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We investigate retardation effects in two-photon ionization from the ground state of low-Z hydrogenic atoms
for photon energies ranging from 20 eV to 25 keV, using the general formulas of nonrelativistic second-order
perturbation theory, including retardation. Our numerical calculations, including all multipoles, show that, as in
the K-shell photoeffect, the electron angular distributions are sensitive to retardation. The deviations from the
dipole approximation are mainly determined by the terms linear in photon momentum. We also present results
for the total generalized cross section along the hydrogen isoelectronic series (for Z = 1–5) at scaled laser
frequencies.
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I. INTRODUCTION

Recently available sources in the extreme ultraviolet (EUV)
and x-ray photon energy range, such as free electron lasers
(FELs), allow the study of processes involving x rays at
high intensity and short pulse durations [1]. An example of
application is the recent implementation of an x-ray laser in
the keV energy regime. The lasing process is based on atomic
population inversion driven by rapid K-shell photoionization,
using pulses from an x-ray FEL [2]. As long as the intensity
of the radiation is not too high, which is the case here,
one-photon ionization is the dominant process. Nevertheless,
experimental studies show evidence of ionization processes
involving the direct absorption of more than one photon in the
EUV domain [3,4]. Three recent calculations have explored
quantitatively two-photon ionization of the hydrogen atom,
two investigations being based on perturbation theory [5,6], the
third one on the solution of the time-dependent Schrödinger
equation (TDSE) [7]. In the latter work retardation is included
and evidence is given that for keV photon energies, the dipole
approximation (DA) provides accurate values for the two-
photon ionization generalized total cross section and electron
energy distribution. Nevertheless, retardation effects modify
the electron angular distributions; in the monochromatic case
the odd-order multipole contribution vanishes after angular
integration, explaining why these effects are not reflected in
the electron energy spectra and total ionization cross sections.

Our objective is to pursue our previous investigation [6] of
two-photon ionization of the hydrogen atom and hydrogenic
ions (fixed nucleus with charge Z) from the fundamental state
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at energies starting from the photoelectric threshold and up to
the x-ray domain. In our study we consider monochromatic
radiation and use second-order perturbation theory. In this
approach the calculations (numerical or analytic) performed
up to now have belonged to one of the following four cate-
gories: (i) the nonrelativistic dipole approximation (NRDA),
(ii) nonrelativistic with retardation only partially included,
(iii) nonrelativistic including the full retardation, and (iv) exact
relativistic.

Most of the investigations have been devoted to the
calculation of total generalized cross sections. Formalism (i)
leads to the precise calculations of Karule [8] (see Ref. [9]
for a synthesis). These calculations covered the low-frequency
range, up to 620 eV. Results extending up to 50 keV (to be
used with caution above 20 keV if more than 2–3 % relative
precision is needed) have been published recently (see Table I
in Ref. [6]). They are based on approach (ii), briefly described
in Sec. II.

Concerning angular distributions associated with two-
photon absorption, accurate calculations have been performed
more than 40 years ago within the DA [10,11], providing data
in the infrared regime. Regardless of the process investigated,
electron distributions are in general much more sensitive to
approximations than the total cross section is, and here we
also expect retardation effects to be more visible in the electron
angular distribution.

Our present calculation is done within approach (iii), based
on the pioneering work of Klarsfeld [12] and Gavrila [13,14]
(for Compton scattering). The analytical equations developed
by Gavrila [14] are used here.

Approach (iv), the full relativistic treatment [15], is based
on the partial wave expansion of the relativistic Green’s
function and of the final electron continuum bispinor. The
multipolar expansion of the radiation field is also used.
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This approach leads to complicated analytic results expressed
as multiple series whose terms are radial double integrals
evaluated numerically. More details are given by Koval et al.
[16], who present the results of a numerical evaluation of the
electron angular distribution for atomic numbers Z = 1, 54,
and 92 in Figs. 2 and 3 of Ref. [16] for a photon energy as low
as 1.4E2γ , where E2γ is the two-photon ionization threshold.

For low atomic number Z and in the EUV and x-ray
domains, it is justified to use the nonrelativistic approach
including retardation and not the full relativistic results. Such
an approach was adopted in the recent above-mentioned
calculations [7], having the merits of calculating the whole
electron energy spectrum (beyond one-photon absorption) and
the potential of investigating nonperturbative processes.

It is worth noting that retardation effects have been thor-
oughly studied for the case of one-photon ionization of atoms
[17]. In the case of two-photon transitions we mention previous
work on two-photon absorption of hydrogen in bound-bound
transitions [18,19] and K-shell Rayleigh scattering [20]. A
very recent work based on the relativistic approach [21] shows
important deviations from the DA angular photon distribution
in K-shell Rayleigh scattering.

Our present work follows a previous paper [6] in which we
calculated nonrelativistic two-photon ionization cross sections
in lowest-order perturbation theory, using approach (ii), i.e.,
retardation effects included only in the term A2, while the
A · P term was treated in the DA (A is the vector potential in
the Coulomb gauge and P is the momentum operator). In the
present calculations retardation is included in both terms and a
fully analytic expression is used for the two-photon transition
amplitude. This allows for the evaluation of the contribution
of each of these two terms. A direct comparison with TDSE
results, covering a broad range of photon frequencies, shows
remarkable agreement between the lowest-order perturbation
theory and TDSE approaches [7,22].

We describe the structure of the analytic formulas for the
transition amplitude and the generalized differential cross
sections in Secs. II and III, respectively. Section IV gives
the relevant equations for the total generalized cross sections.
Numerical results are presented in Sec. V, mainly for the elec-
tron angular distributions. Our conclusions are summarized in
Sec. VI. Appendix A gives details on the analytic formulas,
based on Ref. [14], and Appendix B gives analytic expressions
for the first-order, linear in photon momentum, corrections to
the DA.

II. THEORETICAL APPROACH

We consider here the case of a hydrogenlike atom with a
fixed nucleus of charge −Ze (e < 0 is the electron charge).
In the nonrelativistic formalism, with retardation included, the
expression of the two-photon ionization amplitude, obtained
in second-order time-dependent perturbation theory, is

Mret
NR = 〈En − |e(2i/h̄)κ ·rs2 − 2

m
e(i/h̄)κ ·rs · P

×G(E1 + h̄ω + iε)s · Pe(i/h̄)κ ·r|E1〉, ε → 0+, (1)

where m denotes the electron mass, E1 is the initial electron
energy, κ is the photon momentum, h̄ω is its energy, and G

is the Coulomb Green’s function. The emitted electron has
an energy E and an asymptotic direction characterized by
the unity vector n; the corresponding energy eigenfunction
〈r|En−〉 is normalized on the energy and solid angle scales and
it has the ingoing asymptotic behavior. The photon polarization
vector s is normalized as s∗ · s = 1; it is real for linear
polarization, otherwise it is complex.

The ejected electron energy E is

E = E1 + 2h̄ω, (2)

with ω � |E1|
2h̄ , E1 = − λ2

2m
, λ = αZmc, where c is the velocity

of light and α is the fine-structure constant.
The two-photon absorption threshold E2γ is half of the

photoelectric threshold |E1|. For photon energies ranging
from two-photon to one-photon (photoelectric) ionization
thresholds, ionization is energetically allowed through the
absorption of at least two photons. Above the second threshold
one- and two-photon ionization are both possible. As for light
elements the threshold for two-photon ionization is low (it
is about 1 keV for Z = 13), it is usually considered that
two-photon ionization just above threshold is well described
in the DA. Our calculation shows that the latter assumption is
valid for the total cross section, but not for the electron angular
distributions.

In the DA the contribution of the first term in the matrix
element given in Eq. (1) (i.e., the A2 contribution, called the
seagull term in the literature of Compton scattering) vanishes;
the absorption of low-energy photons is generally calculated
by using the second term in Eq. (1), taken in the DA. In
order to investigate the higher-energy regime, Varma et al.
[5] have introduced an approach in which the first term is
treated exactly and the second one in the DA. These authors
introduced a further approximation in the calculation of the
summation over intermediate states in the second-order matrix
element involving the coupling term A · P. Our previous work
[6], based on a similar approach but with the second-order
matrix element calculated exactly, has shown that A2 plays
a negligible role up to energies of 50 keV in the hydrogen
case; this is in contrast with Ref. [5]. Furthermore, recent
calculations [7,22] including retardation in both terms in
Eq. (1) confirmed that at least for photon energies in the keV
range, the term A2 plays a minor role in retardation effects.

For the transition amplitude, we use the analytic develop-
ments of Gavrila [14] for Compton scattering. Since we are
interested in the absorption of two photons of momentum κ , we
have to use −κ2 = κ1 = κ in Gavrila’s equations (in the case
of radiation scattering κ1 is the absorbed photon momentum
and κ2 is the emitted photon momentum).

In the following it is convenient to use the dimensionless
transition amplitude

M ret
NR =

√
mc2Mret

NR. (3)

The structure of the transition amplitude including the photon
polarization vector s is the same as in Eq. (6) in Ref. [6], but
with different invariant amplitudes in the second term:

M ret
NR = MA2 + M ret

A·P, (4)

MA2 = Oabs−twos2, M ret
A·P = −2[P rets2 + T ret(s · n)2]. (5)
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FIG. 1. The GDCS as a function of the polar angle θ of the electron for six values of the azimuthal angle φ: comparison between results
including full retardation (full line) and DA results (dashed line) in the case Z = 1, at 200 eV incident photon energy.

The amplitude denoted by Oabs−two is obtained from the
quantity Oabs−two in Ref. [6] by multiplying by

√
mc2 and

using Eqs. (B2), (B3), and (A7) of the cited reference. The
functions denoted here by P ret and T ret are obtained from the
amplitudes P and T given by Eqs. (48) and (52) of Ref. [14],
respectively, through the change of momenta mentioned before
and by multiplication with the factor

√
mc2. For the sake of

completeness, the expressions of the amplitudes P ret and T ret

are reproduced in Appendix A.
We introduce the invariant amplitude Sret defined by

Sret ≡ Oabs−two − 2P ret = SA2 + Sret
A·P,

(6)
SA2 = Oabs−two, Sret

A·P = −2P ret.

The total amplitude (4) can now be written in terms of the
dimensionless invariant amplitudes Sret and T ret:

M ret
NR = Srets2 − 2T ret(s · n)2. (7)

In the dipole approximation only the A · P term contributes:

MDA
NR = −2P DAs2 − 2T DA(s · n)2, (8)

where the expressions of P DA and T DA are given in Eqs. (B2)–
(B4) of the present paper.

Starting from the transition rate d	 = |Mret
NR|2d
, we

calculate a generalized differential cross section (GDCS)

independent of the photon flux J ,

dσ = d	

J 2
, (9)

leading to a generalized cross section with the dimension L4T .

The GDCS is then written as

dσ ret
NR = σ0

(
mc

κ

)2∣∣M ret
NR

∣∣2
d
n, σ0 = 2π3α2 h̄5

m5c6
, (10)

where the quantity σ0 bears the dimension of the generalized
cross section. The results will be given in cm4 s; in these units
σ0 ≈ 9.4586 × 10−66. In the GDCS one distinguishes the three
contributions,

dσ ret
NR = dσA2 + dσ ret

A·P + dσinterf . (11)

III. ELECTRON ANGULAR DISTRIBUTION

In order to describe the electrons angular distribution, we
use a Cartesian system of reference with the z axis taken along
the direction of κ (the initial photon momentum) and we denote
by θ the angle between the electron momentum p and κ . The
other two axes are taken along the main axes of the ellipse
associated with the photon polarization, with unit vectors ex

and ey . The azimuthal angle of the electron momentum is
denoted by φ. The amplitudes Oabs−two,P ret, and T ret depend
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FIG. 2. Same as Fig. 1, but for Z = 1 and 0.5 keV.

only on the angle θ . The polarization vector is written

s = cos

(
ζ

2

)
ex + i sin

(
ζ

2

)
ey. (12)

For ζ = 0 (π ) the photon is linearly polarized along the x (y)
axis and ζ = ±π/2 describe circular polarization. We shall
use ζ = 0 for linear polarization. Given Eq. (12), it is easy to
show that

s2 = cos ζ,

(s · n)2 = [cos(φ + ζ/2) cos(φ − ζ/2)

+ i

2
sin ζ sin(2φ)] sin2 θ. (13)

Then the differential cross section is written

dσ ret
NR = σ0

(
mc

κ

)2

[B(θ ) + C(θ,φ) sin2 θ

+D(θ,φ) sin4 θ ]d
n, (14)

B(θ ) = |Sret|2 cos2 ζ, (15)

C(θ,φ) = {−4 Re[Sret∗T ret] cos(φ + ζ/2) cos(φ − ζ/2)

+ 2Im[Sret∗T ret] sin ζ sin(2φ)} cos ζ, (16)

D(θ,φ) = 4|T ret|2[ cos2(φ + ζ/2) cos2(φ − ζ/2)

+ 1
4 sin2 ζ sin2(2φ)

]
. (17)

Since the invariant amplitudes Sret and T ret depend only on θ ,
the dependence on φ is explicit in the above expressions.

For linear polarization (ζ = 0), B(θ ), C(θ,φ), and D(θ,φ)
are denoted by BL, CL, and DL, respectively, with

BL = |Sret|2 ≡ bL(θ ), (18)

CL = cl(θ ) cos2 φ, cL(θ ) = −4 Re[Sret∗T ret], (19)

DL = dL(θ ) cos4 φ, dL(θ ) = 4|T ret|2. (20)

In fact, bL, cL, and dL are functions of cos θ .
For circular polarization (ζ = π/2), the angular distribution

does not depend on φ as B and C vanish and D becomes equal
to Dc, a quantity independent of φ,

Bc = Cc = 0, Dc = |T ret|2. (21)

The three separate contributions to the cross section, expressed
in Eq. (11), follow directly. The contribution of A2 is simply

dσA2 = σ0

(
mc

κ

)2

|Oabs−two|2 cos2 ζd
n. (22)

The contribution of A · P to B and C is obtained by replacing
Sret by Sret

A·P in Eqs. (15) and (16). The term D contributes only
to σA·P. The interference term is contained in B and C and is
given by the terms linear in SA2 [see Eq. (6)].

In the DA the previous expressions are applicable with
Sret and T ret replaced by −2P DA and T DA, respectively. As
they are independent of θ , the quantities B, C, and D become
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FIG. 3. Same as Fig. 1, but for Z = 1 and 1 keV.

independent of θ , so Eq. (14) makes explicit the dependence
on θ ,

dσ DA
NR = σ0

(
mc

κ

)2

[BDA + CDA(φ) sin2 θ

+DDA(φ) sin4 θ ]d
n. (23)

The analytic expressions of the invariant amplitudes with
retardation included, given in Appendix A, show that the
first retardation corrections in the GDCS are linear in photon
momentum. We present these corrections in Appendix B.

Here it is worth noting that in order to make a comparison
with others works, the definition of the reference axes for the
angles must be carefully checked. For example, in the case
of linear polarization, according to Eq. (12) with ζ = 0, we
have taken the x axis along the polarization vector. Our choice
of axes is different from that used in Refs. [7,12], where the
calculation was done for the z axis along the polarization
vector and the x axis along the photon direction. Denoting by
θ ′ and φ′ the polar angles of the electron momentum for this
alternative choice of the reference system, the connection with
the angle θ and φ defined above is given by

cos θ ′ = sin θ cos φ, sin θ ′ cos φ′ = cos θ. (24)

IV. TOTAL CROSS SECTIONS

In order to obtain the total cross section we start from
Eqs. (14)–(17); noting that the integration over the polar angle

φ is elementary, we are left with a distribution depending only
on the polar angle θ , with the corresponding generalized cross
section denoted by d̃σ NR,ret,

d̃σ NR,ret = 2πσ0

(
mc

κ

)2{
(|Sret|2 − 2 Re[Sret∗T ret] sin2 θ )

× cos2 ζ + |T ret|2
2

(3 − sin2 ζ ) sin4 θ

}
sinθdθ.

(25)

For linear polarization the formula reads

d̃σ
L

NR,ret = 2πσ0

(
mc

κ

)2{|Sret|2 − 2 Re[Sret∗T ret] sin2 θ

+ 3
2 |T ret|2 sin4 θ

}
sin θdθ (26)

and for circular polarization

d̃σ
C

NR,ret = 2πσ0

(
mc

κ

)2

|T ret|2 sin5 θdθ. (27)

In order to calculate the total generalized cross sec-
tion (GCS), the integration of the GDCS over θ given
in Eq. (25) has to be performed numerically. In the DA
this operation can be done analytically and the result
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FIG. 4. Same as Fig. 1, but for Z = 1 and 5 keV.

reads

σ DA
NR = 16πσ0

(
mc

κ

)2{(
|P DA|2 + 2

3
Re[P DA∗

T DA]

)
cos2 ζ

+ 3 − sin2 ζ

15
|T DA|2

}
. (28)

When integrating over θ the contribution of the odd powers
of κ · r in a multipolar expansion of the exponential in Eq. (1)
disappear. Therefore, the lowest-order retardation correction
to the GCS is of second order in photon momentum, thus less
important than in the case of GDCS.

V. NUMERICAL RESULTS

Numerical values for nonrelativistic generalized differen-
tial cross sections that include retardation are unavailable, in
contrast to the DA case. In this context, as an approximate
check, we have compared our results with the data of Koval
et al., presented in Fig. 2 of Ref. [16], which are based
on a relativistic treatment. The published relativistic results
refer to linear, circular, and unpolarized incident photons,
for an azimuthal angle of the electron φ = 0, in the case of
hydrogenic atoms with Z = 1, 54, and 92 and a photon energy
of 0.7|E1|. The photon energy, corresponding to τ ≈ 1.83 [the
definition of τ is given in Eq. (A12)], is low from the point of
view of our codes, which give reliable results provided τ < 1.
Nevertheless, it is possible to transform the two Lauricella

functions in Eq. (A4) in order to extend the range of validity
of our codes regarding the value of τ . The transformation
consists in integrating by parts the integrand that represents
the Lauricella function in Eq. (A13). We should remark that
the agreement we have found at Z = 1 is irrelevant for our
purpose because the retardation effects are totally negligible
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033413-6



TWO-PHOTON IONIZATION OF HYDROGEN AND . . . PHYSICAL REVIEW A 86, 033413 (2012)

0 45 90 135 180
θ (Degrees)

0.0

5.0×10
-63

1.0×10
-62

1.5×10
-62

dσ
/d

Ω
 (

cm
4 s)

0 45 90 135 180
θ (Degrees)

0.0

5.0×10
-67

1.0×10
-66

1.5×10
-66

2.0×10
-66

2.5×10
-66

dσ
/d

Ω
 (

cm
4 s)

0 45 90 135 180
θ (Degrees)

0

5×10
-68

1×10
-67

2×10
-67

2×10
-67

3×10
-67

dσ
/d

Ω
 (

cm
4 s)

0 45 90 135 180
θ (Degrees)

0

2×10
-68

4×10
-68

6×10
-68

8×10
-68

dσ
/d

Ω
 (

cm
4 s)

(a) (b)

(c) (d)

FIG. 6. The GDCS as a function of the polar angle θ of the electron in the case of circularly polarized photons for Z = 1 and different
photon energies: (a) 1 keV, (b) 5 keV, (c) 8 keV, and (d) 10 keV. The DA results are represented by dashed lines.

in the present case due to very low energy (9.52 eV) of the
photons. At Z = 54, where we do not expect agreement, we
find relative differences up to 25%, but a similar behavior, i.e.,
the effect of retardation is a shift of the angular distribution
towards a smaller angle and an increase of its values. We
remark that in the case of linear polarization we find the same
position of the maxima as in Fig. 2 of Ref. [16]: 72◦ and 61◦
for Z = 54 and 92, respectively. Similar agreement holds for
circular polarization. Also, the dependence of the azimuthal
angle is in qualitative agreement with that displayed in Fig. 3
of Ref. [16] for Z = 92.

We present our results for the angular differential gen-
eralized cross section (GDCS) in Figs. 1–6. In Figs. 1–4,
which refer to linear polarization of the absorbed photons,
for the case of the hydrogen atom, each of the six panels
presents the angular distribution of the electron as a function
of the polar angle θ , for a fixed value of the azimuthal angle
φ. Figures 1–4 correspond to the photon energies 0.2, 0.5,
1, and 5 keV, respectively. In these figures we can follow
the change of the shape of the angular distribution (solid
line) when compared with the DA curve (dashed line). The
DA curve is always symmetric with respect to θ = π/2, in
accordance with Eq. (23). From a quasisymmetric shape at
φ = 0 with the maximum near θ = π/2, the shape changes
gradually: At φ = 85◦ there is no maximum anymore; at
200 eV the corrections to the DA are already of the order

of 10%. Differences are already present at a 20-eV energy of
the photons, as shown in Fig. 5.

The situation at φ = π/2 is the most interesting because in
this case there is no θ dependence in the DA. With retardation
included, we see from Eq. (18) that only the amplitude BL is
different from 0, so we have

dσ ret

d

(θ,φ = π/2) = |Sret|2. (29)

An examination of the graphs corresponding to φ = π/2 for
Z = 1 and energies of 200 and 500 eV and 1 keV (Figs. 1–3)
shows that the deviation from the DA is positive for θ < π/2,
vanishes at θ = π/2, and becomes negative for θ > π/2. This
reveals mainly linear retardation effects in the amplitude Sret

[defined in Eq. (6)], due to the terms proportional to κ · p =
κp cos θ . The analytic expressions of the correction terms is
given in Eqs. (B11) and (B12). At higher energies (5 keV in
Fig. 4), the change of sign at φ = π/2 is not present anymore,
which proves the presence of quadratic effects in the photon
momentum. At Z = 1, 1 keV (Fig. 3), φ = π/2, and θ = 0,

the relative difference of the retarded results with respect to
the DA results reaches almost 50%.

With increasing photon energy, retardation effects become
important and visible even at φ = 0. This is illustrated in Fig. 4
for h̄ω = 5 keV, where the first panel shows that the maximum
is shifted to θ ≈ 74◦. Also, the trend with θ at φ � 80◦ is
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different from in previous figures; the results (with retardation
included) are now always larger than the DA values. For φ =
π/2 and θ = 0, the relative difference is as big as 8.3. This
proves here also that the terms quadratic in photon momentum
become important.

In Fig. 5 we describe in more detail the case of linear
polarization with Z = 1 and φ = π/2 by plotting the ratio of
the nonrelativistic with retardation and the DA values of the
GDCS as a function of θ for several incident photon energies.
The deviations from 1 measure the retardation effects and
their dependence on θ shows the dominance of the corrections
proportional to κ · p described in Appendix B.

In the case of circularly polarized photons, according to
Eqs. (14) and (21), there is no φ dependence in the GDCS, so
for each photon energy there is only one angular distribution
attached. The amplitude T ret solely determines the values of
the distribution. In Fig. 6 we show the results obtained for
Z = 1 for photon energies of 1, 5, 8, and 10 keV. The behavior
is similar to that found at φ = 0 in the linear polarization case,
only the GDCS values are now larger.

As noticed in Sec. II and displayed in Eq. (14), the
two-photon ionization cross sections are determined by two
complex functions, the amplitudes Sret and T ret, which depend
on three variables: the ion charge Z, the photon energy
h̄ω = κ/c, and the final electron polar angle θ . This means
that all needed information for calculating the GDCS would be
tables or graphs of these two amplitudes, as a function of θ for
the photon energies of interest. As an illustration we present
Figs. 7 and 8 for Z = 1. Figure 7 corresponds to a 500-eV
photon energy; it contains not only the real and imaginary parts
of the amplitude Sret, but also the terms Oabs−two and P ret from
which Sret is built, according to its definition given in Eq. (6).
Figure 8 refers to the amplitude T ret. Here two energies (500 eV
and 1 keV) are considered. By comparing the amplitudes at
500 eV in Figs. 7 and 8, one sees that at this photon energy
Re[T ret] is approximately 14 times larger than Im[Sret], which
explains why in the circular polarization case we find larger
values for the GDCS. Figure 7 shows that the imaginary part
of Sret dominates the real part. More important, one sees that
the contribution of Oabs−two is negligible compared to that of
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-2ImP
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-2ImP
DA

ImS
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ReS
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abs-two

-2ReP
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-2ReP
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FIG. 7. Real and imaginary parts of the dimensionless amplitudes
Sret,Oabs−two, and P ret. Also shown is a comparison with P DA, with
Z = 1 and a photon energy of 500 eV.
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Im T
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Im T
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Re T
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Re T
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1 keV

500 eV
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FIG. 8. Real and imaginary parts of the dimensionless amplitude
T ret (solid lines). Also shown is a comparison with T DA (dashed
lines), with Z = 1 and photon energies of 500 eV and 1 keV.

P ret; as a consequence, the A · P contribution to the DGCS in
Eq. (11) is more important than the A2 contribution.

The final figure regarding GDCS is Fig. 9, which illustrates
the validity of the approximate expression for the GDCS based
on the inclusion of the corrections brought only by the terms
linear in momentum given in Appendix B. The ratio between
the approximate result for the GDCS that includes only the
corrections linear in photon momentum and the nonrelativistic
results including all multipoles is represented as a function of
the angle θ for several photon energies and linear polarization.

We have calculated the total GCS by integrating the GDCS
given in Eq. (25) over θ . In the DA the cross section σ DA

A·P,
which gives the dominant contribution (at least up to photon
energies of 50 keV), follows a simple scaling law in Z [23]:
Z6σ DA

A·P(Z,ω) = σ DA
A·P(1,ω/Z2). In the relativistic calculation

presented in Ref. [15], the Z dependence of the ratio of the
relativistic GCS for the charges Z and 1, multiplied by Z6, was
displayed at two low photon energies. The comparison also
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σre

t
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FIG. 9. Ratio of the approximate GDCS (including the DA
and the linear correction in photon momentum) and the exact
nonrelativistic GDCS including all multipoles, as a function of the
polar angle θ of the electron at the azimuthal angle φ = π/2 for
Z = 1. The photon energies are given in the figure.

033413-8



TWO-PHOTON IONIZATION OF HYDROGEN AND . . . PHYSICAL REVIEW A 86, 033413 (2012)

1 2 3 4 5
Atomic number Z

1 1

1.1 1.1

1.2 1.2

1.3 1.3

1.4 1.4

σ re
t(Z

,Z
2 ω

)/
σ D

A
(Z

,Z
2 ω

)

FIG. 10. Ratio of the retarded total cross sections σret(Z,Z2ω) and
σDA(Z,Z2ω) taken for different nuclear charges Z for three different
photon energies h̄ω: 200 eV (asterisks), 500 eV (squares), and 1 keV
(diamonds).

involves a relativistic calculation done in the DA. It indicates
that in the case considered, the relativistic effects on the GCS
are more important than retardation effects, the latter being
practically invisible at 1.05E2γ (see Fig. 1 of Ref. [15]), but
at the higher energy of 1.4E2γ the indication from Fig. 2 of
Ref. [15] is that retardation effects matters. Retardation effects
are nevertheless small for Z < 20.

Having in mind the scaling law valid in the DA, we represent
in Fig. 10, as function of Z, the ratio of the retarded and
DA cross sections, both taken at energies Z2h̄ω for three
values of the photon energy: h̄ω = 0.2, 0.5, and 1 keV and
linear polarization. The figure clearly shows the effect of
retardation for Z � 2 and, as expected, the retardation effect
increases with the photon energy. In fact, retaining only the first
correction term in the multipole expansion of the exponentials
in Eq. (1), it is easy to show that the relative difference between
retarded and DA total cross sections varies like Z2. The latter
approximation is valid provided αh̄ω � Z [22] (with h̄ω given
in a.u.). This is verified over the range of photon energies
explored in Fig. 10 (except for the top curve at Z = 5) and
the three curves agree with the expected Z2 behavior. Also,
the figure shows that for αh̄ω ≈ 1 a.u., the correction due to
retardation effects is close to 5% of the DA total cross section.

VI. CONCLUSION

In this work we have investigated retardation effects in
two-photon ionization of hydrogen and hydrogenlike ions in
lowest-order perturbation theory. The nonrelativistic atomic
Hamiltonian has been considered with full retardation included
in both A · P and A2 terms. It is possible to express the gen-
eralized two-photon ionization differential cross section with
a compact expression [Eq. (7)] using two invariant amplitudes
T ret and Sret, which depend only on the photon energy and
polar angle θ between the electron and photon momenta, the
azimuthal angle φ and the polarization component ζ being
explicitly expressed in terms of trigonometric functions. In
the case of hydrogen, differential cross sections versus θ are
examined for a photon energy range of 200–5000 eV, with

linear polarization (ζ = 0). At low photon energies strong
deviations with the DA are observed for φ close to π/2, while
significant differences appear for all values of φ at higher
photon energies. The case of φ = π/2 is of particular interest
since the DA differential cross section is independent of θ ; the
DA and non-DA results show large differences. Examining the
latter case at various photon energies, we note a clear evolution
of the θ dependence of the differential cross section: from an
asymmetric shape with respect to the vertical axis θ = π/2 at
a photon energy of 200 eV to a symmetric one at 5 keV. This
evolution is clearly related to the influence of quadratic effects
in photon momentum, which increases with the photon energy.
For a circularly polarized field, the differential cross section
does not depend on the azimuthal angle φ; the difference
between DA and non-DA results is of the order of magnitude
of the one observed in linear polarization for φ = 0. Finally,
for the total cross section we have studied retardation effects
along the isoelectronic series of hydrogen with scaled photon
energies. We have noticed that retardation effects become
significant for αh̄ω ≈ 1 and rapidly increase with the nuclear
charge Z. As the nuclear charge Z increases, an analysis of
the relativistic effects is desirable.
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APPENDIX A: ANALYTIC RESULTS FOR
THE A · P CONTRIBUTION

The contribution of the A · P term from the nonrelativistic
Hamiltonian to the absorption of two identical photons is
determined by the two invariant amplitudes P ret and T ret in
Eq. (5). Their compact analytic expressions are obtained, as
described in Sec. II, from Eqs. (49) and (52) of Ref. [14],
respectively, as

P ret = c1
g1

2 − τ
,

c1 = ÑλX3 [(X − ip)2 + κ2]−1−iη

[(X + λ)2 + κ2]2[X2 + (p − κ)2]1−iη
, (A1)

T ret = c2

[
g2

2 − τ
− (X − λ)2 + κ2

(X + λ)2 + κ2

g3

4 − τ

]
,

c2 = 2ÑX4p2 (1 − iη)(2 − iη)[(X − ip)2 + κ2]−iη

[(X + λ)2 + κ2]2[(X2 + (p − κ)2]3−iη
. (A2)

Explanations of the notations follow. The quantity η is
introduced by the continuum wave function in the matrix
element given in Eq. (1) and the constant factor Ñ is

Ñ = 32mc

π
(2λ5p)1/2	(1 − iη) exp

(
π

2
η

)
,

(A3)
η = λ/p, λ = αZmc,
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where g1, g2, and g3 denote the three Lauricella functions of
the type FD [24],

g1 = FD(2−τ ; 1+ iη,1+iη,1−iη,1− iη; 3−τ ; ξ1,ξ2,ξ3,ξ4),

(A4)

g2 = FD(2 − τ ; iη,iη,3 − iη,3 − iη; 3 − τ ; ξ1,ξ2,ξ3,ξ4),

(A5)

g3 = FD(4 − τ ; iη,iη,3 − iη,3 − iη; 5 − τ ; ξ1,ξ2,ξ3,ξ4).

(A6)

For the two variables ξ1 and ξ2 the expressions of the sum
and the product are given in Eqs. (42) and (43) of Ref. [14],
respectively, which we adapt to the case of absorption of two
identical photons,

ξ1 + ξ2 = 2
−4κ2X2 + (λ2 + κ2 − X2)(κ2 − p2 − X2)

[(X + λ)2 + κ2][(X − ip)2 + κ2]
,

(A7)

ξ1ξ2 = (X − λ)2 + κ2

(X + λ)2 + κ2

(X + ip)2 + κ2

(X − ip)2 + κ2
. (A8)

For the other pair of variables (ξ3,ξ4) one gets, from Eqs. (44)
and (45) of Ref. [14],

ξ3 + ξ4

= 2
4κ · (p − κ)X2 + (λ2 + κ2 − X2)[(p − κ)2 − X2]

[(X + λ)2 + κ2][X2 + (p − κ)2]
,

(A9)

ξ3ξ4 = (X − λ)2 + κ2

(X + λ)2 + κ2
. (A10)

As in the DA, the argument 
 of the amplitudes P ret and
T ret comes from the Green’s function in Eq. (1) and has the
expression


 = E1 + h̄ω + iε, ε → 0+. (A11)

It determines the two quantities X and τ in the previous
expressions,

X2 = −2m
, ReX � 0, τ = λ

X
. (A12)

Between the two-photon and one-photon thresholds situated,
respectively, at |E1|/2 and |E1|, one has 
 < 0 and conse-
quently X is real; τ is also real and increases from

√
2 to

∞ from the two-photon to the one-photon thresholds. Above
the photoelectric threshold X is purely imaginary, namely,
X = −i|X|.

The evaluation of the Lauricella functions is done with
the same technique as in the DA case [6], using the one-
dimensional integral representation of them. A simplification
arises from the fact that the functions we have to evaluate are
of the particular type

FD(a; b1,b1,b2,b2; a + 1; ξ1,ξ2,ξ3,ξ4)

= a

∫ 1

0
ρa−1[1 − (ξ1 + ξ2)ρ + ξ1ξ2ρ

2]−b1

× [1 − (ξ3 + ξ4)ρ + ξ3ξ4ρ
2]−b2dρ,

Rea > 0, (A13)

i.e., they depend on three independent parameters instead of
six. Therefore, in the integrand in Eq. (A13), we meet the
sum and the product for each pair of the variables (ξ1,ξ2) and
(ξ3,ξ4) and there is no need to manipulate explicitly these
variables. We mention also that the variables are such that
there no singularities along the segment [0,1] of the real
axis.

For τ � 2, due to the presence of a singularity at the
origin in the integrand representing the function g1, one or
more integrations by parts increase the power at which the
variable appears, making the procedure applicable. The limit
τ = 2 corresponds to a photon energy of 3/4|E1| (|E1| is the
photoeffect threshold).

APPENDIX B: FIRST-ORDER RETARDATION
CORRECTIONS TO THE DA ELECTRON

ANGULAR DISTRIBUTION

The first corrections to the DA are due to the terms in p · κ

present in the analytic expressions of the invariant amplitudes.
We make series expansions of the amplitudes and keep only
the terms linear in this quantity. Before writing the results, we
recall the DA expressions.

The contribution of the A2 term to the transition amplitude
Sret, given by Oabs−two, vanishes in the DA. As shown
in Ref. [14], the four variables of the Lauricella functions
determining the A · P contribution in the DA reduce to two,
namely,

ξDA
1 = ξDA

2 = ξDA
3 ≡ x, ξDA

4 ≡ y, (B1)

with the expressions of x and y given by Eq. (A4) of Ref. [6].
As a consequence, each of the Lauricella functions reduces to
an Appell function F1, leading to

P DA = cDA
1

f1

2 − τ
,

(B2)
cDA

1 = Ñ
τ

(1 + τ )4
(X + ip)−1+iη(X − ip)−3−iη,

T DA = cDA
2

[
f2

2 − τ
− (X − λ)2

(X + λ)2

f3

4 − τ

]
, (B3)

cDA
2 = 2Ñp2 (1−iη)(2−iη)(X+ip)−3+iη(X−ip)−3−iη

(1 + τ )4
.

(B4)

The three Appell functions involved are

f1 = F1(2 − τ ; 3 + iη,1 − iη; 3 − τ ; x,y), (B5)

f2 = F1(2 − τ ; 3 + iη,3 − iη; 3 − τ ; x,y), (B6)

f3 = F1(4 − τ ; 3 + iη,3 − iη; 5 − τ ; x,y). (B7)

Now we describe the corrections linear in κ · p. The A2

contribution is obtained from Eqs. (B2) and (B3) in Ref. [6]
neglecting all K2 = 4κ2 terms:

Oabs−two ≈ Ñ

4p2

κ · p
(λ2 + p2)2

e−2η arctan(1/η)

1 + iη
. (B8)
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In the A · P term, corrections come from the Lauricella
functions and their coefficients. In fact, only two of the four
variables of the Lauricella functions in Eq. (A4), namely, ξ3

and ξ4, are affected by first-order terms in κ . The sum of these
two variables is approximately

ξ3 + ξ4 ≈ (x + y) + 2κ · p
p2 + X2

uc,

(B9)

uc ≡ 4

(1 + τ )2

2X2 − λ2 + p2

X2 + p2
,

while the product of the variables contains terms in κ2 only.
In this particular case, using the integral representation (A13),
one derives easily the approximate result

FD(a; b1,b1,b2,b2; a + 1; ξ1,ξ2,ξ3,ξ4)

= F1(a; 2b1 + b2,b2; a + 1; x,y) + ab2

a + 1

2κ · p
p2 + X2

uc

×F1(a + 1; 2b1 + b2 + 1,b2 + 1; a + 2; x,y). (B10)

The final results for the corrections to the P DA and T DA are

Pcor = (1 − iη)
2κ · p

p2 + X2

[
P DA + cDA

1 uc

f4

3 − τ

]
, (B11)

Tcor = (3 − iη)
2κ · p

p2 + X2

{
T DA + cDA

2 uc

×
[

f5

3 − τ
−

(
1 − τ

1 + τ

)2
f6

5 − τ

]}
. (B12)

The three new Appell functions denoted by f4, f5, and f6 are

f4 = F1(3 − τ ; 4 + iη,2 − iη; 4 − τ ; x,y), (B13)

f5 = F1(3 − τ ; 4 + iη,4 − iη; 4 − τ ; x,y), (B14)

f6 = F1(5 − τ ; 4 + iη,4 − iη; 6 − τ ; x,y). (B15)

Finally, we remark that, using the energy conservation
law given in Eq. (2), the factor 2κ · p/(p2 + λ2) entering the
corrections to the A2 contribution becomes

2κ · p
p2 + λ2

= p

2mc
cos θ (B16)

and the factor 2κ · p/(p2 + X2) entering the corrections to the
A · P contribution becomes

2κ · p
p2 + X2

= p

mc
cos θ. (B17)

However, from Eq. (2),

p

mc
=

√
4

κ

mc
− (αZ)2 ≈

√
4

κ

mc
. (B18)

This shows that the first corrections are proportional to√
κ/mc, so they are rather large. They influence only the

electron angular distribution because, when integrated over
the electron direction, the corrections described in this section
do not contribute.
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