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Level crossing models for two-state quantum systems are applicable to a wide variety of physical problems. We
address the special case of level glancing, i.e., when energy levels reach a degeneracy at a specific point of time,
but never actually cross. The simplest model with such behavior is the parabolic model, and its generalizations,
which we call superparabolic models. We discuss their basic characteristics, complementing the previous work
on the related nonlinear crossing models [Vitanov and Suominen, Phys. Rev. A 59, 4580 (1999)].
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I. INTRODUCTION

The level crossing models provide an important tool for
the description of nonadiabatic transitions. These transitions
occur when the energy levels of coupled quantum states are
brought close to each other by driving them with external fields.
The most prominent example of these models, the Landau-
Zener (LZ) model, was introduced already in 1932 [1–3]
in connection with atomic collisions (and by Majorana for
atoms in time-varying magnetic fields [4]), but time-dependent
level crossing problems have been studied over the years in
connection with a wide variety of phenomena in physics and
chemistry, for example, with laser-atom interactions [5–7],
laser-induced molecular dynamics [8], slow [9–11] and cold
[12] atomic collisions, molecular collisions [13], and neutrino
oscillations [14,15] and in Bose-Einstein condensation [16],
including evaporative cooling of atoms [17], outcouplers for
atom lasers [18–21], and the association of cold atoms into
molecules [22,23]. In recent years they have raised a lot of
interest especially in nanophysics and quantum information
processing as a way to coherently control qubits [24], and
demonstrations of this have been done, for example, with
solid-state artificial atoms [25,26]. Lastly, Landau-Zener type
models have played an important role as a tool to understand
the Kibble-Zurek theory of topological defect production and
the dynamics of the quantum phase transitions [27–30].

First we define some terminology for a quantum system
with two coupled states and explicit time dependence in the
Hamiltonian. The actual level crossing happens in the diabatic
basis which consists of the bare states, i.e., system eigenstates
when no coupling is present. The energy difference between
the diabatic states is termed as detuning, which becomes zero
at the degeneracy point. However, such crossing appears only
as an avoided crossing in the adiabatic basis (the basis of the
instantaneous eigenstates of the time-dependent Hamiltonian)
due to the coupling between the diabatic states. If the levels
never reach degeneracy in the diabatic basis but get close doing
so at some instant of time, transitions can happen by tunneling.
In this paper we concentrate on a third kind of situation, which
occurs as a limiting case between a proper crossing and a
tunneling case, namely, that the diabatic levels merely touch

*jaakko.lehto@utu.fi
†kalle-antti.suominen@utu.fi

each other momentarily but do not actually cross. We call this
a level glancing.

In the original Landau-Zener model the diabatic energy
levels change linearly in time and the diabatic coupling is
constant. Although this is a very crude assumption, it has been
applied very successfully over the years. The reason for this is
that the nonadiabatic transition is located in the vicinity of the
crossing point and one can usually linearize the diabatic levels
in its neighborhood while the coupling does not vary much
during this interval. In the recent years, however, there has
been a growing interest to study more general dynamics than
the one given by the single-crossing LZ case, for example, in
different interferometric schemes [31,32]. One should note that
in the original atomic collisions problem with semiclassical
trajectories, and which motivated Landau [1], Zener [2], and
Stückelberg [3] in 1932, the level crossing was traversed
twice, and the phase difference accumulated between crossings
gives oscillations to the transition probabilities named after
Stückelberg, and they have been discussed and observed well
before the recent interest in nanosystems; see, e.g., [33]. In this
paper we follow the practice of referring to the single crossing
case as the LZ model, and the “double-crossing” model with
phase-related oscillations in transition probabilities as the LZS
model. In collision physics the limit where the two crossing
points in the LZS model approach each other relates to the
case where the classical turning point overlaps with the region
of degeneracy, and is accordingly considered as a breakdown
of the LZS description. However, that limit is also an example
of a level-glancing situation. Sadly, for historical reasons, the
already more or less standard naming convention does not
acknowledge Majorana’s contribution [4].

Another example of more general models are those with
cubiclike detuning, i.e., the detuning is proportional to an odd
power of time. Such models have been analysed previously
in Ref. [34], and they have recently raised some interest
in the study of quantum phase transitions and adiabatic
quantum computation [28]. In such cases one typically has
to optimize between the computational time and the density of
defects produced when crossing the critical point, so dynamics
different from the one given by the LZ model is needed, since in
the adiabatic limit the transition time for the original LZ model
increases exponentially with the coupling strength [35]. The
cubiclike models deviate both quantitatively and qualitatively
from the LZ model and were therefore dubbed essentially
nonlinear crossing models in Ref. [34].
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In this paper we consider the level-glancing models that are
reminiscent of the LZ and cubiclike models, having nonlinear
paraboliclike time-dependent detunings and study the effect of
these different time dependencies on the transition probability.
One motivation behind this current work is the previously
studied time-dependent parabolic model [36–38]. It can be
used to describe situations outside the scope of the usual LZ
model, and it encompasses within a single model the cases
of tunneling, double crossings, and level-glancing dynamics.
Such parabolic time dependence of the diabatic energies
has been recently applied, e.g., in studies of laser-induced
molecular dynamics [39,40]. The parabolic model has a
peculiar property: in the level-glancing case the maximum
probability of a nonadiabatic transition is only a little bit
over one-half [36]. Unlike in the LZ and cubiclike models,
it does not reach unity in the adiabatic limit (actually, it
goes to zero for the rather obvious reasons discussed later).
Another important aspect is that the transition probabilities
show oscillatory behavior for the level-glancing situation as
a function of relevant parameters, which is expected for any
model with double crossings, but which are absent for the LZ
model, for instance.

We examine how the energy level dynamics affect the above
properties by considering a set of level-glancing models with
superparabolic time dependence, i.e., the detuning depends
on some even power of time. The oscillatory character of the
parameter dependence of the final transition probability can be
understood on the basis of the structure of the complex zeros of
the adiabatic eigenenergies as explained by the Dykhne-Davis-
Pechukas (DDP) theory [41–43]. The results of the DDP theory
are asymptotically exact in the adiabatic limit and although
the structure of the zero points are rather similar in both the
cubiclike and superparabolic models, the diabatic limits of
these models are completely different as mentioned before.

The outline of the paper is as follows. In Sec. II the
basic equations and definitions are given. We also discuss
the time evolution of the transition probabilities as well as
complementary analytical approximation methods for the final
transition probabilities, namely, the above-mentioned Dykhne-
Davis-Pechukas theory and various perturbation methods.
In Sec. III we present and analyze the results that were
obtained by numerical calculations and compare these to the
approximative expressions. Finally, the discussion in Sec. IV
ends the presentation.

II. FORMALISM

A. Basic equations

We study the time evolution given by the Schrödinger
equation (h̄ = 1)

ı̇
d

dt
ψ(t) = H (t)ψ(t), (1)

where H (t) is the general Hamiltonian of the two-level system
with real-valued detuning �(t) and coupling �(t), given
explicitly by

H (t) =
(

�(t) �(t)
�(t) −�(t)

)
, (2)

and ψ(t) = [c1(t),c2(t)]T , where c1(t) and c2(t) are the
probability amplitudes of the diabatic basis states ψ1 and ψ2,
respectively. As already mentioned, the level crossing in the
diabatic basis is converted to an avoided one in the adiabatic
basis, assuming that the coupling �(t) does not vanish at the
crossing. The adiabatic basis is formed by the instantaneous
eigenstates χ1(t) and χ2(t). The eigenvalues ±E(t) of the
Hamiltonian in Eq. (2) form now the adiabatic levels, with

E(t) =
√

�(t)2 + �2(t), (3)

while the nonadiabatic coupling between the adiabatic states
is

γ (t) ≡ 〈χ1(t) | χ̇2(t)〉 = −〈χ2(t) | χ̇1(t)〉

= ±�(t)�̇(t) − �(t)�̇(t)

2[�(t)2 + �(t)2]
, (4)

where the overhead dot stands for time derivative and one can
fix the sign by fixing the relative sign of the basis vectors.

B. Models

We consider models where the coupling �(t) is constant
and the detuning �(t) is directly proportional to some even
power of time,

�(t) = const. ≡ �0, �(t) = βN+1tN , (5)

where β and �0 are real numbers and are both chosen to be
positive and N = 2,4,6, . . . is an even integer number. Now,
instead of a crossing, the diabatic levels only touch each other
at the point t = 0 so we have a level glancing. An example
of the energy level structures and couplings is depicted in
Fig. 1. These are fairly similar to other values of N as well. As
the N increases, the parabolic-shaped energy levels transform
to more rectangular ones and the two peaks of the adiabatic
coupling get sharper. The corresponding physical picture is
of course that we drive the system fast to the resonance by
changing the frequency of the constant-amplitude driving field,
keep it there some time, and then the system is brought out of
the resonance in a symmetrical fashion.

The case with N = 2 is called the parabolic model, and
it has been introduced in the context of atomic collisions
[9,10,44] and later used to study especially coherence effects
related to multiple crossings and in situations where the LZ
linearization fails [36–38]. Usually the diabatic level energies
in the parabolic model are given by at2 − b so that the
level-glancing model (5) is actually only a special case of
this with b = 0. The parabolic level-glancing model is able
to give dynamics quite different from the LZ model and
is experimentally feasible, but one can not obtain with any
parameters a higher probability of nonadiabatic transition than
just over one-half. We refer to the models with N = 4,6,8, . . .

as superparabolic and show that with these models the situation
is improved. The models excluded from here where N is an
odd integer number have been previously studied in Ref. [34].
Note also that the case with N = 1 is the exactly solvable LZ
model. No exact solutions in a sufficiently simple or closed
form seem to exist for the parabolic or superparabolic models,
nor for any model for which the dynamics of the energy
levels are even approximately given by Eq. (5) near t = 0.
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FIG. 1. Schematics of the time dependence of the energy levels
and couplings for the superparabolic model with N = 4. The diabatic
levels and the corresponding coupling are drawn with solid lines while
adiabatic ones are drawn with dashed lines.

This is in contrast to, e.g., the Demkov-Kunike models with
�(t) ∝ tanh(βt); they are exactly solvable and reduce to the
LZ model with certain parameter limits [7,45]. The models can
be solved exactly, though, using the Zhu-Nakamura method
based on Stokes parameters [11,46,47], but the results are
quite complicated, involving series solutions that eventually
have to be evaluated using approximations and numerics (see,
e.g., the discussion in Ref. [48]). Our motivation is to find
reasonably accurate solutions, which have sufficiently simple
expressions, and to examine in detail the DDP approximation.

We take the system to be initially in state 2 so that the
initial conditions are c2(−∞) = 1 and c1(−∞) = 0, and we
are interested in the asymptotic transition probability P . In
the diabatic basis this is given by P = |c1(∞)|2. However, as
the diabatic and adiabatic bases differ only by a phase factor
as t → ±∞ and, unlike in the odd-N cases, the basis states
do not swap their labels, this is the same as the probability
P of a nonadiabatic transition. It should be also noted that
now both the adiabatic approximation and diabatic or sudden
approximation correspond to P ≈ 0.

C. Weak coupling limit

Let us now explicitly consider the final transition probabil-
ity for the superparabolic models. To this end, it is useful to first
scale the time as τ = βt , leaving all the parameter dependence
of the model Hamiltonian given in the diabatic representation
by Eq. (5) on the off-diagonal elements. We further define this
new diabatic coupling as

α = �0/β (6)

so that the limit α → ∞ is now the adiabatic limit and α → 0
is the diabatic limit.

By imposing the initial conditions as above and taking α

to be small, the final transition probability can be obtained by
using standard perturbative methods [13] as

Ppert = α2

(
2

N + 1

)2N/(N+1)


2

(
1

N + 1

)

× cos2

(
π

2(N + 1)

)
, (7)

which in the case of N = 2 reduces to Ppert =
α2
2(1/3)/121/3. To expand the range of validity of the per-
turbative approximation and to take the oscillatory character
of the final transition probability into account, one can also
consider the Magnus approximation [49,50] which can be
obtained directly from Eq. (7) with the formula

PMagnus = sin2(
√

PBorn), (8)

which, of course, is always less than or equal to unity. These
approximations, along with the DDP approximation which is
derived in the next section, are compared to numerical results.

D. Dykhne-Davis-Pechukas formula

The DDP formula is given by

P = e−2 Im D(tc), (9)

where

D(t) = 2
∫ t

0
E(s)ds, (10)

and tc is defined by the equation

E(tc) = 0. (11)

Equation (9) gives the probability of nonadiabatic transitions
that is asymptotically exact in the adiabatic limit. This was
proven by Davis and Pechukas [42], who followed the original
idea of Dykhne [41]. The main assumptions behind this
formula are that E(t) is nonvanishing for real t (including
t = ±∞), that tc is well separated from other zero points or
possible singularities, and that the Hamiltonian is analytic and
single valued at least in a region of complex t plane bounded
by the real axis and the Stokes lines nearest to the real axis.
The Stokes lines are defined as the level lines of D(t) with
Im [D(t)] = Im [D(tc)]. Assuming that the zero points of E(t)2

are simple, it is easy to see by local analysis that there are
three lines emanating from tc with equal angles to each other
as shown in Fig. 2. The zero points come in conjugate pairs,
but we can restrict our considerations to the upper half plane
where Im(t) > 0.

The DDP formula can generally be expected to a give a
good approximation for P only near the adiabatic limit but,
for example, for the LZ model it gives the exact result, so it is
correct for all the parameters. In the LZ case the only zero point
on the upper half of the complex plane lies on the imaginary
axis, and Eq. (9) gives

P = e−πα2
. (12)

In the case that there exists more than one complex zero point,
as is the case for the superparabolic models defined by Eq. (5),
the DDP Formula (9) can be directly generalized to include the
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FIG. 2. The complex zero points of the quasienergies are shown
as black dots and the structure for the Stokes lines as solid lines for the
parabolic model (N = 2) and the superparabolic model with N = 4.
We have chosen α = 1 so that the zero points lie on a unit circle.
The corresponding figures for higher values of N are similar, and in
general there are three Stokes lines emanating from each zero point,
and the points with equal imaginary parts are linked by a Stokes line.

contributions of all the complex zeros relevant to the problem,
as suggested in Refs. [42,50,51], so that

P =
∣∣∣∣∣

N∑
k=1


ke
iD(tkc )

∣∣∣∣∣
2

, (13)

where


k = 4i lim
t→tkc

(
t − t kc

)
γ (t), (14)

and γ (t) is the nonadiabatic coupling defined in Eq. (4). From
this formula it can be seen that the existence of multiple zero
points lead to oscillations in the final state populations as the
parameters are varied.

The obvious problem in this case is to decide which of the
points should be taken into account. As was shown rigorously
by Joye and coworkers in Refs. [52,53], this question is related
to the global structure of the set of Stokes lines, and the correct
way is to include only the points connected by the Stokes line
nearest to the real axis. However, they used an assumption that
a limiting Hamiltonian exists as t → ±∞ which is not valid for
many interesting models, including the present superparabolic
models. Instead, it may be beneficial to include all the zero
points in the Im(t) > 0 plane in Eq. (13) as studied in Refs. [34,
50], and this is also the possibility we consider here. This
viewpoint is supported by the fact that for the Demkov-Kunike
models the sum over an infinite set of zero points actually
produces the known exact result for all parameters [50].

1. Application to superparabolic models

The zero points of the eigenvalues of the superparabolic
Hamiltonian are

τ k
c = α1/Neiπ(2k−1)/2N, k = 1,2, . . . ,N, (15)

so the zero points lie on a circle of radius α1/N . An example
of the zero points and the structure of the Stokes lines is given
in the Fig. 2. We get from Eq. (10)

D
(
τ k
c

) = ηeiπ(2k−1)/2N, (16)

where

η = 2νNα(N+1)/N (17)

and

νN =
∫ 1

0

√
1 − y2Ndy = 1

2N
B

(
1

2N
,
3

2

)
, (18)

where B(x,y) is the β function [54]. The function νN tends
to unity as N increases. The factors in Eq. (14) are given by

k = (−1)k , and the points τ k

c can be grouped into pairs with
the same imaginary part and opposite real part, so that the
generalized DDP formula for the superparabolic models can
be written in the form

PDDP = 4

∣∣∣∣�N/2
k=1 (−1)ke−η sin[ π

2N
(2k−1)]

× sin

[
η cos

π

2N
(2k − 1)

]∣∣∣∣
2

. (19)

In many ways this is similar as the corresponding formula for
the model in Eq. (5) with odd N obtained in Ref. [34],

P odd
DDP = 4

∣∣∣∣�(N−1)/2
k=1 (−1)ke−η sin[ π

2N
(2k−1)]

× cos

[
η cos

π

2N
(2k − 1)

]
+ (−1)(N+1)/2 e−η

∣∣∣∣
2

,

(20)

except that with even N the purely imaginary zero point is
missing, which gives the last term in Eq. (20). Such a purely
imaginary zero point is present in the LZ model as the only
zero point, but in Eq. (20) the largest contribution in the large-α
limit comes in fact from the first term of the sum and the role
of the LZ-like term is suppressed. Thus the values for P show
oscillations as a function of α also for odd values of N , as long
as N > 1. This is a simple mathematical explanation why
the transition probabilities show oscillations that one would
expect mainly for models that have interferometric character,
i.e., two or more actual crossing or glancing points in the
diabatic basis. There is no obvious physical reason for such
behavior, although for even values of N one can understand the
level-glancing situation as a limiting case for the more general
superparabolic model with double crossings [36,50].

In the case of the parabolic level-glancing model the
summation in Eq. (19) contains only one term and the DDP
formula simplifies to

P N=2
DDP = 4e−2δα3/2

sin2(δα3/2), (21)

with δ =
√

π
(1/4)
3
√

2
(3/4)
.
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III. COMPARISON OF METHODS

We have applied the perturbative methods, the DDP
methods, and numerical evaluation to the superparabolic
level-glancing models. The asymptotic probabilities PDDP

and PMagnus for the parabolic and superparabolic models are
shown in Figs. 3 and 4 along with the results obtained from
numerical calculations as the coupling α is varied from 0 to 6.
They are oscillating functions with respect to α in contrast
to the monotonous relationship between the probability of
transition in the LZ model and its adiabatic parameter. One
can see clearly from the logarithmic plot of the Fig. 3 that the
oscillations are present also for the case N = 2. In Fig. 4 we
show the same curves but with a linear scale for the probability
and also demonstrate the divergence of the weak coupling
approximation Ppert in this figure. But before making the full
comparison, let us discuss a few special points in light of the
shown results.

One can see that the validity of the generalized DDP
approximation extends to increasingly smaller values of α as
N grows and apart from a small phase shift it is in a good
agreement with the numerical result for all values of α. Let
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0.001

1
P

N 2

1 2 3 4 5 6
Α

10 6

10 4

0.01

1
P

N 6

0 1 2 3 4 5 6
Α
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FIG. 3. The probability P of a nonadiabatic transition is plotted as
a function of the coupling α for the values N = 2, 6, and 10. The dots
indicate the numerical solution and the solid line is the generalized
DDP result.
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FIG. 4. This figure is similar to Fig. 3 but the vertical scale is
linear. In this figure, the thick solid line is the numerical result and
the thin line is the DDP result. Furthermore, the dot-dashed line in
this figure represents the weak coupling approximation Ppert, and the
dashed line is the Magnus approximation.

us next consider the behavior of the superparabolic models as
N → ∞. As already mentioned, the behavior of the diabatic
energy levels in the limit of large N indicates that one could
expect the time evolution of the system to be divided into two
parts, i.e., to a nonresonant part where the time evolution is
not affected by the coupling, and to a resonant period where
the dynamics is described by the well-known Rabi model. The
Rabi model corresponding to the superparabolic model in this
resonant period consists of a constant rectangular pulse, of
magnitude α, which couples the levels. Thus one expects to
obtain the final transition probability P by just determining the
duration of the resonant period and inserting it to the well-know
expression for resonant Rabi oscillations. To get an estimate for
this duration time, we use the same argument that is generally
used, e.g., in estimating the dynamically relevant time region
for the LZ model (this crude approximation is sufficient if α

is not too large; see Ref. [35]). Then the start and the end of
the transition region is determined simply from the condition
�(τ ) = �(τ ), which gives �τ = 2α1/N , so that in the limit
N → ∞ the final transition probability according to the Rabi
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FIG. 5. This figure demonstrates the behavior of PDDP (solid line)
and PRabi (dashed line) for large N in the parameter region of interest
here. We have chosen N = 80 and the dots are the numerical results.

formula is

PRabi = sin2 [2α] . (22)

This is consistent with the results of the DDP approximation
with large N as can be seen from Fig. 5. As expected,
deviations begin to occur when α increases as then our
crude estimate for the resonant period begins to falter. The
parameter region in Fig. 5 does not correspond to the adiabatic
limit, hence the mismatch between the numerical and the
DDP results. Especially the middle panel (N = 6) in Fig. 3
demonstrates how the match improves as one approaches the
adiabatic limit with increasing α.

To evaluate the difference between the generalized DDP
approach and the original DDP theory, we consider PDDP

when one includes in the sum only the zero points closest
to the real axis. We denote this original theory prediction by
P

(1)
DDP. As it has been shown, there are two such points located

symmetrically with respect to the imaginary axis, and those
correspond to the first term in the summation in Eq. (19), so
that

P
(1)
DDP = 4e−2η sin[ π

2N
] sin2

[
η cos

π

2N

]
. (23)

In the case of weak coupling, α ≈ 0, this becomes

P
(1)
DDP ≈ 4πα(2N+1)/N 
2 [(2N + 1)/(2N )]


2 [(3N + 1)/(2N )]
cos2

(
π

2N

)
,

(24)

2 4 6 8 10 12 14 16
N

0.6
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0.8

0.9

1.0
Pmax

FIG. 6. The maximum probabilities that can be obtained for each
model as a function of N .

TABLE I. The maximum values of P that appear in Fig. 6 and
also the values of the coupling α0 with which they can be obtained.

N Pmax α0

2 0.577 0.68
4 0.792 0.68
6 0.885 0.68
8 0.929 0.69
10 0.952 0.70
12 0.965 0.70
14 0.974 0.71
16 0.981 0.71

which is of interesting form when compared to the proper weak
coupling limit in Eq. (7). When N increases, they both tend to
the limit α → 0 as α2, but for finite N the two expressions are
slightly different. For the generalized DDP result in Eq. (19),
we get a sum with all terms proportional to α2 in the small α

limit, but the sum does not appear to have any simple closed
form for easy comparison.

Let us now proceed with the general examinations of the
results. We can see from Fig. 6 and Table I that the maximum
probability is, as we expect, enhanced by increasing N , though
the rate of the increment decreases steadily. At the same time,
the value of the coupling α0 needed to obtain the maximum
value increases only slowly.

It seems that the parameter value α0 for which the maximum
transition probability is obtained is somewhere in between the
region of validity of the perturbation and DDP approximations.
It is, however, evident from Figs. 3 and 4 that the generalized
DDP method is in good agreement with the numerical
results for the superparabolic models in a large part of the
parameter region and not just in the adiabatic limit, and its
accuracy gets better as N increases. Because of the oscillating
character of the transition probability, a small error in the
phases can lead to a notable deviation from the true value,
and there indeed is some phase difference in the DDP and
numerical results, but the generalized DDP results still catch
all the essentials of the numerical results. For small values
of α, the perturbation approximation is more accurate, its
region of validity remaining somewhat constant. The Magnus
approximation improves the perturbation result further but in
a limited fashion.

It is clear that to get a quantitatively accurate approximation
using the generalized DDP method, one has to include all
complex zero points into the expression (13). Taking into
account only the pair of complex zero points closest to the real
axis and which are connected by the closest Stokes line gives
qualitatively somewhat correct behavior and, for example, the
parameter value for obtaining the maximum probability but
also values over unity.

IV. CONCLUSIONS

Although the Landau-Zener model has become, for many
reasons, a paradigm in studies of coupled time dependent
quantum states, the parabolic model and especially the
level-glancing aspect have not been considered in detail.
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A level-glancing situation is, of course, much less likely to
occur in nature, although increasing interest and development
of tools for the control and engineering of quantum states will
make it likely that such models can be tested and applied in
experimental physics. Our motivation for the present study has
been threefold.

First, we wanted to understand the nature of the level-
glancing dynamics and especially the oscillating character
of the transition probabilities, i.e., how the properties of
the parabolic model extend to the superparabolic models.
We have shown that the superparabolic models provide
dynamics that follows qualitatively the parabolic model,
and eventually starts to resemble the Rabi model, with a
sudden approach to the resonance, steady resonant Rabi
oscillations, and then the freezing of the value of the transition
probability to the moment of the sudden move away from the
resonance.

Second, we have complemented the picture of essentially
nonlinear models as studied in Ref. [34], by introducing the
superparabolic models, and showing how the structure of
the complex zeros reflects to the transition probability. It is
clear that the Landau-Zener model is in many ways unique
in its monotonous change of the transition probability as a
function of the coupling strength, whereas both the cubiclike
and the superparabolic models will display oscillations, and
the superparabolic models allow one to reach full transition
only asymptotically.

Third, the improvement of the adiabatic solution (DDP) by
the addition of all zeros of the eigenenergies in the complex
plane lacks rigorous proof so far, and its practicality must
be evaluated for each model independently [50]. Our work
shows that for the superparabolic level-glancing models the
inclusion of all such zeros in the upper half of the complex

plane improves the quality of the solution and extends its
usefulness beyond the adiabatic limit.

One aspect of the Landau-Zener model is the intrinsic phase
difference between the quantum state amplitudes which the
level crossing transition dynamics provides [5]. This becomes
visible in transition probabilities for any double or multiple
crossings situation, although the dynamical phase evolution of
the amplitudes between the crossings tends to dominate any
oscillations [36]. The other models, including parabolic and
superparabolic models, give rise to a similar phase factor. The
Landau-Zener model has been applied to periodically driven
systems [55–57], and it would be interesting to see if a system
with periodically occurring level-glancing events gives similar
dynamics. A second aspect to consider is the role of noise on
both the cubiclike as well as the parabolic and superparabolic
models. The Landau-Zener model as such is not very much
affected by the noise [58], but any double or multiple crossing
situation will be strongly affected by phase degradation [25],
offering, on the other hand, a tool for analyzing decoherence
of quantum states. Control of two-state systems as well as
their decoherence is important for quantum information and
quantum computing [59]. The essentially nonlinear models all
show oscillations in the transition probabilities, even though
there is only a single level crossing or a level-glancing event.
Their sensitivity to decoherence is an interesting and open
question, and one of the topics for further studies on level-
glancing models.
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