∑
k

[
ε+
k − Ek − T ln

(
e−βEa

k + 1
)

− T ln
(
e−βEb

k + 1
)]

, (4)

where, for simplicity of notation we have labeled ↓ = a,
↑ = b. Here β = 1/T , where we have set the Boltzmann
constant equal to 1. We have also defined Ea,b

k = Ek ±
ε−
k as the quasiparticle excitations, with Ek =

√
ε+
k

2 + �2,

ε±
k = εa

k ±εb
k

2 , and the constant pairing gap is given by � =
−g

∫
d2k

(2π)2 〈ψ†
a (−k)ψ†

b (k)〉 = �∗.
To regulate the ultraviolet divergence associated with the

zero-temperature term in Eq. (4), we introduce the 2D bound-
state equation [25]

− 1

g
=

∫
d2k

(2π )2

1

2ξk + |εB | , (5)

where εB is the 2D two-body binding energy. In addition to the
regularization of the ultraviolet divergence present in Eq. (4),
and consequently in the gap equation (see below in Sec. IV B),
this equation relates the strength g of the contact interaction
with εB , which is more physically relevant, as will be clear
now. In order to make contact with current experiments, it

is convenient to relate εB to the three-dimensional scattering
length as . In the scattering of atoms confined in the axial
direction by a harmonic potential with characteristic frequency
ωL they are related by Refs. [26,27]

|εB | = CωL

π
exp

(√
2π

lL

as

)
, (6)

where as is the 3D s-wave scattering length, ωL =√
8π2V0/(Mλ2), lL = 1/

√
MωL, and C ≈ 0.915. V0 is the

amplitude of the periodic potential V0 sin2(2πz/λ) generated
by two counterpropagating laser beans with length λ parallel
to the z axis [26].

III. BASIC MEAN-FIELD ZERO-TEMPERATURE
RESULTS OF 2D IMBALANCED FERMI SYSTEMS

In this section we borrow from Refs. [25,28,29] some basic
zero-temperature MF results, which will be needed in the next
section.

A. Balanced systems

The gap and number equations are obtained by ∂�/∂� = 0
and nα = −∂�/∂μα , respectively. For the balanced system
where h = 0, we find√

μ2 + �2 − μ = |εB | (7)

and √
μ2 + �2 + μ = 2εF , (8)

where the two-dimensional Fermi energy is defined as εF =
πnT

M
, with nT = na + nb. In the balanced configuration na =

nb ≡ n = nT

2 . Solving these two equations self-consistently,
we arrive at the well-known results [25,29]

�0 =
√

2εF |εB | (9)

and

μ0 = εF − |εB |
2

. (10)

The value of the free energy at the minimum is

�(h = 0,� = �0) ≡ �0 = −κ

(
μ0 + |εB |

2

)2

, (11)

where κ ≡ M
2π

, whereas the energy of the balanced normal
state is given by

�(h = � = 0) ≡ �N
bal = −κμ2

0. (12)

A direct comparison between Eqs. (11) and (12) shows that the
superfluid state is energetically preferable to the normal state
for any εB �= 0. Since a two-body bound state exists even for an
arbitrarily small attraction in 2D [25], the pairing instability
will always happens in 2D balanced two-component Fermi
systems at T = 0.

B. Imbalanced systems

We now turn our attention to the cases where h �= 0. The
free energy of the imbalanced normal state, �(h,� = 0) ≡
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�N
imb, is given by

�N
imb =

∫ ka
F

0

d2k

(2π )2
εa
k +

∫ kb
F

0

d2k

(2π )2
εb
k , (13)

which gives, after the integration in k, the free energy
of a (normal) two-species gas of fermionic atoms in two
dimensions:

�N
imb(μa,μb) = −κ

2
[(μ − h)2 + (μ + h)2]

= −κ

2

[
μ2

a + μ2
b

]
, (14)

where we are considering μα and h positive.
From the graphical analysis of � as a function of � for

various asymmetries [28,30,31], one sees that increasing the
imbalance h and keeping μ fixed, the minimum is still located
at �0 up to a maximum or critical imbalance hc, after which
there is a quantum phase transition to the normal state with
� = 0. hc is found through the equality �0 = �N

imb, which
yields

h2
c = μ0|εB | +

(
εB

2

)2

. (15)

From this one easily finds, by plugging into Eq. (15) μ0 from
Eq. (10) in the BCS limit (|εB | � εF ), hc = �0√

2
, which is the

same 3D result known as the Chandrasekhar-Clogston limit of
superfluidity [32,33].

IV. THE PHASE DIAGRAM BEYOND THE MEAN FIELD

Now we construct the phase diagram of the model at finite
temperature considering corrections beyond the mean field,
taking into account the GMB correction.

A. Induced interaction in a spin-polarized Fermi gas

The induced interaction was obtained originally by GMB
in the BCS limit by the second-order perturbation [15]. For
a scattering process with p1 + p2 → p3 + p4, the induced
interaction for the diagram in Fig. 1 is expressed as

Uind(p1,p4) = −g2 χph(p1 − p4), (16)

where pi = (ki ,ωli ) is a vector in the space of wave vector
k and fermion Matsubara frequency ωl = (2l + 1)π/(β).
Including the induced interaction, the effective pairing inter-
action between atoms with different spins is given by

Ueff(p1,p4) ≡ Ueff = g + Uind(p1,p4). (17)

P K

− − P K

FIG. 1. The lowest-order diagram representing the induced in-
teraction Uind(p1,p4). Arrowed and dashed lines describe fermionic
propagators and the coupling g between the fermionic atoms.

The polarization function χph(p′) is given by

χph(p′) = 1

h̄2βA

∑
p

G0b(p)G0a(p + p′)

=
∫

d2k
(2π )2

f b
k − f a

�k+�q
i�l + εa

�k − εb
�k+�q

, (18)

where p′ = (�q,�l), �l = 2lπ/β is the Matsubara frequency
of a boson, A is the area of the system, and f (k) is the Fermi
distribution function f (Ea,b

k ) = 1/(eβEa,b
k + 1). The Matsubara

Green’s function of a noninteracting Fermi gas is given by
G0σ (p) = 1/(iωl − εkσ ). The static polarization function is
then

χph(|�q|) = −2m

∫
d2k

(2π )2

f a
k

q2 − 4mh + 2kq cos θ

+ f b
k

q2 + 4mh − 2kq cos θ
, (19)

where q ≡ |�q|. At zero temperature the real part of Eq. (19) is
given by

χph(q) = −N (0)

[
1

2
− 1

2

√(
1 − 4mh

q2

)2

−
(

2ka
F

q

)2]

−N (0)

[
1

2
− 1

2

√(
1 + 4mh

q2

)2

−
(

2kb
F

q

)2]

for q > ka
F + kb

F ,

= −N (0) for q � ka
F + kb

F , (20)

where N (0) = m
2π

is the 2D density of states at the Fermi level.
In the scattering process the conservation of total mo-

mentum implies that �k1 + �k2 = �k3 + �k4, with �k1 = −�k2

and �k3 = −�k4. q is equal to the magnitude of �k1 +
�k3, so q =

√
(�k1 + �k3) · (�k1 + �k3) =

√�k2
1 + �k2

3 + 2�k1 · �k3 =√�k2
1 + �k2

3 + 2|�k1||�k3| cos φ, where φ is the angle between
�k1 and �k3. Since both particles are at the Fermi surface,
|�k1| = |�k3| = kF = √

2Mμ; thus, q = kF

√
2(1 + cos φ).

The spin polarization is defined as P = nb−na

nb+na
. Then, from

Eq. (14) we find nα = (M/2π )μα , yielding

P = h

μ
. (21)

We are considering 0 � na � nb, which gives 0 � P � 1.
This is translated into having 0 � h � μ. Equation (21) will
enable us to express the polarization function χph(h) of an
imbalanced Fermi gas as a function of its spin polarization P :

χph(q) = −N (0)

[
1 − �P

√
1 +

(
P

γ

)2

− 2

γ

]
, (22)

where γ = 1 + cos φ and �P ≡ �(cos φ − √
1 − P 2).

The s-wave part of the effective interaction is approximated
by averaging the polarization function χph(q), which means an
average of the angle φ [14,15,17,19]:

〈χph(q)〉 = 1

2π

∫ 2π

0
dφχph(q) ≡ χph(h). (23)
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B. The GMB correction to the mean-field transition
temperature and tricritical point

Now we use the induced interaction effects calculated in
Sec. IV A in order to obtain the corrected beyond-mean-field
transition temperature of a balanced Fermi gas, and the
tricritical point Ptc = (htc,Ttc), of an imbalanced Fermi gas.
Extremizing the grand potential of Eq. (4) with respect to
� and passing to integrals, we obtain a gap equation. The
critical temperature Tc is, by definition, the temperature at
which � = 0. Then we find

− 1

g
− χph(h) −

∫
d2k

(2π )2

1

2εk

[
1 − f

(
εa
k

) − f
(
εb
k

)]
=

∫
d2k

(2π )2

1

2ξk + |εB | − χph(h)

−
∫

d2k

(2π )2

1

2εk

[
1 − f

(
εa
k

) − f
(
εb
k

)] = 0, (24)

where εk = k2/2m − μ. We have used Eq. (5) to regulate the
ultraviolet divergence, associated with the zero-temperature
logarithmically divergent term in Eq. (24). The difference
between the equation above and the usual mean-field thermal
gap equation is that the particle-hole fluctuation has been taken
into account through the effective s-wave interaction Ueff.

Thus, to find the transition temperature of a balanced Fermi
gas below which the formation of Cooper pairs becomes
favorable, we have gone beyond the simple BCS approach and
considered the second-order interaction effects calculated in
Eq. (20). The fact that both scattering particles are at the Fermi
surface restricts the angle between �k1 and �k3 to the single value
φ = 0, yielding q = 2kF . This gives χph(h = 0) = −N (0),
which results in

Tc,GMB = Tc,MF

e
≈ Tc,MF

2.72
, (25)

agreeing completely with a previous work performed in a
slightly different manner, but also considering the GMB
correction [21]. The result above shows that the suppression of
the transition temperature by second-order interaction effects

is higher in 2D than in 3D, where T 3D
c,GMB ≈ T 3D

c,MF

2.22 [14–17].

0 0.1 0.2 0.3 0.4 0.5
| B| / µ

0

0.2

0.4

0.6

0.8

h tc
 / 

 µ

Mean Field
2nd order interaction effects

FIG. 2. The critical polarization Pc = htc
μ

of the tricritical point
plotted as a function of the two-body binding energy. The solid line
shows the MF result, and the dashed line shows the results corrected
by second-order interaction effects.

0 0.1 0.2 0.3 0.4 0.5
| B| / µ

0
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0.2

0.3

0.4

T
tc
 / 

 µ

Mean Field
2nd order interaction effects

FIG. 3. The tricritical temperature Ttc plotted as a function of
|εB |/μ. The solid line shows the MF result, and the dashed line
shows its corrections by second-order interaction effects.

In oder to obtain the GMB correction to the mean-field
tricritical point, we define from Eq. (24)

f (T ,h) =
∫

d2k

(2π )2

1

2ξk + |εB | − χph(h)

−
∫

d2k

(2π )2

1

4εk

[
tanh

(
βεa

k

2

)
+ tanh

(
βεb

k

2

)]
.

(26)

A graphical inspection shows that at the (tri)critical chemical
potential imbalance htc, both f (T ,h) and its derivative with
respect to T , g(T ,h) ≡ df (T ,h)/dT , are zero [34]. The
vanishing of these two functions corresponds to α = β = 0.
α and β are the first and second coefficients of the expansion
of the free energy in terms of the gap parameter, according
to the Landau theory of phase transitions. By this criterion,
one finds htc and Ttc of the tricritical point. Below this point,
i.e., at low temperatures, the transition is of first order and
the critical temperature has to be found by properly equating
the energies of the normal and superfluid phases. Thus, for a
given htc < h < hc, where hc is the Chandrasekhar-Clogston
limit of superfluidity mentioned just below Eq. (15), the
temperature where �(� = 0,T ) = �(�0(T ),T ) corresponds
to the first-order phase transition critical temperature.

Our results for the induced interaction corrections to the
mean-field tricritical polarization and temperature are shown
in Figs. 2 and 3, respectively. As one can see in these figures,
the second-order interaction effect in the BCS regime reduces
the tricritical point by approximately the same amount found
analytically for the balanced scenario. It is easy to verify that in
the BEC region, the effect of the induced interaction vanishes
due to disappearance of the Fermi surface. From Eq. (20) we
obtain that χph(q) goes to zero in the limit ka

F = kb
F = 0.

V. CONCLUSIONS

We have studied the effects of the induced interactions on
the transition temperature of a quasi-2D imbalanced Fermi
gas of atoms in the BCS region. We find that the transition
temperature is reduced by a factor ≈2.72 in the case of a
balanced Fermi system, and the temperature and polarization
of the tricritical point of imbalanced Fermi systems are also
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suppressed by approximately the same factor as a function of
|εB |/μ, in comparison to the MF results.

It is worth mentioning that in the BEC region the universal
behavior found for the transition temperature in 2D fermionic
systems, considering the phase fluctuation effects [10–12],
is that the transition temperature obeys a behavior which
may be expressed qualitatively in the form Tc/εF ≈ const ×
tanh(|εB |/εF ), reaching a limiting value for large |εB |/εF .
The value of the constant is 0.075 in Ref. [11] and 0.125 in
Refs. [10,12]. Monte Carlo simulations give Tc/εF ≈ 0.1 for
|εB |/εF = 10 [35]. This behavior can be explained with very
simple arguments. The phase fluctuation treatment correctly
captures the physics that in the BEC side (large values of |εB |)
the system behaves as weakly interacting dimers of fermionic
atoms, such that the transition temperature turns out to be very
insensitive to the intensity of the interaction between these
composite bosons.

We remark that to study the whole BCS-BEC crossover in
a strictly 2D system, more detailed calculations are required to
take into account the effects of both second-order interactions
and phase fluctuations.

In conclusion, taking into account the induced interactions,
we have found the tricritical temperature and polarization
of the superfluid phase transition of two-component quasi-
2D imbalanced Fermi gases. Our results are promising for
achieving this transition in the regime of BCS pairing in current
experiments.
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