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Investigation of the generation of high-order harmonics through Bohmian trajectories
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We theoretically investigated the generation progress of high-order harmonics utilizing Bohmian trajectories,
which are calculated from the accurate numerical wave function. It is found that the harmonic emission spectrum
from atoms in an intense laser field calculated by Bohmian trajectories agrees well with that found by numerically
solving the time-dependent Schrödinger equation. Through the analysis of the dynamic behavior of Bohmian
trajectories, we investigated the ionization process, the acceleration of the ionized electron in the laser field,
and its recollision with the parent ion in the progress. Furthermore, the individual behavior and the coherent
contribution of these trajectories to the harmonic emission are discussed.
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I. INTRODUCTION

When intense laser pulses interact with atoms and
molecules, one can observe the high-order-harmonic gener-
ation (HHG) [1]. Driven by the linearly polarized monochro-
matic laser pulse, a plateau structure for the HHG spectrum
exists, and the cutoff energy of the plateau is Ip + 3.2Up,
where Ip is the atomic ionization energy, Up = E0

2/4ω2 is
the pondermotive energy, and E0 and ω refer to the maximum
amplitude and frequency of laser pulse, respectively. Due
to the unique plateau structure of the harmonic spectrum,
HHG can be utilized to generate soft x-ray source and
ultrashort attosecond pulses. Since the first observation of
HHG in an experiment at the end of 1980s, HHG has become
a hot research topic because of its significant application
background [2–4].

For theoretical research of HHG, it is necessary to numeri-
cally solve the time-dependent Schrödinger equation (TDSE),
which describes the motion of atoms in a laser field. At
present, the solution to the TDSE is mainly through the
numerical integration scheme, which can accurately describe
the dynamic evolution of the system. However, more com-
putational resources are needed, and it is difficult to extract
the needed physical information from the numerical results
[5–7]. Under this circumstance, classical calculation (CC) [8]
and strong-field approximation (SFA) [9] are developed to
solve such a process. The CC has the advantage of high
computational efficiency, and the physical mechanism during
the dynamic process can be well illustrated by analyzing the
trajectories of classical particles. However, the quantum coher-
ence and wave-packet dispersion are not considered; therefore,
accurate results cannot be obtained. The SFA can analytically
solve the time-dependent dipole matrix element, which can
be interpreted as the probability amplitude superposition of
three dynamic processes: the electronic wave-packet tunneling
into the continuous state, oscillating in the laser field, and
finally returning to the nuclear zone and interfering with the
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ground state. Therefore, a lot of information is contained in
the SFA scheme, but the contribution of excited states to HHG
are not taken into account in this scheme. On the premise
that the calculation is accurate, the time-dependent Bohmian
trajectories are adopted to describe the dynamic process of the
interaction between an intense laser and atoms and molecules
so as to clearly illustrate the mechanism of HHG [10–13]. Lai
et al. [11] calculated the spectrum of harmonic generation
according to one Bohmian trajectory, and the propagation
effects of HHG are considered. The calculated HHG spectra
are in qualitative agreement with the result from TDSE [13].

The dynamic process of electrons cannot be accurately
described through only one Bohmian trajectory. In this paper,
we select adequate Bohmian trajectories simulating the motion
of the electronic wave packet and the HHG process. It is
found that the dynamic evolution of the wave packet and the
HHG spectrum calculated by adequate Bohmian trajectories
are identical to those found by numerically solving the TDSE.
According to the information from the trajectories obtained by
calculation, the dynamic process of harmonic generation can
be well understood.

II. THEORETICAL METHODS

In order to use the Bohmian trajectories to simulate the
HHG process, we need to calculate the probability density
distribution of the electronic wave packet. In this paper, a one-
dimensional atom model is adopted because, for HHG, one-
dimensional and three-dimensional calculational results are
qualitatively identical in the linearly polarized incident laser
field [14–17]. Under the dipole approximation in the length
gauge, the TDSE which describes the interaction between an
intense laser and atoms is given by (atomic units are used
throughout, unless otherwise stated)

i
∂

∂t
ψ(x,t) =

[
− ∂2

2∂x2
+ V (x) + VL(x,t)

]
ψ(x,t), (1)

where V (x) is the soft Coulomb potential V (x) =
−q/

√
x2 + A we adopted, whose parameters are selected

as A = 0.367 and Q = 0.561, and the energies of ground
state and first excited state are E0 = −0.5 and E1 = −0.125,
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respectively. VL(x,t) = E(t)x is the interaction between the
electron and the laser electric field. The ground-state wave
function of the system is acquired by numerically solving
the Schrödinger equation, and the initial position of the
Bohmian trajectories is calculated by the distribution function
|ψ(x,0)|2 of the electronic probability density in the ground
state. Once the positions of these particles are determined, the
probability density of every trajectory is assumed to be the
same, i.e., 1/Ntra, where Ntra denotes the number of Bohmian
particles chosen. According to Bohmian mechanics [18,19],
the motion of Bohmian particles can be solved by the Bohm-
Newton equation d2r

dt2 = −∇(V + Q), where Q = − 1
2

∇2R
R

is
the quantum potential and R is the modulus of the wave
function. The velocity of a Bohmian particle is

vk(t) = Im

[
1

ψk(x,t)

∂

∂x
ψk(x,t)|x=xk (t)

]
(k = 1,2, . . . ,Ntra).

(2)

Integrating the equation, the position of the Bohmian parti-
cle at moment t is obtained: xk(t) = xk(t = 0) + ∫ t

0 vk(t ′)dt ′.
According to the position and velocity of the Bohmian
particle, its kinetic energy and acceleration can be obtained,
i.e., Ek(t) = 1

2vk(t)2 and ak(t) = dvk(t)/dt , respectively. In
addition, the force of Bohmian particles can also be obtained
through the potential function. Taking the statistical average
of Ntra particle trajectories as the time-dependent dipole of
a whole electron, the high-order-harmonic spectra can be
obtained by Fourier transformation of the dipole:

P (ω) =
∣∣∣∣∣

N∑
k=1

x̃(k)(ω)/Ntra

∣∣∣∣∣
2

=
∣∣∣∣∣

1

Ntra(tf − ti)

N∑
k=1

∫ tf

ti

x(k)(t)e−iωtdt

∣∣∣∣∣
2

, (3)

which can be expanded as

P (ω) =
N∑

k=1

∣∣∣∣ 1

(tf − ti)

∫ tf

ti

x(k)(t)

Ntra
e−iωtdt

∣∣∣∣
2

+
N∑

k=1

N∑
j=1,j �=k

Re

[
1

(tf − ti)

∫ tf

ti

x(k)(t)

Ntra
e−iωtdt

×
(

1

(tf − ti)

∫ tf

ti

x(j )(t)

Ntra
e−iωtdt

)∗]
, (4)

where the first term accounts for noncoherent superposition
and the second one refers to interference between Bohmian
particles.

III. RESULTS AND DISCUSSION

As for the dynamic process of an atom in an intense laser
field, it can be described either by solving the probability den-
sity of the time-dependent wave function or by Bohmian trajec-
tories. According to the information on Bohmian trajectories,
a reconstruction of the corresponding electronic probability
density can be realized. Figure 1(a) shows the time-dependent
evolution of the electronic probability density reconstructed
by N = 20 000 Bohmian particles. For comparison, we also

FIG. 1. (Color online) Time-dependent motion of a wave packet
reconstructed by Bohmian trajectories and obtained by numerically
solving the TDSE.

calculate the evolution of the time-dependent wave packet
by solving the TDSE, which is shown in Fig. 1(b). From
Fig. 1(b) we see that the results reconstructed by Bohmian
trajectories are in good agreement with those obtained by
solving the TDSE. This result demonstrates that the motion
of the electronic wave packet can be described by Bohmian
trajectories accurately. Here, the electric field of the laser
pulse is E(t) = E0 sin(ωt)sin2(ωt/τ ), maximum amplitude is
E0 = 0.1, pulse duration is τ = 4, and wavelength is 800 nm.

By using the Bohmian trajectories, the time-dependent
dipole of atoms in an intense laser pulse can be obtained.
Figure 2 shows the harmonic spectra simulated by Bohmian
trajectories and obtained by numerically solving the TDSE.
The dash-dotted blue, dotted green, and dashed red curves
correspond to the results from Bohmian particles, the number
of which are 500, 5000, and 50 000, respectively. From
Fig. 2, one can see that the HHG spectra from Bohmian
trajectories from 500 to 50 000 are gradually close to that
from numerically solving the TDSE, and when the number
of Bohmian trajectories increases to 50 000, its spectrum is
almost identical to that obtained by solving the TDSE. These
results show that when one utilizes the Bohmian trajectories to
simulate the HHG, accurate and convergent harmonic spectra
will not be obtained unless the number of Bohmian trajectories
is adequate. Here, the Bohmian trajectories are calculated
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FIG. 2. (Color online) Harmonic spectra obtained by calculating
Bohmian trajectories and numerically solving the TDSE.
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FIG. 3. (Color online) Time-dependent evolution of Bohmian
trajectories.

from the time-dependent wave function in our calculation. In
addition, in order to obtain an accurate result from Bohmian
trajectories, we need to choose a large number of trajectories
to present the same time-dependent density of trajectories as
the density of quantum probability. Thus, the computational
cost of the Bohmian trajectory calculation is higher than for
the TDSE calculation. However, additional information can
be found by using the information from Bohmian trajectories,
such as the equivalent definition of classical and quantum
chaos [20]. In this paper, we will interpret the physical progress
of high-order-harmonic generation by using information from
Bohmian trajectories.

The results obtained by numerically solving the TDSE can
be accurately reproduced by the time-dependent Bohmian tra-
jectories; more importantly, the physical mechanism can be in-
vestigated by analyzing the dynamic behavior of Bohmian tra-
jectories. Figure 3 presents the time-dependent evolution of the
Bohmian trajectories of the electron driven by a laser pulse. Ac-
cording to the motion of Bohmian particles, the trajectories of
particle motion can be divided into three kinds, and in order to
understand the dynamic behavior of each kind of particle, one
trajectory selected from each type is also shown in Fig. 3(b).

(1) The first kind of particle shows that the particles are
always located in the nuclear zone within the laser pulse
duration and do not move with the driving electric field, as
shown in Fig. 3(b), curve A (solid black curve). This kind of
particle denotes the behavior of a bound electron.

(2) The second kind of particle shows that the particles
are accelerated in the positive direction along the x axis,
moving away from nuclear zone gradually, and then return
to the nuclear zone and are bound again, which is shown in
Fig. 3(b), curve B (dashed red curve).

(3) The third kind of particle shows that the particles are
bound in the nuclear zone and then are accelerated in the
negative direction along the x axis away from the nuclear
zone, which is shown in Fig. 3(b), curve C (dash-dotted blue
curve).

In order to investigate the HHG mechanism from Bohmian
trajectories, we need to analyze their motions. In the following
we taking trajectory B; for example, its position, velocity, and
acceleration are calculated.

Figure 4 shows the force felt by Bohmian particle B, where
the solid black curve is the total force, the dashed red curve
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FIG. 4. (Color online) Time-dependent force evolution of
Bohmian particle B: the total force (solid black curve), total electric-
field force and Coulomb force (dashed red curve), and quantum force
(dotted green curve).

refers to the classical force, which includes the electric-field
force and the Coulomb force, and the dotted green curve
accounts for the quantum force. Figure 5 shows the evolution
of the spatial position and velocity of particle B. The dynamic
process of particle B can be understood by its position,
velocity, and force. One can observe from Fig. 5 that the
instantaneous amplitude of the electric field is relatively small
when t < t0; therefore, for the particle, the Coulomb force
almost balances the quantum force, it is located in the nuclear
zone, and its velocity is low. When t > t0, the classical force
(the total of Coulomb force and electric-field force) does not
balance the quantum force; as a result, the total force is not
zero, and its direction is along the positive x axis. Then under
the effect of this force, the particle moves from the nuclear
zone to the outer space and finally gets rid of the constraint
of the nucleus around t = t1. This process corresponds to the
so-called tunneling ionization; i.e., the electrons penetrate
the potential barrier constituted by the electric potential and
the Coulomb potential. However, when the quantum potential
is considered, the particle is not affected by the potential
barrier, and it will move away from the nuclear zone under the
collaborative effect of the electric-field force, the Coulomb
force, and the quantum force. Then quantum force tends to be
zero as the particle is far away from the nuclear zone; therefore
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FIG. 5. (Color online) Time-dependent evolution of spatial posi-
tion (solid black curve) and velocity (dashed red curve).
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FIG. 6. (Color online) Harmonic spectra of Bohmian particles A,
B, and C and that (dash-dotted green curve) obtained by numerically
solving the TDSE.

the particle is mainly driven by the electric-field force, and
when the electric field reverses, it will first decelerate and then
accelerated reversely. The particle returns to the nuclear zone
at about t = t2, and it is mainly driven by the periodically
changed quantum force; therefore the particle has periodic
vibration, the amplitude of which decreases gradually. We
know the periodic oscillation of the charged particle is
accompanied by electromagnetic radiation, and the frequency
of radiation is that of the oscillation of the particle; i.e., this
process is accompanied by a high-frequency photon emission,
whose frequency is 1.9 a.u. (about the 33rd harmonic).

Figure 6 shows the harmonic spectra calculated with the
time-dependent dipole of Bohmian particles A, B, and C. For
comparison, the HHG spectrum from numerically solving the
TDSE is also presented. For particle C, its harmonic spectrum
has no clear cutoff. For particle B, there is a strong harmonic
generation at the cutoff; however, the oscillating structure of
its harmonic is somewhat different from that obtained by nu-
merically solving TDSE. For particle A, its harmonic structure
is identical to that obtained by numerically solving the TDSE,
and this is in agreement with the numerical results of Lai et al.
[13]. One can notice that the spectrum of HHG cannot be accu-
rately described by that of a single trajectory; more Bohmian
particles need to be considered for an accurate description.

The harmonic generation can be regarded as the collective
effect of these Bohmian particles. In order to investigate the
coherence of these Bohmian particles, according to Eq. (5), the
contribution of the Bohmian particles to the harmonic should
be classified into coherent and noncoherent parts. In Fig. 7, the
results of the harmonic by numerically solving the TDSE and
the harmonic spectrum with Bohmian particles is identical
to that from numerically solving the TDSE. Particularly, it
can be found from Fig. 7 that the harmonic of the Bohmian
trajectories mainly comes from the interference between
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FIG. 7. (Color online) Harmonic spectra obtained with the aver-
age of the Bohmian particles’ dipole acceleration (dashed red curve),
the noncoherent spectrum of the Bohmian particles (dotted green
curve), the coherent emission spectrum of the Bohmian particles
(dash-dotted blue curve), and the HHG calculated from the TDSE
(solid black curve).

particles. Therefore, the process of harmonic generation is the
coherent superposition of all the Bohmian particles’ radiation.

IV. CONCLUSION

In conclusion, the HHG process of atoms in an intense laser
field is investigated by time-dependent Bohmian trajectories.
We found that the harmonic spectrum from selecting adequate
Bohmian trajectories agrees well with that from numerically
solving the TDSE. Through analyzing the dynamic behavior
of the Bohmian trajectories, the Bohmian particles describing
electrons have the chance to move away from the nuclear zone
under the effect of intense laser pulses, the behavior of which
is close to classical particles, finally recombining with the
parent ion, leading to the photon emission, and the coherence
of all Bohmian particles results in the high-order-harmonic
generation.

ACKNOWLEDGMENTS

This work was supported by the National Basic Re-
search Program of China (973 Program) 2013CB922200,
the National Natural Science Foundation of China under
Grants No. 11274141, No. 11034003, No. 10904006, and No.
11274001, and the Natural Science Foundation of Zhejiang
Province under Grant No. Y6110578. We acknowledge the
High Performance Computing Center of Jilin University for
supercomputer time. Y.-J.Y. would like to acknowledge the
warm hospitality of the Institute of Applied Physics and
Computational Mathematics during the period when this work
was performed.

[1] X. F. Li, A. L’ Huiller, M. Merray, and G. Mainfray, Phys. Rev.
A 39, 5751 (1989).

[2] Ch. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch,
M. Schnurer, C. Kan, M. Lenzner, P. Wobrauschek, and
F. Krausz, Science 278, 661 (1997).

[3] P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Auge, P. Balcou,
H. G. Muller, and P. Agostini, Science 292, 1689 (2001).

[4] M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider,
N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher
and F. Krausz, Nature (London) 414, 509 (2001).

033424-4

http://dx.doi.org/10.1103/PhysRevA.39.5751
http://dx.doi.org/10.1103/PhysRevA.39.5751
http://dx.doi.org/10.1126/science.278.5338.661
http://dx.doi.org/10.1126/science.1059413
http://dx.doi.org/10.1038/35107000


INVESTIGATION OF THE GENERATION OF HIGH-ORDER . . . PHYSICAL REVIEW A 86, 033424 (2012)

[5] J. L. Krause, K. J. Schafer, and K. C. Kulander, Phys. Rev. Lett.
68, 3535 (1992).

[6] M. Protopapas, C. H. Keitel, and P. L. Knight, Rep. Prog. Phys.
60, 389 (1997).

[7] K. Burnett, V. C. Reed, and P. L. Knight, J. Phys. B 26, 561
(1993).

[8] R. Uzdin and N. Moiseyev, Phys. Rev. A 81, 063405
(2010).

[9] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B.
Corkum, Phys. Rev. A 49, 2117 (1994).

[10] P. Botheron and B. Pons, Phys. Rev. A 82, 021404(R)
(2010).

[11] X. Y. Lai, Q. Y. Cai, and M. S. Zhan, New J. Phys. 11, 113035
(2009).

[12] N. Takemoto and A. Becker, J. Chem. Phys. 134, 074309
(2011).

[13] Q. Y. Cai, M. S. Zhan, and X. Y. Lai, Chin. Phys. B 19, 020302
(2010).

[14] J. G. Chen, S. L. Zeng, and Y. J. Yang, Phys. Rev. A 82, 043401
(2010).

[15] J. G. Chen, Y. J. Yang, S. L. Zeng, and H. Q. Liang, Phys. Rev.
A 83, 023401 (2011).

[16] J. G. Chen, Y. J. Yang, X. P. Yu, L. J. He, and Y. Y. Xu, Acta
Phys. Sin. 60, 053206 (2011).

[17] J. G. Chen, Y. J. Yang, and Y. Chen, Acta Phys. Sin. 60, 033202
(2011).

[18] R. E. Wyatt, Quantum Dynamics with Trajectories (Springer,
New York, 2005).

[19] P. Holland, The Quantum Theory of Motion (Cambridge
University Press, Cambridge, 1993), Chap. 7.

[20] F. H. M. Faisal and U. Schwengelbeck, Phys. Lett. A 207, 31
(1995).

033424-5

http://dx.doi.org/10.1103/PhysRevLett.68.3535
http://dx.doi.org/10.1103/PhysRevLett.68.3535
http://dx.doi.org/10.1088/0034-4885/60/4/001
http://dx.doi.org/10.1088/0034-4885/60/4/001
http://dx.doi.org/10.1088/0953-4075/26/4/003
http://dx.doi.org/10.1088/0953-4075/26/4/003
http://dx.doi.org/10.1103/PhysRevA.81.063405
http://dx.doi.org/10.1103/PhysRevA.81.063405
http://dx.doi.org/10.1103/PhysRevA.49.2117
http://dx.doi.org/10.1103/PhysRevA.82.021404
http://dx.doi.org/10.1103/PhysRevA.82.021404
http://dx.doi.org/10.1088/1367-2630/11/11/113035
http://dx.doi.org/10.1088/1367-2630/11/11/113035
http://dx.doi.org/10.1063/1.3553178
http://dx.doi.org/10.1063/1.3553178
http://dx.doi.org/10.1088/1674-1056/19/2/020302
http://dx.doi.org/10.1088/1674-1056/19/2/020302
http://dx.doi.org/10.1103/PhysRevA.82.043401
http://dx.doi.org/10.1103/PhysRevA.82.043401
http://dx.doi.org/10.1103/PhysRevA.83.023401
http://dx.doi.org/10.1103/PhysRevA.83.023401
http://dx.doi.org/10.1016/0375-9601(95)00645-J
http://dx.doi.org/10.1016/0375-9601(95)00645-J



