
PHYSICAL REVIEW A 86, 033416 (2012)

State-insensitive trapping of Rb atoms: Linearly versus circularly polarized light
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We study the cancellation of differential ac Stark shifts in the 5s and 5p states of the rubidium atom using
the linearly and circularly polarized lights by calculating their dynamic polarizabilities. Matrix elements were
calculated using a relativistic coupled-cluster method at the single and double excitations and at the important
valence triple excitation approximation including all possible nonlinear correlation terms. Some of the important
matrix elements were further optimized using the experimental results available for the lifetimes and static
polarizabilities of atomic states. “Magic wavelengths” are determined from the differential Stark shifts and
results for the linearly polarized light are compared with the previously available results. The possible scope
of facilitating state-insensitive optical trapping schemes using the magic wavelengths for circularly polarized
light is discussed. Using the optimized matrix elements, the lifetimes of the 4d and 6s states of this atom are
ameliorated.
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I. INTRODUCTION

The investigation of the properties of the rubidium (Rb)
atom is of immense interest for a number of applications
[1–11]. It is one of the most widely used atoms in quantum
computational schemes using Rydberg atoms, where the
hyperfine states of the ground state of the Rb atom are
defined as the qubits [4]. It is also used to study quantum
phase transitions of mixed species with degenerate quantum
gases [6]. There are several proposals to carry out precision
studies in this atom, such as constructing ultraprecise atomic
clocks [7–9], probing parity nonconservation effects [10],
finding its permanent electric dipole moment [11], etc. Also,
a number of measurements and calculations of lifetimes for
many low-lying states in Rb have been performed over the past
few decades [12–18]. It is found that there are inconsistencies
between the calculated and measured values of the lifetimes of
atomic states in this atom [18]. In this context, it is necessary
to carry out further theoretical studies of this atom.

Due to the simple single-core electron structure of this atom,
it is adequate to employ advanced many-body methods for the
precise calculation of its properties, which ultimately act as
benchmark tests for the experimental measurements [19–21].
In this paper, we determine the polarizabilities of the ground 5s

and excited 5p states and study the differential ac Stark shifts
between these two states. In this process, we also analyze
the reduced matrix elements and their accuracies, which are
further used to estimate precisely the lifetimes of few excited
states in this atom. The aim of our present study is to analyze
results of differential ac Stark shifts from which we can deduce
the magic wavelengths (see below for definition) that are of
great use in the state-insensitive trapping of Rb atoms.

The manipulation of cold and ultracold Rb atoms has been
widely done by using optical traps [22,23]. For a number of
applications (such as atomic clocks and quantum computing
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[24,25]), it is often desirable to optically trap the neutral atoms
without affecting the internal energy-level spacing for the
atoms. However, in an experimental setup, the interaction of
an atom with the externally applied oscillating electric field
of the trapping beam inevitably causes ac Stark shifts of the
atomic levels. For any two internal states of an atom, the Stark
shifts caused by the trap light are, in general, different, which
affects the fidelity of the experiments [26,27]. Katori et al. [28]
proposed the idea of tuning the trapping laser to a magic
wavelength, “λmagic,” at which the differential ac Stark shifts of
the transition are terminated. Using this approach, the magic
wavelength for the 5s2 1S0

0 –5s5p 3P 0
0 transition in 87Sr was

determined with a high precision to be 813.42735(40) nm [29].
McKeever et al. demonstrated the state-insensitive trapping
of Cs at λmagic ≈ 935 nm, while still maintaining a strong
coupling with the 6s1/2–6p3/2 transition [30]. Arora et al. [31]
calculated the magic wavelengths for the np–ns transitions
for other alkali-metal atoms (from Na to Cs) by calculating
dynamic polarizabilities using a relativistic coupled-cluster
(RCC) method. Theoretical values for these quantities were
calculated at wavelengths where the ac polarizabilities for two
states involved in the transition cancel. The data in Ref. [31]
provide a wide range of magic wavelengths for the alkali-metal
atoms trapped in linearly polarized light by evaluating electric
dipole (E1) matrix elements obtained by the linearized RCC
method. In this paper, we try to evaluate these matrix elements
considering all possible nonlinear terms in the RCC method. In
addition, we would like to optimize the matrix elements using
the precisely known experimental results of lifetimes and static
polarizabilities for different atomic states and reinvestigate the
above-reported magic wavelengths in the considered atom. It is
also reported in Ref. [31] that trapping Rb atoms in the linearly
polarized light offers only a few suitable magic wavelengths
for the state-insensitive scheme. This persuades us to look for
more plausible cases for constructing state-insensitive traps
of Rb atoms using the circularly polarized light. Using the
circularly polarized light may be advantageous owing to the
dominant role played by vector polarizabilities (which are
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absent in the linearly polarized light) in estimating the ac
Stark shifts. Moreover, these vector polarizabilities act as
“fictitious magnetic fields,” turning the ac Stark shifts to the
case analogous to the Zeeman shifts [32,33].

This paper is organized as follows. In Secs. II and III,
we briefly discuss the theory of dipole polarizability and the
method used for calculating them precisely. In Sec. IV, we first
discuss in detail the evaluation of the matrix elements used for
the precise estimation of polarizability and then present our
magic wavelengths first for the linearly polarized light and
then for the circularly polarized light. Unless stated otherwise,
we use the conventional system of atomic units (a.u.), in
which e, me, 4πε0, and the reduced Planck constant h̄ have
the numerical value 1 throughout this paper.

II. THEORY OF DIPOLE POLARIZABILITY

The vth energy level of an atom placed in a static electric
field E can be expressed using a time-independent perturbation
theory as [34]

Ev = E0
v +

∑
k �=v

|〈ψv |V | ψk〉|2
E0

v − E0
k

+ · · · , (1)

where E0
i s are the unperturbed energy levels in the absence

of electric field, k represent the intermediate states allowed by
the dipole selection rules, and V = −D · E is the interaction
Hamiltonian with D as the electric dipole operator. Since the
first-order correction to the energy levels is zero in the present
case, we can approximate the energy shift at the second-order
level for a weak field E and write it in terms of dipole moments
p as

�Ev = Ev − E0
v �

∑
k �=v

(p∗)vk(p)kv

δEvk

E2, (2)

where δEvk = (E0
v − E0

k ), and (p)vk = 〈ψv |D| ψk〉 is the E1
amplitude between the |ψv〉 and |ψk〉 states. A more traditional
notation of the above equation is given by

�Ev = − 1
2αvE2, (3)

where αv is known as the static polarizability of the vth state,
which is written as

αv = −2
∑
k �=v

(p∗)vk(p)kv

δEvk

. (4)

If the applied field is frequency dependent (ac field), then we
can still express the change in energy as �Ev = − 1

2αvE2, with
αv as a function of frequency given by

αv(ω) = −
∑
k �=v

(p∗)vk(p)kv

[
1

δEvk + ω
+ 1

δEvk − ω

]
. (5)

Since αv(ω) also depends on angular momentum j and mj

values of the given atomic state, it is customary to express
them in a different form with mj dependent factors and
mj independent factors. Therefore, αv(ω) is further rewritten

as [35]

αv(ω) = α0
v(ω) + A cos θk

mj

j
α1

v(ω)

+
{

3 cos2 θp − 1

2

}
3m2

j − j (j + 1)

j (2j − 1)
α2

v(ω), (6)

where A, θk , and θp define the degree of circular polarization,
the angle between the wave vector of the electric field and the
z axis, and the angle between the direction of polarization and
the z axis, respectively. Here, A = 0 for the linearly polarized
light, which implies that there is no vector component present
in this case; otherwise, A = 1 for the right-handed and A =
−1 for the left-handed circularly polarized light. In the absence
of magnetic field (or in weak magnetic field), we can choose
cos(θk) = cos(θp) = 1. Here, mj independent factors α0

v , α1
v ,

and α2
v are known as scalar, vector, and tensor polarizabilities,

respectively. In terms of the reduced matrix elements of the
dipole operator, they are given by Ref. [35]

α0
v(ω) = 1

3(2jv + 1)

∑
jk

|〈ψv ‖D ‖ψk〉|2

×
[

1

δEkv + ω
+ 1

δEkv − ω

]
, (7)

α1
v(ω) = −

√
6jv

(jv + 1)(2jv + 1)

∑
jk

{
jv 1 jv

1 jk 1

}
× (−1)jv+jk+1|〈ψv ‖D ‖ψk〉|2

×
[

1

δEkv + ω
− 1

δEkv − ω

]
, (8)

α2
v(ω) = −2

√
5jv(2jv − 1)

6(jv + 1)(2jv + 1)(2jv + 3)

×
∑
jk

{
jv 2 jv

1 jk 1

}
(−1)jv+jk+1|〈ψv ‖D ‖ψk〉|2

×
[

1

δEkv + ω
+ 1

δEkv − ω

]
. (9)

For ω = 0, the results will correspond to the static polariz-
abilities, which clearly suggests that α1

v is zero for the static
case.

III. METHOD OF CALCULATIONS

To calculate wave functions in an Rb atom, we first
obtain the Dirac-Fock (DF) wave function for the closed-shell
configuration [4p6], which is given by |�0〉. Then the DF wave
function for atomic states with one valence configuration is
defined as

|�v〉 = a†
v|�0〉, (10)

where a†
v represents the addition of the valence orbital, denoted

by v, with |�0〉. The exact atomic wave function (|�v〉) for
such a configuration is determined, accounting for correlation
effects in the RCC framework, by the expression [36]

|�v〉 = eT {1 + Sv}|�v〉, (11)

033416-2



STATE-INSENSITIVE TRAPPING OF Rb ATOMS: . . . PHYSICAL REVIEW A 86, 033416 (2012)

which in linear form is given by

|�v〉 ≈ {1 + T + Sv}|�v〉. (12)

Here, T and Sv operators account for the excitations of the
electrons from the core orbitals alone and from the valence
orbital together with core orbitals, respectively. In the present
paper, we consider Eq. (11) instead of Eq. (12) as was
taken before in our previous calculations [31]. We consider
here only coupled-cluster single and double excitations (the
CCSD method) and important triple excitations [known as the
CCSD(T) method from |�v〉].

The excitation amplitudes for the T operators are deter-
mined by solving

〈�∗
0|{Ĥ eT }|�0〉 = 0, (13)

where |�∗
0〉 represents singly and doubly excited configura-

tions from |�0〉. Similarly, the excitation amplitudes for the Sv

operators are determined by solving

〈�∗
v|{Ĥ eT }{1 + Sv}|�v〉 = 〈�∗

v|Sv|�v〉�Eatt
v , (14)

taking |�∗
v〉 as the singly and doubly excited configurations

from |�v〉. The above equation is solved simultaneously with
the calculation of attachment energy �Eatt

v for the valence
electron v using the expression

�Eatt
v = 〈�v|{Ĥ eT }{1 + Sv}|�v〉. (15)

The triples effect is incorporated through the calculation
of �Eatt

v by including valence triple excitation amplitudes
perturbatively (e.g., see [37] for a detailed discussion).

To determine polarizabilities, we divide various correlation
contributions to it into three parts as

αλ
v = αλ

v (c) + αλ
v (vc) + αλ

v (v), (16)

where λ = 0, 1, and 2 represent scalar, vector, and tensor
polarizabilities, respectively, and the notations c, vc, and v in
the parentheses correspond to core, core-valence, and valence
correlations, respectively. The core contributions to the vector
and tensor polarizabilities are zero.

We determine the valence correlation contributions to
the polarizability in the sum-over-states approach [38] by
evaluating their matrix elements by our CCSD(T) method and
using the experimental energies [39–41] for the important
intermediate states. Contributions from the higher excited
states and continuum are accounted for by the following
expression:

αλ
v = Cλ〈�v|D

∣∣�(1)
v

〉
, (17)

where Cλ are the corresponding angular factors for different
values of λ, and |�(1)

v 〉 is treated as the first-order wave
function to |�v〉 due to the dipole operator D [42] at the
third-order many-body perturbation [the MBPT(3) method]
level and given as αλ

v (tail). Also, contributions from the
core and core-valence correlations are estimated using this
procedure.

We calculate the reduced matrix elements of D between
states |�f 〉 and |�i〉, to be used in the sum-over-states
approach, from the following RCC expression:

〈�f ||D||�i〉 = 〈�f ||{1 + S
†
f }D{1 + Si}||�i〉√
NfNi

, (18)

where D = eT †
DeT and Nv = 〈�v|eT †

eT + S†
ve

T †
eT Sv|�v〉

involve two nontruncating series in the above expression. The
calculation procedures of these expressions are discussed in
detail elsewhere [43,44].

IV. RESULTS AND DISCUSSION

Our aim is to determine the magic wavelengths for the
linearly and circularly polarized electric fields for the 5s–
5p1/2,3/2 transitions in the Rb atom. To determine these
wavelengths precisely, we need accurate values of polar-
izabilities, which depend upon the excitation energies and
the E1 matrix elements between the intermediate states of
the corresponding states. In this respect, we first present
below the E1 matrix elements between different transitions and
discuss their accuracies. Then we present an overview of the
current status of the polarizabilities reported in the literature
and compare our results with them. These results are further
used to determine the magic wavelengths for both the linearly
and circularly polarized lights.

A. Matrix elements

The matrix elements of the Rb atom have been reported
several times previously [11,18,26,31,45–48]. We present
these results from our calculations in Table I using the DF
and CCSD(T) methods; the differences in the results imply the
amount of correlation effects involved to evaluate these matrix
elements. We also give uncertainties in the CCSD(T) results
mentioned in the parentheses in the same table. The contri-
butions to these uncertainties come from the neglected triple
excitations in the RCC method and from the incompleteness of
the used basis functions. The uncertainty contribution from the
former is estimated from the differences between the CCSD
and CCSD(T) results. Some of the important matrix elements
are determined more precisely below from the available
experimental lifetime results of atomic states involving only
one (strong) transition channel. However, in case there is more
than one (strong) decay channel associated with an atomic
state, it would be an intricate procedure to obtain the matrix
elements precisely, but it has been done by optimizing these
values to reproduce the experimental lifetimes in conjunction
with the experimental static polarizabilities of different atomic
states, as discussed below.

In order to evaluate the magnitude of the 5s → 5p1/2 E1
transition matrix element, we use the measured lifetime of the
5p1/2 state, which was reported as 27.75(8) ns in Ref. [50].
Using the fact that the 5p1/2 state decays only to the 5s state,
the line strength of the 5s → 5p1/2 transition can be obtained
by combining this measured lifetime with the experimental
wavelength (λ = 7949.8 Å) of the corresponding transition.
The value of the E1 matrix element of the 5s → 5p1/2

transition is obtained from this result as 4.227(6) a.u. Similarly,
it is possible to deduce the magnitude of the E1 matrix element
of the 5s → 5p3/2 transition by combining the measured
lifetime of the 5p3/2 state, reported as 26.25(8) ns [50],
with its experimental wavelength (7802.4 Å). However, the
5p3/2 state has nonzero transition probabilities to the 5s and
5p1/2 states via the allowed E1 and the forbidden M1 and E2
channels. We found from our calculations that the transition
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TABLE I. Absolute values of E1 matrix elements in the Rb atom in
ea0 using the Dirac-Fock (DF) and CCSD(T) methods. Uncertainties
in the CCSD(T) results are given in parentheses.

Transition DF CCSD(T)

5s1/2 → 5p1/2 4.819 4.26(3)
5s1/2 → 6p1/2 0.382 0.342(2)
5s1/2 → 7p1/2 0.142 0.118(1)
5s1/2 → 8p1/2 0.078 0.061(5)
5s1/2 → 9p1/2 0.052 0.046(3)
5s1/2 → 5p3/2 6.802 6.02(5)
5s1/2 → 6p3/2 0.605 0.553(3)
5s1/2 → 7p3/2 0.237 0.207(2)
5s1/2 → 8p3/2 0.135 0.114(2)
5s1/2 → 9p3/2 0.091 0.074(2)
5p1/2 → 6s1/2 4.256 4.144(3)
5p1/2 → 7s1/2 0.981 0.962(4)
5p1/2 → 8s1/2 0.514 0.507(3)
5p1/2 → 9s1/2 0.337 0.333(1)
5p1/2 → 10s1/2 0.239 0.235(1)
5p1/2 → 4d3/2 9.046 8.07(2)
5p1/2 → 5d3/2 0.244 1.184(3)
5p1/2 → 6d3/2 0.512 1.002(3)
5p1/2 → 7d3/2 0.447 0.75(2)
5p1/2 → 8d3/2 0.366 0.58(2)
5p1/2 → 9d3/2 0.304 0.45(1)
5p3/2 → 6s1/2 6.186 6.048(5)
5p3/2 → 7s1/2 1.392 1.363(4)
5p3/2 → 8s1/2 0.726 0.714(3)
5p3/2 → 9s1/2 0.476 0.468(2)
5p3/2 → 10s1/2 0.338 0.330(2)
5p3/2 → 4d3/2 4.082 3.65(2)
5p3/2 → 5d3/2 0.157 0.59(2)
5p3/2 → 6d3/2 0.255 0.48(2)
5p3/2 → 7d3/2 0.217 0.355(4)
5p3/2 → 8d3/2 0.176 0.272(3)
5p3/2 → 9d3/2 0.145 0.212(2)
5p3/2 → 4d5/2 12.24 10.96(4)
5p3/2 → 5d5/2 0.493 1.76(3)
5p3/2 → 6d5/2 0.778 1.42(3)
5p3/2 → 7d5/2 0.658 1.06(2)
5p3/2 → 8d5/2 0.530 0.81(1)
5p3/2 → 9d5/2 0.417 0.593(5)

probabilities through the forbidden channels are very small
and negligibly influence the lifetime of the 5p3/2 state; in fact,
it lies within the reported experimental error bar. Neglecting
these contributions, we extract the E1 matrix element of the
5s → 5p3/2 transition to be 5.977(9) a.u.

The estimated E1 matrix elements for the 5s–5p transitions
from the experimental data are in close agreement with our
calculated results within the predicted uncertainties. These
results are further used, along with other matrix elements
obtained from the CCSD(T) method, to calculate the polar-
izabilities of the 5s and 5p states. In Table II, we list the
polarizability of the 5s state as 318.3(6) a.u., along with
the detailed breakdown of the various contributions. The
most precise experimental result reported for this quantity
as 318.79(1.42) a.u. [51] is in excellent agreement with our
result. As shown in Table II, the dominant contributions to

TABLE II. Scalar polarizability of the 5s state in Rb (in a.u).
Uncertainties in the results are given in parentheses.

Contribution E1 amplitude Contribution to α0
v

α5s1/2 (v)
5s1/2 → 5p1/2 4.227(6) 103.92(1)
5s1/2 → 6p1/2 0.342(2) 0.361
5s1/2 → 7p1/2 0.118(1) 0.037
5s1/2 → 8p1/2 0.061(5) 0.009
5s1/2 → 9p1/2 0.046(3) 0.005

5s1/2 → 5p3/2 5.977(9) 203.92(4)
5s1/2 → 6p3/2 0.553(3) 0.940
5s1/2 → 7p3/2 0.207(2) 0.112
5s1/2 → 8p3/2 0.114(2) 0.032
5s1/2 → 9p3/2 0.074(2) 0.013

α5s1/2 (c) 9.1(5)
α5s1/2 (vc) −0.26(2)
α5s1/2 (tail) 0.11(1)

Total 318.3(6)

the 5s state polarizability are from the 5s–5p transitions
following a significant contribution from the core correlation.
We have calculated the core-correlation contribution using the
MBPT(3) method and the given uncertainty is estimated by
scaling the wave functions. Our result for the core contribution
is in very good agreement with the result obtained using the
random-phase approximation (RPA) [52]. The consistency in
the estimated 5s polarizability value obtained using the 5s →
5p1/2 and 5s → 5p3/2 matrix elements, which are obtained
from the experimental lifetimes of the 5p states, and the
experimental polarizability result suggests that both of these
matrix elements are very accurate. In order to test the accuracy
of our results further, we reproduce the dynamic polarizability
of the 5s state at λ = 1064 nm, whose experimental value is
reported as 769(61) a.u. [49]. As shown in Table III, our result
shows a large discrepancy with the experimental measurement.
Even after replacing the above E1 matrix elements with

TABLE III. Dynamic polarizability of the 5s state in Rb (in a.u.)
at λ = 1064 nm. Uncertainties in the results are given in parentheses.

Contribution E1 amplitude Contribution to α0
v

α5s1/2 (v)
5s1/2 → 5p1/2 4.227(6) 235.24(3)
5s1/2 → 6p1/2 0.342(2) 0.428
5s1/2 → 7p1/2 0.118(1) 0.041
5s1/2 → 8p1/2 0.061(5) 0.010
5s1/2 → 9p1/2 0.046(3) 0.006

5s1/2 → 5p3/2 5.977(9) 441.14(8)
5s1/2 → 6p3/2 0.553(3) 1.114
5s1/2 → 7p3/2 0.207(2) 0.127
5s1/2 → 8p3/2 0.114(2) 0.035
5s1/2 → 9p3/2 0.074(2) 0.014
α5s1/2 (c) 9.3(5)
α5s1/2 (vc) −0.26(2)
α5s1/2 (tail) 0.12(1)

Total 687.3(5)
Expt. [49] 769(61)
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the calculated CCSD(T) results, which are slightly larger in
magnitude, the polarizability result still does not agree within
the experimental error bar. Therefore, it would be instructive to
perform another measurement of this dynamic polarizability
to assert this result.

It seems from the above analysis that the calculated E1 ma-
trix elements using the CCSD(T) method are reasonably accu-
rate and can be further employed to obtain the polarizabilities
of the 5p states. However, we can calculate the polarizabilities
of the 5p states even more precisely if the uncertainties in
the dominant contributing E1 matrix elements of the 6s →
5p1/2,3/2, 4d3/2 → 5p1/2,3/2, and 4d5/2 → 5p3/2 transitions
are pushed down further. In order to do so, we evaluate the
lifetime of the 6s state using our calculated matrix elements as
4.144(3) and 6.048(5) in a.u. of the 6s − 5p1/2 and 6s − 5p3/2

transitions, respectively. We obtain its lifetime as 45.44(8)
ns against the experimental result of 45.57(17) ns [14] with
branching ratios 34% to the 5p1/2 state and 66% to the 5p3/2

state, neglecting the observed insignificant transition probabil-
ities to the 5s and 4d states. Since we are able to obtain a more
precise lifetime for the 6s state using our calculated matrix
elements instead of the measurement, we assume these calcu-
lated E1 matrix elements are more precise than what we would
have obtained from the known experimental lifetime result.

We would further like to use the above E1 matrix elements
to produce the experimental polarizability of the 5p1/2 state
from which we anticipate to estimate the E1 matrix element
of the 5p1/2 → 4d3/2 transition accurately. Since no direct
measurement of the polarizability of the 5p1/2 state is known
to us from the literature, we use the differential polarizability
of the 5s → 5p1/2 transition, which is reported as 492.20(7)
a.u. [53]. In fact, using the differential polarizability here is ad-
vantageous for the following three reasons: (i) we have already
determined the polarizability of the 5s state precisely, (ii) the
differential polarizability is not affected by the uncertainty of
the core-correlation contribution, and (iii) precise values of a
few important matrix elements contributing towards the 5p

state polarizability are known to some extent from the above
analysis. By adding the experimental differential polarizability
with the precisely known polarizability of the 5s state, we
consider the experimental 5p1/2 state polarizability as 810.6(6)
a.u.; indeed, this result will not meddle the above advantages.
We find from our calculations that the E1 matrix elements
of the 5p1/2–5s, 5p1/2–6s, and 5p1/2–4d3/2 transitions have
crucial contributions to the 5p1/2 state polarizability. By
substituting the precisely known values of the first two
elements to reproduce the experimental 5p1/2 polarizability
result, the E1 matrix element of the 5p1/2 → 4d3/2 transition
is set as 8.069(2) a.u. This agrees well with our calculated result
of 8.07(2) a.u. From this analysis, we estimate the theoretical
value of the 5p1/2 state polarizability to be 810.5(1.1) a.u.; con-
tributions from various parts are given explicitly in Table IV.

It can be noticed that the 4d5/2 state has only one allowed
decay channel to the 5p3/2 state. Therefore, if the lifetime of
the 4d5/2 state is known precisely, then the E1 matrix element
of the 5p3/2 → 4d5/2 transition can be estimated accurately
from this data. There are two experimental results for the
lifetime of the 4d5/2 state reported as 89.5 ns [54] and 94(6)
ns [12]. From the former result, which is the latest, we deduce
the E1 matrix element of the above transition to be about

TABLE IV. Scalar polarizability of the 5p1/2 state in Rb (in a.u.).
Uncertainties in the results are given in parentheses.

Contribution E1 amplitude Contribution to α0
v

α5p1/2 (v)
5s1/2 → 5p1/2 4.227(6) −103.92(1)
5p1/2 → 6s1/2 4.144(3) 166.32(1)
5p1/2 → 7s1/2 0.962(4) 4.93
5p1/2 → 8s1/2 0.507(3) 1.14
5p1/2 → 9s1/2 0.333(1) 0.452
5p1/2 → 10s1/2 0.235(1) 0.215

5p1/2 → 4d3/2 8.069(2) 702.89(3)
5p1/2 → 5d3/2 1.184(3) 7.816(1)
5p1/2 → 6d3/2 1.002(3) 4.560
5p1/2 → 7d3/2 0.75(2) 2.325(1)
5p1/2 → 8d3/2 0.58(2) 1.320(1)
5p1/2 → 9d3/2 0.45(1) 0.770

α5p1/2 (c) 9.1(5)
α5p1/2 (vc) ∼0.0
α5p1/2 (tail) 12.6(1.0)

Total 810.5(1.1)

10.89 a.u., which reasonably agrees with our CCSD(T) result
of 10.94(6) a.u. The matrix element obtained from the later
lifetime data gives a much lower absolute value with very
large uncertainty compared to our calculated result, and is
not of interest to us. Similarly, the lifetimes of the 4d3/2

state are reported as 83.4 ns [54] and 86(6) ns [12]. The
4d3/2 state has two strong allowed decay channels to the
5p1/2 and 5p3/2 states. By combining the above E1 matrix
element for the 5p1/2 → 4d3/2 transition and the lifetime of
the 4d3/2 state as 83.4 ns (the reason for not considering
the other value is the same as cited above), we predict the
E1 matrix element of the 5p3/2 → 4d3/2 transition to be
about 3.5 a.u. In order to find this matrix element more
precisely, we use the experimental results for the scalar and
tensor polarizabilities of the 5p3/2 state, which are reported as
857(10) and −163(3) in a.u. [55], respectively. Our calculation
shows that the major contributions to these polarizabilities
come from the matrix elements of the 5p3/2 → 5s1/2, 5p3/2 →
6s1/2, 5p3/2 → 4d3/2, and 5p3/2 → 4d5/2 transitions. From the
sensitivity in the given precision of the E1 matrix element
of the 5p3/2 → 4d3/2 transition to be able to reproduce the
scalar and tensor polarizabilities in their respective error bars,
we get a lower bound for this matrix element of 3.6 a.u.
Without any loss of quality, we retain our CCSD(T) result, i.e.,
3.65(2) a.u., as the most precise value for this matrix element.
Using these optimized results and the combined experimental
values of the scalar and tensor polarizabilities of the 5p3/2

state, we get the best value for the E1 matrix element of the
5p3/2 → 4d5/2 transition to be 10.89(1) a.u. After substituting
all the above matrix elements, we obtain scalar and tensor
static polarizabilities of the 5p3/2 state as 868.0(1.7) a.u. and
−165.9(5) a.u., respectively, which are given with individual
contributions in Table V.

Now we list below the optimized E1 matrix elements
(in a.u.) obtained from the above analysis apart from our
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TABLE V. Scalar and tensor polarizabilities of the 5p3/2 state in
Rb (in a.u.). Uncertainties in the results are given in parentheses.

Contribution E1 amplitude α0
v α2

v

α5p1/2 (v)
5p3/2 → 5s1/2 5.977(9) −101.96(2) 101.96(2)
5p3/2 → 6s1/2 6.048(5) 182.89(2) −182.89(2)
5p3/2 → 7s1/2 1.363(4) 5.036 −5.036
5p3/2 → 8s1/2 0.714(3) 1.149 −1.149
5p3/2 → 9s1/2 0.468(2) 0.453 −0.453
5p3/2 → 10s1/2 0.330(2) 0.215 −0.215

5p3/2 → 4d3/2 3.65(2) 74.52(1) 59.62(1)
5p3/2 → 5d3/2 0.59(2) 0.988 0.791
5p3/2 → 6d3/2 0.48(2) 0.531 0.425
5p3/2 → 7d3/2 0.355(4) 0.264 0.211
5p3/2 → 8d3/2 0.272(3) 0.147 0.118
5p3/2 → 9d3/2 0.212(2) 0.086 0.069

5p3/2 → 4d5/2 10.89(1) 663.4(5) −132.7(1)
5p3/2 → 5d5/2 1.76(3) 8.792(5) −1.758(1)
5p3/2 → 6d5/2 1.42(3) 4.647(3) −0.929(1)
5p3/2 → 7d5/2 1.06(2) 2.353(1) −0.471
5p3/2 → 8d5/2 0.81(1) 1.304 −0.261
5p3/2 → 9d5/2 0.593(5) 0.677 −0.135

α5p3/2 (c) 9.1(5) 0.0
α5p3/2 (vc) ∼0.0 ∼0.0
α5p3/2 (tail) 13.40(1.5) −3.15(50)

Total 868.0(1.7) −165.9(5)

calculated results as

〈5s||D||5p1/2〉 = 4.227(6),

〈5s||D||5p3/2〉 = 5.977(9),
(19)

〈5p1/2||D||4d3/2〉 = 8.069(2),

〈5p3/2||D||4d5/2〉 = 10.89(1).

B. Lifetimes of few excited states

Since we are now able to estimate some of the E1 matrix
elements more precisely than the previously known results, we
would like to use them further to estimate the lifetimes of the
first few excited states in the Rb atom accurately. The matrix
elements for the 〈5s||D||5p1/2〉 and 〈5s||D||5p3/2〉 transitions
were obtained from the lifetime measurements, so we still
consider the most accurately known lifetimes of the 5p1/2 and
5p3/2 states from the experiment as 27.75(8) and 26.25(8)
ns, respectively. We now determine the lifetimes of the 4d

and 6s states using the E1 matrix elements listed in Eq. (19)
and from our calculations, which are given in Table I. The
estimated lifetimes are mentioned in Table VI as recommended

TABLE VI. Comparison of lifetimes (in ns) of three excited states
in the Rb atom from various theoretical and experimental studies.

Level Recommended Other theory [18] Expt.

4d3/2 82.30(17) 83.0(8) 86(6) [12]
4d5/2 89.32(16) 89.4(9) 94(6) [12]
6s1/2 45.44(8) 45.4(1) 45.57(17) [14]

values and compared with the other available experimental and
theoretical results in the same table.

C. Status of the polarizability results

To affirm the broad interest of studying polarizabilities in
the Rb atom, we discuss briefly below the various experimental
and theoretical works in the evaluation of polarizabilities of
the 5s and 5p states reported so far in the Rb atom. There
were several measurements carried out on Stark shifts in the
Rb atom almost two decades ago [53,60–62] from which
the polarizabilities of the 5s ground state and few excited
states were estimated. Hunter and coworkers had observed the
dc Stark shifts of the D1 line in Rb using a pair of cavity
stabilized diode lasers locked to resonance signals [53,60,61].
In another work, Tanner and Wieman had used crossed-beam
laser spectroscopy with frequency stabilized laser diodes to
measure the differential Stark shift of the D2 line [62].
Marrus et al. had used an atomic beam method long ago to
measure the Stark shift from which both the scalar and tensor
polarizabilities of the 5p3/2 state were determined [63].

The extensive calculation of polarizabilities in the Rb atom
was carried out by Marinescu et al. using an l-dependent
model potential [46]. In this work, the infinite second-order
sums in the polarizability calculations were transformed into
integrals over the solutions of two coupled inhomogeneous
differential equations and the integrals were carried out using
the Numerov integration method [64]. In 2004, Zhu et al.
employed the RCC method to calculate the scalar and tensor
polarizabilities of the ground and the first p excited states in
alkali atoms [47]. The results obtained using the RCC method
were substantially improved over the earlier calculations based
on the nonrelativistic theories. Later, Arora et al. extended
these calculations to obtain frequency-dependent scalar and
tensor polarizabilities of the ground and first excited 5p states
in Rb [31,48,65] using the RCC method at the linearized single,
double, and partial triple excitations level (SDpT method).

As discussed earlier, we have optimized at least seven im-
portant E1 matrix elements, which are crucial in obtaining the
polarizabilities of the 5s and 5p states, and the other matrix el-
ements have been obtained using the CCSD(T) method, which
includes all of the nonlinear terms. Therefore, the predicted
polarizabilities of the 5s and 5p states obtained in this work
are expected to be accurate enough to employ them further in
the determination of the magic wavelengths in the Rb atom,
which is the prime motivation of the present work. In Table VII,
we compare our polarizability results with the other reported
values. Our results are more accurate than the earlier studied
results mainly due to the optimization of the matrix elements.

To the best of our knowledge, there are no experimental
and/or theoretical results on vector polarizabilities of the
5s and 5p states for any wavelengths available in the Rb
atom to compare with the present calculations. Accuracy in
these polarizabilities will determine the correct values of the
magic wavelengths for the circularly polarized light in this
atom. Since the E1 matrix elements required to determine the
vector polarizabilities are the same as those required for the
calculation of scalar and tensor polarizabilities, we expect a
similar precision in our used vector polarizability results, as
discussed below. We shall present the vector polarizabilities
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TABLE VII. Comparison of the static and ac polarizabilities (in a.u.) in the Rb atom for the 5s, 5p1/2, and 5p3/2 states with other experiments
and theory.

α0
5s α0

5p1/2
α0

5p3/2
α2

5p3/2

Present 318.3(6) 810.5(1.1) 868.0(1.7) −165.9(5)
Other 317.39 [56] 805 [31] 867 [31] −167 [31]
Other 318.6(6) [57] 807 [58] 870 [58] −171 [58]
Expt. 318.79(1.42) [51] 810.6(6) [53,59] 857(10) [55] −163(3) [55]

in the 5s and 5p states at a given wavelength (say close to a
particular λmagic value) so that if necessary our results can also
be further verified by any other study.

D. AC Stark shifts and magic wavelengths

Following Eq. (6), the ac Stark shift �Ev of an atomic-
energy level Ev due to the external applied ac electric field E ,
in the absence of any magnetic field, can be parametrized in
terms of α0, α1, and α2 as [32]

�Ev = −1

2
E2

{
α0

v(ω) + Amj

jv

α1
v (ω)

+
[

3m2
j − jv(jv + 1)

jv(2jv − 1)

]
α2

v(ω)

}
. (20)

In this formula, the frequency ω is assumed to be several
linewidths off-resonance. The differential ac Stark shift for a
transition is defined as the difference between the Stark shifts
of individual levels. For instance, the interested differential ac
Stark shifts in our case are for the 5pi–5s transitions (with
i = 1/2,3/2), which are given by

δ(�E)5pi−5s = �E5pi
− �E5s

= 1
2E2(α5s − α5pi

), (21)

where we have used the total polarizabilities of the respective
states. Since the external electric field E is arbitrary, we can
verify the frequencies or wavelengths where α5pi

= α5s for the
null differential ac Stark shifts.

In order to estimate the total polarizability for any particular
set of jv and mj values, we need to determine the scalar, vector,
and tensor polarizabilities. Magic wavelengths are calculated
for continuous values of frequencies (and can also be expressed
in terms of wavelength λ) by plotting the total polarizability
for different states against the λ values. The crossing between
the two polarizabilities at various values of wavelengths will
correspond to λmagic. Trapping of Rb atoms is convenient at
these wavelengths, as was stated in the beginning. As pointed
out in Ref. [31], the linearly polarized lattice scheme offers
only a few cases in which the magic wavelengths are suitable
from the experimental point of view. Therefore, we would like
to explore the idea of using the circularly polarized light for
which the magic wavelengths need to be determined separately
for each magnetic quantum number mj .

In the next two sections, we shall discuss the magic wave-
lengths for the 5p1/2,3/2–5s transitions for both the linearly and
circularly polarized lights. The reason for bringing up the issue
of magic wavelengths for the linearly polarized lights in these
transitions is that since we have obtained the most accurate
results for all of the static polarizabilities, it is expected that

we will get better results for the magic wavelengths using our
optimized set of E1 matrix elements. This will also help us to
make a comparison study between the results obtained from
the linearly and circularly polarized lights.

E. Case for the linearly polarized optical traps

Since we are interested in optical traps and the previous
study [31] reveals that the magic wavelengths for the 5s–5p

transitions at which the Rb atom can be trapped using the
linearly polarized lights lie between 600–1500 nm, we try to
find out the null differential polarizabilities in this region. In
Fig. 1, we plot the total polarizabilities due to the linearly
polarized lights for both the 5s and 5p1/2 states. As seen in the
figure, the 5s state dynamic polarizabilities are generally small
in this region, except for the wavelengths in close vicinity to the
5s–5p1/2 resonance (at 795 nm) and the 5s–5p3/2 resonance (at
780 nm). However, the 5p1/2 state has several resonances in the
considered wavelength range. It is generally expected that the
5p1/2 state polarizability will cross the 5s state polarizability
in between each pair of resonances. We found a total of six
magic wavelengths for the 5p1/2 → 5s transition in between
the five resonances.

However, the case for the 5p3/2 → 5s transition is different
owing to the presence of the nonzero tensor contribution of
the 5p3/2 state. As shown in Fig. 2, we get different magic
wavelengths for the 5p3/2 → 5s transition at the mj = ±1/2
and mj = ±3/2 sublevels of the 5p3/2 state. There are few
wavelengths in between resonances where α5p3/2 with the
mj = ±3/2 contribution is not the same as the α5s . This leads
to a reduction in the number of magic wavelengths for this
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FIG. 1. (Color online) Magic wavelengths identified by arrows
for the 5p1/2–5s transition in Rb using the linearly polarized light.
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FIG. 2. (Color online) Magic wavelengths identified by arrows
for the 5p3/2–5s transition in Rb using the linearly polarized light.

transition. For example, we did not find any λmagic between the
5p3/2–4d3/2,5/2 resonances (at 1529 nm) and the 5p3/2–6s reso-
nance (at 1367 nm) for mj = ±3/2 sublevels of the 5p3/2 state.

We have limited our search for the magic wavelengths
where the differential polarizabilities between the 5s and 5pj

states are less than 0.5%. Based on all of this data, we list
now λmagic (in vacuum) above 600 nm in Table VIII for the
5p1/2–5s and 5p3/2–5s transitions in the Rb atom and compare
them with the previously known results. The present results
are improved slightly due to the optimized E1 matrix elements
used here. The uncertainties in our magic wavelength results
are found as the maximum differences between the α5s ± δα5s

and α5p ± δα5p contributions with their respective magnetic

TABLE VIII. Magic wavelengths λmagic for the linearly polarized
light above 600 nm for the 5p1/2–5s and 5p3/2–5s transitions in
Rb and the corresponding values of polarizabilities at the magic
wavelengths. The wavelengths (in vacuum) are given in nm and the
polarizabilities are given in a.u. The given mj values correspond to
the 5p states.

|mj | λmagic λmagic [31] α(λmagic)

Transition: 5p1/2–5s

1/2 606.25(1) 606.2(1) −443.3
1/2 618.09(2) 617.7(7) −490
1/2 727.343(2) 727.35(1) −1876
1/2 761.6221(2) 761.5(1) −5270
1/2 787.633(2) 787.6(1) 5382
1/2 1350.801(9) 1350.9(5) 475.5
Transition: 5p3/2–5s

1/2 614.70(1) 614.7(1) −477

3/2 626.62(3) 626.2(9) −529
1/2 627.70(1) 627.3(5) −534

1/2 740.063(2) 740.07(1) −2493

1/2 775.868(1) 775.84(1) −20030
3/2 775.8228(2) 775.77(3) −19917

3/2 790.018(2) 789.98(2) 53
1/2 792.022(1) 792.00(1) −6973

1/2 1414.83(3) 1414.8(5) 455

quantum numbers, where the δα are the uncertainties in the
polarizabilities for their corresponding states.

The reason for not acquiring a sufficient number of magic
wavelengths for the 5p3/2–5s transition lies in the fact that the
extra contribution from the tensor polarizability to the total
5p3/2 polarizability is not compensated by the counterpart of
the 5s state. The idea of using the circularly polarized light
to obtain magic wavelengths for the 5p3/2–5s transition is
triggered by that fact that the extra contribution from the tensor
polarizability to the 5p3/2 state might be canceled by the vector
polarizability contributions, or the vector polarizabilities are
so large that they may play a dominant role in determining
the differential polarizabilities. This would be evident in the
following section.

F. Case for the circularly polarized optical traps

As mentioned previously, polarizabilities for the circularly
polarized light have an extra contribution from the vector
component of the tensor product between the dipole operators.
This extra factor is expected to provide better results for
state-insensitive trapping. First, we present the scalar, vector,
and tensor dynamic polarizabilities of the 5s, 5p1/2, and 5p3/2

states in Tables IX, X, and XI, respectively, at λ = 770 nm to
perceive their general behavior. The choice of this wavelength
is deliberate since it is close to one of the magic wavelengths
for the circularly polarized light (e.g., see Tables XII and XIII).
Hereafter we shall consider the left-handed circularly polarized
light for all practical purposes, as the results will have a similar
trend with the right-handed circularly polarized light due to
the linear dependency of the degree of polarizability A in
Eq. (20). Nevertheless, the left- or right-handed polarization
in the experimental setup is just a matter of choice.

For the sake of the completeness of our study, we also
search for magic wavelengths in the 5s–5p1/2 transition in
Rb atoms using the circularly polarized light, although a
fairly large number of magic wavelengths for this transition
is found using the linearly polarized light. For this purpose,

TABLE IX. Contributions to the 5s scalar (α0
v ) and vector (α1

v )
polarizabilities at λ = 770 nm in Rb. Uncertainties in the results are
given in parentheses.

Contribution α0
v α1

v

α5s1/2 (v)
5s1/2 → 5p1/2 −1576.1(2) 3254.4(4)
5s1/2 → 6p1/2 0.515 −0.565
5s1/2 → 7p1/2 0.047 0.044
5s1/2 → 8p1/2 0.011 0.010
5s1/2 → 9p1/2 0.006 0.005

5s1/2 → 5p3/2 −7615(1) −7716(1)
5s1/2 → 6p3/2 1.339 0.731
5s1/2 → 7p3/2 0.144 0.067
5s1/2 → 8p3/2 0.039 0.017
5s1/2 → 9p3/2 0.016 0.007

α5s1/2 (c) 9.2(5) 0.0
α5s1/2 (vc) −0.26(2) ∼0.0
αtail 0.14(1) 0.002(1)

Total −9180(1.1) −4462(1.1)
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TABLE X. Contributions to the 5p1/2 scalar (α0
v ) and vector (α1

v )
polarizabilities at λ = 770 nm in Rb. Uncertainties in the results are
given in parentheses.

Contribution α0
v α1

v

α5p1/2 (v)
5p1/2 → 5p1/2 1567.1(2) 3254.4(4)
5p1/2 → 6s1/2 −85.029(5) 292.38(2)
5p1/2 → 7s1/2 46.676(4) −88.283(7)
5p1/2 → 8s1/2 3.020 −4.764
5p1/2 → 9s1/2 0.954 −1.382
5p1/2 → 10s1/2 0.412 −0.570

5p1/2 → 4d3/2 −262.99(1) −504.00(2)
5p1/2 → 5d3/2 382.94(2) 379.02(2)
5p1/2 → 6d3/2 13.029(1) 10.504(1)
5p1/2 → 7d3/2 5.035(2) 3.694(2)
5p1/2 → 8d3/2 2.565(1) 1.787(1)
5p1/2 → 9d3/2 1.413 0.954

α5p1/2 (c) 9.2(5) 0.0
α5p1/2 (vc) ∼0.0 ∼0.0
αtail 17.6(20) 3.8(4)

Total 1711(2) 3347.7(4)

we plot the net dynamic polarizability results of the 5s and
5p1/2 states in Fig. 3 using the circularly polarized light
against different values of wavelength. The figure shows that
the total polarizability of the 5s state for any values of λ

is very small, except for the wavelengths close to the two

TABLE XI. Contributions to the 5p3/2 scalar (α0
v ), vector (α1

v ),
and tensor (α2

v ) polarizabilities at λ = 770 nm in Rb. Uncertainties in
the results are given in parentheses.

Contribution α0
v α1

v α2
v

α5p3/2 (v)
5p3/2 → 5s1/2 3807.5(7) 11575(2) −3807.5(7)
5p3/2 → 6s1/2 −85.017(9) 452.76(5) 85.017(9)
5p3/2 → 7s1/2 68.181(6) −196.85(2) −68.181(6)
5p3/2 → 8s1/2 3.194 −7.667(1) −3.194
5p3/2 → 9s1/2 0.984 −2.168 −0.984
5p3/2 → 10s1/2 0.422 −0.885 −0.422

5p3/2 → 4d3/2 −25.311(5) 60.32(1) −20.249(4)
5p3/2 → 5d3/2 −61.57(1) 74.47(1) −49.25(1)
5p3/2 → 6d3/2 1.607(1) −1.578(1) 1.286(1)
5p3/2 → 7d3/2 0.591 −0.527 0.473
5p3/2 → 8d3/2 0.293 −0.248 0.234
5p3/2 → 9d3/2 0.162 −0.133 0.130

5p3/2 → 4d5/2 −225.3(2) −805.4(6) 45.06(4)
5p3/2 → 5d5/2 −564.1(3) −1023.3(6) 112.8(1)
5p3/2 → 6d5/2 14.06(1) 20.70(1) −2.811(2)
5p3/2 → 7d5/2 5.264(2) 7.046(3) −1.053
5p3/2 → 8d5/2 2.597(1) 3.298(1) −0.519
5p3/2 → 9d5/2 1.2700 1.562 −0.254

α5p3/2 (c) 9.3(5) 0.0 0.0
α5p3/2 (vc) ∼0.0 ∼0.0 ∼0.0
αtail 19(2) 6.9(7) −4.7(9)

Total 2973(2) 10163(5) −3714(1)

TABLE XII. Magic wavelengths λmagic above 600 nm for the
5p1/2–5s transition in Rb and the corresponding values of total
polarizabilities at the magic wavelengths for the left-handed circularly
polarized laser beam. The wavelengths (in vacuum) are given in nm
and polarizabilities are given in a.u. The given mj values are for the
5p states.

mj λmagic α(λmagic) λmagic (avg)

Transition: 5p1/2–5s

1/2 600.83(14) −405
604(7)−1/2 607.98(1) −428

−1/2 616.77(2) −461 617
1/2 721.628(23) −1449

725(7)−1/2 728.843(1) −1633
−1/2 761.176(1) −3424 761
−1/2 1306.08(1) 504 1306

primary resonances. Due to the mj dependence of the vector
polarizability coefficient in Eq. (20), the crossing occurs at a
different wavelength for the different values of mj in between
two 5p1/2 resonances. As shown in Table XII, we get a set
of five magic wavelengths in between seven 5p1/2 resonances
lying in the wavelength range 600–1400 nm. Out of these
five sets of magic wavelengths, three sets occur only for
negative values of mj . Thus, the number of convenient magic
wavelengths for the above transition is less than the number
of magic wavelengths obtained for the linearly polarized light.

TABLE XIII. Magic wavelengths λmagic above 600 nm for the
5p3/2–5s transition in Rb and the corresponding values of total
polarizabilities at the magic wavelengths for the left-handed circularly
polarized laser beam. The wavelengths (in vacuum) are given in nm
and polarizabilities are given in a.u. The given mj values are for the
5p states.

mj λmagic α(λmagic) λmagic (avg)

Transition: 5p3/2–5s

1/2 613.25(3) −447

−1/2 615.51(1) −456 616(5)
−3/2 618.15(2) −466

3/2 630.142(1) −516
1/2 628.30(1) −508

628(5)−1/2 626.95(1) −502
−3/2 625.04(3) −494

3/2 746.737(15) −2328
1/2 738.794(32) −1964

742(8)−1/2 740.587(1) −2037
−3/2 742.262(1) −2109

3/2 775.836(5) −6231
1/2 775.834(7) −6230

775.8(2)−1/2 775.789(3) −6215
−3/2 775.693(2) −6183
1/2 783.883(13) −10925
−1/2 787.547(4) −16431 786(4)
−3/2 776.497(4) −16318
1/2 1454.4(9) 453
−1/2 1387.1(1) 473 1382(149)
−3/2 1305.9(1) 504
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FIG. 3. (Color online) Magic wavelengths identified by arrows
for the 5p1/2–5s transition in Rb using the left-handed circularly
polarized light.

This advocates for the use of linearly polarized light in this
transition, although the choice of the circularly polarized light
is not bad at all. The mj dependence of traps and the difficulties
in building a viable experimental setup in the case of circularly
polarized light could be the other major concern.

In this work, we also propose the use of the “switching
trapping scheme” (described below), which may solve the
problem in cases where state-insensitive trapping is only
supportive for the negative mj sublevels of 5p states. We
observed that the same magic wavelength will support state-
insensitive trapping for negative mj sublevels if we switch the
sign of A and mj of the 5s state. In other words, the change of
sign of A and mj sublevels of the 5s state will lead to the same
result for the positive values of mj sublevels of 5p states.

Here we give more emphasis on finding more magic
wavelengths for the 5s–5p3/2 transition, which can be used
in the state-insensitive trapping scheme for the Rb atom.
In Table XIII, we list a number of λmagic for the 5s–5p3/2

transition in the far-optical and near-infrared wavelengths,
along with the uncertainties in the λmagic and the polarizabilities
at the λmagic values. We also list the λmagic(avg) values in
the table, which are the average of the magic wavelengths at
different mj sublevels. The error in the λmagic(avg) is calculated
as the maximum difference between the magic wavelengths
from different mj sublevels. For this transition, we get a set
of six magic wavelengths in between seven 5p3/2 resonances
lying in the wavelength range 600–1400 nm (i.e., 5p3/2–4dj

resonance at 1529 nm, 5p3/2–6s resonance at 1367 nm,
5p3/2–5s resonance at 780 nm, 5p3/2–5dj resonance at 776
nm, 5p3/2–7s resonance at 741 nm, 5p3/2–6dj resonance at
630 nm, and 5p3/2–8s resonance at 616 nm). Five out of six
magic wavelengths support a blue-detuned trap (predicted by
the negative values of dynamic polarizability). Out of these
five magic wavelengths, the magic wavelengths at 628 and
742 nm are recommended for blue-detuned traps. The magic
wavelength at 742 nm supports a stronger trap [as shown
by a larger value of the polarizability at this wavelength in
Fig. (4)]. The magic wavelength at 775.8 nm is very close to
the resonance and might not be useful for practical purposes.
The magic wavelength at 1382 nm supports a red-detuned
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FIG. 4. (Color online) Magic wavelengths identified by arrows
for the 5p3/2–5s transition in Rb using the left-handed circularly
polarized light.

optical trap. It can be observed from Table XIII that the
mj = 3/2 sublevel does not support state-insensitive trapping
at this wavelength. However, the use of a switching trapping
scheme, as described in the previous paragraph, will allow
trapping this sublevel too. The magic wavelength at 1382 nm
is recommended owing to the fact that it is not close to any
atomic resonance and supports a red-detuned trap, which was
not found in the linearly polarized trapping scheme.

V. SUMMARY

In conclusion, we have employed the relativistic coupled-
cluster method to the single and double excitations and the
triples excitation approximation to determine the electric
dipole matrix elements in rubidium atom. Some of the
important matrix elements were further optimized using
the experimental lifetimes of few excited states, and static
polarizabilities of the ground and 5p1/2,3/2 excited states.
These optimized matrix elements were then used to improve
the precision of the available lifetime results for some of
the low-lying excited states in the considered atom. We
also observed disagreement between our calculated dynamic
polarizability with a measurement at the wavelength 1064 nm
using the above optimized matrix elements.

We have compared the static and dynamic polarizability
results from various works and reported the improved values
of the magic wavelengths for the 5s → 5p1/2 transition using
the linearly polarized light. Issues related to state-insensitive
trapping of rubidium atoms for the 5s → 5p3/2 transition with
linearly polarized light are discussed and use of the circularly
polarized light is emphasized. Finally, we evaluate six sets
of magic wavelengths for the 5s → 5p3/2 transition, which
can be used for the above purpose, out of which we have
recommended two magic wavelengths at 628 and 742 nm
for the blue-detuned optical traps and 1382 nm for the red-
detuned optical traps. We also proposed the use of a switching
trapping scheme for the magic wavelengths at which the state-
insensitive trapping is supported only for either positive or
negative mj sublevels of 5p states.
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