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Ion–neutral-atom sympathetic cooling in a hybrid linear rf Paul and magneto-optical trap
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Long-range polarization forces between ions and neutral atoms result in large elastic scattering cross sections
(e.g., ∼106 a.u. for Na-Na+ or Na-Ca+ at cold and ultracold temperatures). This suggests that a hybrid ion-neutral
trap should offer a general means for significant sympathetic cooling of atomic or molecular ions. We present
SIMION 7.0 simulation results concerning the advantages and limitations of sympathetic cooling within a hybrid
trap apparatus consisting of a linear rf Paul trap concentric with a Na magneto-optical trap (MOT). This paper
explores the impact of various heating mechanisms on the hybrid system and how parameters related to the MOT,
Paul trap, number of ions, and ion species affect the efficiency of the sympathetic cooling.
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I. INTRODUCTION

In 2003, W. Smith et al. proposed a hybrid ion-neutral
trap consisting of a magneto-optical trap (MOT) concentric
with and encompassed by a linear radio-frequency quadrupole
(RFQ) Paul trap [1,2]. Since then, other proposals have been
made for the sympathetic cooling of molecular ions within
similar hybrid ion-neutral traps [3]. Several experiments using
hybrid traps have measured charge exchange cross sections
for Yb-Yb+ [4], Rb-Ca+ [5], and Ca-Yb+ [6]. Single Ba+,
Yb+, and Rb+ ions have been sympathetically cooled within a
hybrid Paul trap using an Rb Bose Einstein condensate (BEC)
to energies equivalent to sub-Kelvin temperatures [7–9]. In
addition, experimental evidence of sympathetic cooling of
Rb+ ions within a hybrid Rb MOT Paul trap was shown in
Ref. [10].

Sympathetic cooling occurs when one gas is cooled by
a colder gas via elastic, inelastic, and charge exchange
scattering. Sympathetically cooling ions within a Paul trap is a
more general technique than direct laser cooling [11,12], since
specific laser-excitable resonant transitions are not required of
the trapped ion species. This technique is useful for atomic
species but is often the only option when cooling molecular
ions [13,14].

In ion-ion sympathetic cooling, one ion species is directly
laser cooled and then collisionally cools the other species.
Due to the strong Coulomb interaction V ∝ 1/r , this is a
highly effective method for cooling ions to cold and ultracold
temperatures [13–17]. The most general form of sympathetic
cooling is neutral buffer gas cooling. A lower bound on the
cooled ion’s equilibrium temperature is set by the temperature
of the neutral buffer gas. Additionally, the technique works
best for ions (with mass mI ) and neutral atoms (with mass mn)
whose masses meet the criterion mI/mn > 1, or else the ion
trap’s inherent atom-ion rf heating mechanism can overwhelm
the collisional cooling [18–22].

In a hybrid trap, cooling by the MOT or BEC acts as a
combination of the two previously mentioned techniques. The
neutral species (MOT or BEC) is directly laser cooled, but
it also acts as a small, localized cold or ultracold buffer gas.
Due to the laser cooling and trapping of the neutral species,
ions overlapped with a MOT or BEC could reach lower final

temperatures than if they were overlapped with either a room
temperature or chilled buffer gases. Unlike buffer gas cooling,
we show that a MOT can efficiently cool equally massive
ion-neutral species. Equal mass ion-neutral cooling has been
observed experimentally within hybrid traps in Refs. [7,10]. In
contrast to ion-ion sympathetic cooling, it has been theorized
that a hybrid trap should simultaneously cool internal degrees
of freedom as well as the translational motion of molecular
ions [2,3].

R. Côté et al. have shown that the elastic scattering cross
sections for both Na-Na+ and Na-Ca+ are large (∼106 a.u.)
when compared to neutral-neutral or ion-noble gas (neutral
buffer gas) cross sections in the relevant temperature regime
(10−3 to 103 K) [2,23,24]. This is due to the long-range
polarization potential V ∝ −α/r4, where α is the dipole
polarizability of the neutral species. These large elastic
scattering cross sections suggest that the hybrid trap should
offer significant sympathetic cooling.

Using SIMION 7.0 software [25,26], we have simulated the
sympathetic cooling of Ca+ or Na+ to energies equivalent to
cold temperatures within a hybrid Na MOT and linear RFQ
Paul trap. These custom simulations model experimental work
currently underway in our laboratory. Simulations like these
have proven vital to the understanding of many Paul trap or
hybrid trap experiments [9,16,20,27], where several papers
have specifically used the SIMION software [19,21,22,26,28,
29]. Although the simulations presented in this paper model
our actual hybrid system, more general conclusions may still be
drawn. We find that even in the case of modest MOT densities
(109 cm−3) and modest MOT temperatures (1 mK), single ions
can be cooled to energies equivalent to cold and ultracold
temperatures within a few seconds. These MOT conditions can
also sympathetically cool more than one trapped ion although
much higher MOT densities are needed to reach sub-Kelvin
temperatures.

This paper is organized as follows: In Sec. II, we review
the workings of our hybrid trap and the details of our
simulation model. Next present the results of our simulations
in Sec. III. We first discuss single ion sympathetic cooling
(Sec. III A) and then multiple co-trapped ion sympathetic
cooling, both in the ion cloud (Sec. III B1) and ion crystal phase
(Sec. III B2). We conclude in Sec. IV.
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FIG. 1. (Color online) (a) Illustration of the part of the hybrid
trap system within the vacuum chamber. An Na MOT (orange)
is overlapped and concentric with an ion cloud (green) inside the
segmented Paul trap with six 589-nm MOT beams (yellow) and one
collinear 405-nm photoionization beam (blue). The photoionization
beam ionizes excited 3P Na. (b) Axial view of Paul trap with
Cartesian coordinate system.

II. BACKGROUND

A. Na MOT and linear rf Paul trap

An illustration of the part of the hybrid trap inside our
vacuum chamber is shown in Fig. 1(a). The Paul ion trap
comprises eight end segments and four central rf segments
(i.e., electrodes). Passing through the sides of the trap are six
589-nm MOT beams forming a standard Na MOT [30,31]
concentric with the ion cloud that forms in the center of both
traps. The MOT’s magnetic field gradient is created outside
of the vacuum chamber by two coils in an antihelmholtz
configuration.

Also shown in Fig. 1(a) is a 405-nm photoionization beam
collinear with one of the MOT beams. The photoionization
beam ionizes excited 3P3/2 Na atoms within the MOT or
the background Na gas. The ionization process is known
as resonance-enhanced-multiphoton ionization (REMPI) [32]
and is one example of how ions can be loaded within the trap
experimentally.

For the remainder of this section we will focus on a brief re-
view of Paul trap principles, terminology, and quantities of in-
terest within the context of our actual Paul trap. For a more de-
tailed discussion of Paul trap physics see Refs. [18,27,33–36].

The four central Paul trap segments provide radial con-
finement with an applied oscillating quadrupole driving field,
giving the effect of a rotating saddle potential well or harmonic
pseudopotential [35–38]. The driving field oscillates at angular
frequency � and has amplitude ±Vrf (relative to electrical
ground) on each diagonal pair of segments. The eight smaller
end segments allow for axial confinement and are held at a dc

potential Vend during trapping. The dimensionless efficiency
factor η depends on the geometry of the end segments.

All together,
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is the total approximate (r � r0) time-dependent electrical
potential � near the trap’s center, with magnitude of each
component of the position vector xi [see Fig. 1(b)], interelec-
trode inscribed radius r0, and rf segment length 2z0. Near the
trap’s center, we can approximate the trap electrodes’ shape as
hyperbolic and the vacuum chamber (at electrical ground) to
be infinitely far away.

The equation of motion for a single ion within the electrical
potential described by Eq. (1) is known as the Mathieu
equation. For a single ion with charge e and mass mI ,
approximate solutions to the Mathieu equation that are stable
against ejection of the ion from the trap are possible for
particular ranges of the so-called stability parameters ai and
qi (a1 < 0 and 0 < q1 � 0.9) [17,35,37,39]. The terms ai and
qi are defined as
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The ion’s motion within the harmonic pseudopotential can
therefore be described as a superposition of slow secular
motion, with angular frequency,

ωi ≈ �

2
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i

2
, (3)

(such that ai and qi � 1) and micromotion at the driving field
frequency � (whose amplitude increases as the ion moves
farther away from the trap’s nodal line) [34].

The total time-averaged (denoted by 〈〉) kinetic energy 〈Ek〉
of the ion is defined as
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The secular motion determines the kinetic energy in the x3

direction [34]. Therefore, the x3 amplitude of the ion’s motion
x03 can also be expressed as a function of the ion’s energy,

x03 ≈
√

2kBT

mIω
2
3

, (5)

assuming that mode approximately contains energy of kbT /2
where kb is the Boltzmann constant and T is the equivalent
temperature associated with the ion’s mean energy 〈Ek〉 =
5
2kbT [17,40].

It should be emphasized that the above discussion applies
to a single ion in a Paul trap under ideal vacuum conditions.
As one introduces other ions or background gas collisions,
the multibody problem quickly becomes too difficult to solve
analytically and the need for numerical simulations arises.

When ion-neutral and ion-ion collisions occur, various ion
heating mechanisms arise that are inherent to Paul traps.
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Within the scope of this paper, the two most important
mechanisms are atom-ion rf heating [18,21] and ion-ion rf
heating [16,33,38,41]. Atom-ion rf heating occurs at certain
instances of the driving field’s phase when an ion’s speed is
instantaneously reduced by an ion-neutral collision resulting in
a transfer of energy from the driven micromotion to the secular
motion [21]. Atom-ion rf heating should be differentiated from
instantaneous collisional heating, which is when an ion-neutral
collision simply increases the instantaneous speed of the ion
(independent of the ion’s micromotion). Unlike a buffer gas
which fills the entire volume of the Paul trap, a hybrid trap’s
neutral species occupies a finite region of the trap. As a result,
certain approximations made in Ref. [18] do not apply and the
restriction on equally massive ion-neutral sympathetic cooling
imposed by atom-ion rf heating within a buffer gas is not
valid for a hybrid trap [10]. Atom-ion rf heating should be
differentiated from excess micromotion, which occurs when
an ion is displaced away from the quadrupole field’s nodal
line (even in the absence of any collisions) [34]. Since the
mechanism is driven by the rf field, sympathetic cooling cannot
reduce excess micromotion. Excess micromotion has been
explored experimentally within hybrid traps in Refs. [7–9]
and was therefore not tested within this paper. If there is a
high enough ion cloud density, ion-ion rf heating results in an
absorption of energy from the driving field due to chaotic
motion within the ion cloud resulting from the Coulomb
interaction between the co-trapped ions [33].

B. SIMION simulation details

SIMION 7.0 uses a fourth-order Runge-Kutta method to
numerically solve for the ion trajectories generated by the
fields, produced by both the Paul trap’s electrodes as well
as the Coulomb repulsion between ions [25,26]. Our pro-
gram simulates both the slow secular motion and the fast
micromotion. We have created a custom electrode geometry
which models the exact dimensions of our Paul trap, the
vacuum chamber, and our ion detection apparatus (a biased
mesh and Channeltron). Figure 2 shows SIMION’s cutaway 3D
rendering of the electrode model as well as ion trajectories

FIG. 2. (Color online) SIMION’s isometric view of a three-
dimensional (3D) rendering of our segmented Paul trap after extract-
ing ions for detection. The (blue) tracks show the ions’ trajectory out
of the center of the trap where 100% of the ions reach the Channeltron.

(blue) during ion extraction and Channeltron detection. The
axial ion extraction occurs (and can be simulated) when a gated
dipole field is applied to the end segments. SIMION not only
allows the user to build custom electrode geometries, but also
contains a user programming interface that can be customized
to control time-dependent fields, ion-neutral collision effects,
and initial conditions [22].

Single ion simulations are always initialized at the center
of the trap with an initial velocity azimuthal and polar angle of
45◦. In multiple ion simulations, the ions’ initial spacial and
velocity directions are isotropically distributed. The energy of
an ion at t = 0 s is always set to the mean energy associated
with the temperature of the neutral gas from which the ion
is born. Typically this is from a 1000 K (0.1 eV) background
gas.

The program’s time step �t is continually adjusted
such that the ion moves a specified number of grid units
per time step (typically �t ∼ 10−3 − 10−1 μs < rf period ∼
1 μs). The program simulates three environments: ideal
vacuum conditions, a hot low-density neutral background gas,
or both a background gas and high-density cold MOT. When
running in either of the nonideal vacuum environments, the
probability of an ion-neutral collision is calculated within each
time step according to

P�t = 1 − e−nKs�t , (6)

where n is the density of the gas [19,22]. In Eq. (6), the
program uses either the background gas’s density or the
MOT’s density for n depending on the mode of operation
and the instantaneous position of the ion (e.g., it uses the MOT
density if the ion is inside a small sphere specified by rMOT).

Ks(E) = σs(E)v = σs(E)

√
2E

μ
(7)

is the instantaneous rate coefficient associated with the
atom-ion elastic (s = el) or nonradiative charge ex-
change (s = ce) scattering cross sections as a func-
tion of the instantaneous collision energy E, relative
velocity v, and reduced mass μ. The cross sections,

σel(E) = Cel

E1/3
, and σce(E) = Cce

E1/2
, (8)

with coefficients Cel (4174 a.u. for Na-Na+ and 5070 a.u.
for Na-Ca+) and Cce (57 a.u. for Na-Na+) were calculated
using power-law fits from a quantal ab initio treatment in
Refs. [23,24]. We find that the mean time between col-
lisions depends on several parameters (most importantly
neutral species density), but is typically in the range of
∼102–104 μs.

Using a random number generator and Eq. (6), the program
decides whether or not an instantaneous collision will occur
during each time step [19,22]. In the event a collision occurs,
the neutral atom’s initial speed and direction are chosen using a
random number generator. The generated speeds adhere to the
Boltzmann distribution and the initial direction is isotropically
distributed.

The ion’s final velocity during a charge exchange collision
is determined by swapping the ion’s current velocity with the
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randomly generated velocity of the neutral atom. In an elastic
collision, within the center-of-mass frame, the final velocity
of the ion is calculated and forced to adhere to a pseudo-
hard-sphere differential scattering cross section dσ

d�
. The ion’s

azimuthal scattering angle is isotropically distributed and the
polar angle θ follows the distribution function ρ described by

ρ(E,θ ) = 2π sin(θ ) dσ (E,θ)
d�

σ (E)
. (9)

The various randomly generated distribution functions [Boltz-
mann, isotropic, ρ(E,θ )] are created via a Monte Carlo select
and reject method [42].

There is a precedent for using a hard sphere model in
these types of simulations [19,43–45]. However, when similar
systems have been analyzed with a full quantal treatment
(e.g., Yb-Yb+), the differential cross sections have not been
found to be isotropic within the temperature regime being
considered (from 10−3 to 103 K) [46]. This has also been
observed experimentally [21,22]. The system must be in
the nanoKelvin regime to exhibit pure s-wave scattering.
A fully quantal treatment considers the higher order partial
wave contributions, which generally results in a differential
cross section that favors forward scattering. To improve upon
the hard sphere approximation, we still use a rectangular
differential cross section, but it is only nonzero for angles
less than 60◦. This cross section is what we are calling the
pseudo-hard-sphere differential cross section. When results
were compared using a true isotropic hard-sphere differential
scattering cross section, we found thermalization times to
be slightly shorter, but final energies to be approximately
unchanged.

Unless otherwise specified, the energy values and root-
mean-squared positions reported throughout this paper are a
time average over ≈15 secular oscillations of the instantaneous
kinetic energy of a single ion (or mean energy of a group of
ions) queried once per time step.

Our simulation reproduces results consistent with the
existing Paul trap literature. For example, under ideal vacuum
conditions, with no excess micromotion, and using optimal
stability parameter settings, a single ion has no heating
mechanism. Therefore, when a single Na+ ion was simulated
under ideal vacuum conditions, the numeric precision was
increased until the ion’s mean energy remained constant [Fig. 3
curve (b)].

When interacting with only a hot low-pressure neutral
background gas the ion (initially at the mean energy associated
with the background gas’s temperature) heats up due to
atom-ion rf heating and instantaneous collisional heating.
Additionally, a single ion has far fewer collisions with the
background gas as compared to its interaction with both a
background gas and a cold high density MOT. For example,
21 collision events with a background Na gas can be clearly
seen as discontinuities in curve (a). In contrast, curve (c) shows
sympathetic cooling (from ∼ 0.1 eV to ∼ 10−6 eV) after 256
elastic scattering collisions and 48 charge exchange collisions
with atoms from the modestly dense (n = 5 × 109 cm−3) and
cold MOT [TMOT = 1 mK (10−7 eV)]. We see that the hybrid
trap can yield sympathetic cooling despite the high atom-ion rf
heating associated with mI/mn ≈ 1. If the mass ratio becomes

FIG. 3. (Color online) Plot of kinetic energy versus time of
trapped single ion in different program environments. Curve (a) is
from a Na+ ion within background Na gas only (black) Pback =
7 × 10−9 torr and Tback = 1000 K (0.1 eV). Curve (b) is from a Na+

ion under ideal vacuum conditions (magenta). Curve (c) is from a
Na+ ion cooled by a MOT (orange) with n = 5 × 109 cm−3 and
TMOT = 1 mK (10−7 eV) within a background gas [Pback = 10−9 torr
and Tback =1000 K (0.1 eV)]. The curve is fit using Eq. (10). Curve (d)
is from an initially cold heavy ion with mI/mn ∼ 0.26 (red) heated
by a MOT under the same neutral gas conditions as (c).

mI/mn > 1, atom ion rf heating is reduced and greater cooling
can be achieved, as depicted in Fig. 4, which shows a single
Ca+ ion cooled under similar MOT conditions. As the Ca+
ion is cooled the axial oscillations approach zero amplitude
in accordance with Eq. (5). If the mass ratio is mI/mn < 1,
atom-ion rf heating collisions with the cold MOT can actually
heat an initially cold single ion [seen in Fig. 3 curve (d)] as
predicted in Ref. [18].

Since the energy dependence in Kel is weak we can
approximate the net heating and cooling rates to be a constant
κ . Therefore the time dependence of the ion’s energy can be

FIG. 4. Plot of axial position of one Ca+ ion relative to the trap’s
center versus time when overlapped with a MOT n = 6 × 109 cm−3,
TMOT = 1 mK (10−7 eV), and background gas Pback = 10−9 torr with
Tback = 1000 K (0.1 eV). As the ion is cooled the axial amplitude
decreases.
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approximated as

E(t) ≈ Efinal + (Einitial − Efinal)e
−κt , (10)

which our simulated ion’s energy evolution follows in Fig. 3
curve (c).

III. RESULTS

A. Single ion

The settings for all simulations, unless otherwise specified,
are the following: The Na MOT is concentric with the Paul
trap (where there is zero micromotion amplitude), TMOT =
1 mK (10−7 eV), Pback = 1 × 10−9 torr, Tback = 1000 K
(0.1 eV), Vend = 35 V, Vrf = 40 V for Na+ (or 70 V for
Ca+), � = (2π )708 kHz, η ≈ 0.14, r0 = 9.5 mm, and z0 =
24 mm. Therefore, q1 ≈ 0.4 and a3 ≈ 0.2amu

mI
. These values

were chosen to match closely with our optimal experimental
settings and actual trap geometry.

We have found that the cooling rate and final temperature
of the ions depend on several parameters with the MOT
density being the most critical, due to the exponential n

dependence in Eq. (6). Collisions with background gas atoms
at pressures below 10−8 torr (easily obtainable experimentally)
had a negligible effect on sympathetic cooling. We observe
only one or two background gas collisions out of hundreds or
thousands of MOT atom collisions at these densities.

As the MOT density increases, the thermalization time
and equilibrium energy decrease. For example, a Ca+ ion
overlapped with a MOT of density 1 × 109 cm−3 as shown
in Fig. 5 [curve (a)] does not thermalize until ∼ 5 s and has a
final energy of ∼10−6eV, while Ca+ cooled by a MOT with
density 2.5 × 1010cm−3 equilibrates at ∼10−7eV in ∼ 0.75 s
[curve (c)]. A single Na+ ion shows the same trend, as can
be seen by comparing curves (b) and (d) in Fig. 5. The
jagged appearance of the curves in Fig. 5 can be attributed

FIG. 5. (Color online) Plot of kinetic energy versus time for a
single ion showing the effect of MOT density on sympathetic cooling
[TMOT = 1 mK (10−7 eV) and rMOT = 1 mm for all curves]. Curve (a)
is from a Ca+ ion cooled by a MOT with n = 1 × 109 cm−3 (blue).
Curve (b) is from a Na+ ion cooled by a MOT with n = 5 × 109

cm−3 (orange). Curve (c) is from a Ca+ ion cooled by a MOT with
n = 2.5 × 1010 cm−3 (navy). Curve (d) is from a Na+ ion cooled by
a MOT with n = 2.5 × 1010 cm−3 (red). Higher MOT density results
in lower final energy and faster thermalization.

to the competing effects of instantaneous collisional heating,
atom-ion rf heating, and instantaneous collisional cooling.
The simulations show that the dominant heating mechanism
is atom-ion rf heating. For example, only 7% of all elastic
scattering collisions within the simulation associated with
Fig. 5 curve (b) resulted in an instantaneous speed increase
(i.e., instantaneous collisional heating). The infrequent number
of instantaneous collisional heating events is likely due to the
difference between the ion’s equilibrium energy and the mean
neutral-atom energy associated with the MOT’s temperature.
Further support for this explanation comes from the fact that
if the ion’s equilibration time and equilibrium energy is lower,
the percentage of instantaneous collisional heating events
increases [e.g., 20% within the simulation associated with
Fig. 6 curve (a)]. Additionally, due to the reduced atom-ion
rf heating associated with a larger mass ratio mI/mn we
observe the following: smoother energy equilibration, lower
equilibrium energy (e.g., 3 × 10−7 eV for Ca+ compared to
3 × 10−6 eV for Na+ in Fig. 6), and smaller standard deviation
energy fluctuation at equilibrium (e.g., 3 × 10−7 eV for Ca+
compared to 2 × 10−5 eV for Na+ in Fig. 6).

The atom-ion rf heating increases with increasing Vrf due
to the micromotion’s dependence on the stability parameter
q1. By varying Vrf we found that absolute Vrf values were
not a good metric for atom-ion rf heating rate comparison
between different ion species, but q1 was [38]. Figure 7 shows
MOT sympathetic cooling of Na+ in curves (a) (q1 ≈ 0.4) and
(b) (q1 ≈ 0.75), while Ca+ is shown in curves (c) (q1 ≈ 0.4)
and (d) (q1 ≈ 0.75). Under ideal vacuum conditions increasing
q1 only caused a small increase in the heating rate, likely due
to operating the trap close to the upper edge of the single ion
stability boundary. Hence, the difference between the left plot
and the right plot for a given ion species is almost entirely due
to atom-ion rf heating. The sympathetic cooling cannot combat
the heating from high rf amplitudes. Therefore, it is necessary
to use low q1 values (q1 � 0.4), provided the trap depth is
not lowered below the initial energy of the ion. Single ion
experiments within hybrid ion-BEC traps have drawn similar

FIG. 6. (Color online) Plot of kinetic energy versus time showing
the effect of ion species on sympathetic cooling. Curves (a) Na+

(orange) and (b) Ca+ (blue) were cooled with a MOT having n ∼
5 × 1011 cm−3. Ca+ cools to a lower final energy and exhibits fewer
fluctuations than Na+, due to the reduced atom-ion rf heating.

033408-5



GOODMAN, SIVARAJAH, WELLS, NARDUCCI, AND SMITH PHYSICAL REVIEW A 86, 033408 (2012)

FIG. 7. (Color online) Plot of kinetic energy versus time for (a)
and (b) single Na+ (orange) and (c) and (d) single Ca+ (blue) showing
the effect of q1 on sympathetic cooling and its dependence on ion
species. (a) and (c) have the Paul trap stability parameter q1 ≈ 0.4,
while (b) and (d) are at an increased Vrf resulting in Paul trap stability
parameter q1 ≈ 0.75. The larger atom-ion rf heating associated with
q1 ≈ 0.75 overwhelms the MOT cooling.

conclusions [7]. For multiple ion cooling, using low q1 values
will also eliminate any instability heating [17].

Initially the ion’s equilibrium energy decreases with de-
creasing MOT temperature, but not indefinitely (see Fig. 8).
In fact, at low enough MOT temperatures the ion actually
begins to equilibrate at higher energies. Again, at a given
MOT temperature Ca+ is cooled to a lower final energy
than Na+. We believe this effect is caused by atom-ion rf
heating. At lower MOT temperatures, the approximation made
in Ref. [21] that the neutral atoms have exactly zero velocity
in the laboratory frame (causing collisions to result in large
instantaneous speed decreases resulting in greater atom-ion rf
heating) becomes increasingly more valid. Hence, at lower
MOT temperatures the atom-ion rf heating rate increases,
resulting in a higher equilibrium energy. In addition, we

FIG. 8. (Color online) Plot of final thermalized energy of a single
Ca+ ion (blue) circles and Na+ (orange) triangles versus the MOT’s
temperature. As the MOT temperature is lowered the final mean
energy of the ion decreases, but not indefinitely, since the atom-ion
rf heating rate increases as well.

found that lowering the MOT’s temperature had little effect
on decreasing the thermalization time of the ion.

The initial ion energy was varied as high as 0.7 eV
(∼3000 K), which resulted in little to no difference in final
energy and thermalization time. DeVoe found similar results
for buffer gas cooling of a single ion [20].

We found that with a fixed number of Na atoms in the MOT
(N = 5 × 107), a smaller MOT radius cooled faster and lower
than a large MOT radius, that is, increased MOT density is
favorable despite decreased initial overlap between the MOT
cloud and the single ion trajectory volume (i.e., the volume
occupied by the ion’s 3D orbit). The ion’s initial secular axial
amplitude was ≈ 2 mm (always larger than the MOT radii
tested, e.g., 0.25–1.5 mm). This counterintuitive result can be
explained by the fact that with a higher density in the exponent
of Eq. (6), there is a higher collision rate which is apparently
more important than the reduced percentage of time spent
initially overlapped with the MOT.

To increase overlap without changing MOT characteristics,
we compressed the initial ion trajectory volume by increasing
the end segment voltage Vend in Eq. (1) (although the initial
amplitude was still larger than the radius of the MOT). We
found that this offered little improvement in thermalization
time and final energy. Overlap is improved automatically as
collisions with the MOT cool the ion and decrease the ion’s
oscillation amplitude [in accordance with Eq. (5) and seen in
Fig. 4]. The fact that the ion’s final energy is insensitive to
MOT overlap is consistent with the lack of sensitivity to the
initial ion energy, given the connection between ion energy
and secular oscillation amplitude described by Eq. (5).

For ions with no laser-excitable transitions, such as Na+,
overlapping the MOT with the center of the ion trajectory
volume becomes experimentally challenging, because there is
no fluorescence to visually confirm ion-neutral concentricity.
Therefore, we simulated the cooling of a single Na+ ion by
a MOT displaced axially off center (see Fig. 9). The MOT’s
ability to sympathetically cool is dramatically reduced if it is

FIG. 9. (Color online) Plot of kinetic energy of a single Na+ ion
versus time showing the effect of MOT-Paul trap concentricity on
sympathetic cooling. Curves are from a MOT (rMOT = 1 mm and
n = 5.7 × 109 cm−3) (a) located 2 mm off center axially (green),
(b) 1.5 mm off center axially (black), (c) 1 mm off center axially
(purple), and (d) on center (orange). The ion’s equilibrium energy is
sensitive to reduced MOT concentricity greater than one MOT radius.
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not concentric with the ion cloud. If the ion tends to have
collisions with the MOT at its secular oscillation turning
point (when the ion is at its peak micromotion amplitude),
a greater percentage of ion-neutral collisions will result in
atom-ion rf heating. Furthermore, as shown in Fig. 4, as
the ion cools its axial amplitude will decrease. Therefore,
the ion’s final energy is now limited (at best) to the energy
equivalent to the secular oscillation amplitude that equals the
distance between the edge of the MOT and the center of the
ion trajectory volume. This minimum ion-MOT concentricity
amplitude is why the the final ion energy is not significantly
affected until the MOT displacement is greater than one MOT
radius, as seen in Fig. 9. A secondary consequence of the
offset is a reduction in overlap resulting in a smaller effective
collision rate. Reference [7], using an ion-BEC hybrid trap,
experimentally demonstrates that the effective collision rate
is rather sensitive to ion-neutral concentricity which is in
qualitative agreement with our findings.

B. Multiple ions

1. Ion cloud

When simulating multiple ions, additional complexities
were incorporated into the program. A single ion can be
initialized at the center of a trap, but multiple ions must be
distributed throughout space in an ion cloud. We initialized
the ions isotropically within a sphere concentric with the
center of the Paul trap. In doing so, we found that the initial
time-averaged energy of the ion cloud (i.e., 〈Ek〉 of the ion
cloud after at least one secular oscillation) was highly sensitive
to the initial size of that cloud and not the velocity of the ions
within the cloud at t = 0 s (see Fig. 10). The total energy of
an ion at the moment it is born is primarily determined by

FIG. 10. (Color online) Plot of initial average kinetic energy (after
two secular oscillations) versus 〈rrms〉2 (at t = 0 s) of a Na+ ion
cloud. Triangles (magenta) are for Nion = 10 and circles (black) are
for Nion = 200. The initial kinetic energy of the ion cloud after two
secular oscillations is almost entirely dependent on the 〈rrms〉 at t =
0 s and not the ions’ 10−7 eV (1 mK) kinetic energy at t = 0 s used
for each data point. The energy is only approximately quadratically
dependent since Eq. (4) is cylindrically symmetric and not spherically
symmetric.

its large potential energy derived from its position relative to
the trap’s center, not its smaller kinetic energy derived from
its preionization neutral-atom velocity. Therefore, the size of
either the MOT or ionization beam (whichever is smallest)
is what primarily determines the time-averaged energy of an
ion cloud after one secular oscillation. We concluded that ions
created directly from a MOT inside a Paul trap will not have
cold initial time-averaged translational energy, despite the fact
that the neutral ensemble from which they are born is cold.

The dependence on initial 〈rrms〉 is also true for ions born
from the nonlocalized background gas. Since ions born from
the background gas may be born farther from the nodal line
and have much greater initial velocities, ions born from the
MOT will still be initially colder (but not cold or ultracold).

Another level of complexity that needed to be considered,
once we allowed for multiple ion trapping, was the production
of additional ions born directly from the Na MOT during
the cooling period. Molecular ions Na+

2 created via photoas-
sociative ionization and subsequently fast (∼0.5 eV) atomic
Na+ created via photodissociation can be produced by the Na
MOT’s trapping lasers [47–50]. Although Na is the only alkali
that undergoes this photoassociative ionization from its own
MOT beams, alkaline earth MOTs (e.g., Ca, Sr, Yb) can also
act as ion sources due to photoionization or photoassociative
ionization from their MOT beams [51].

The production of these extra Na+
2 and Na+ ions produced

directly from the MOT results in an uncontrolled source of
ions that can interfere with the controlled study of any other
ions created within the hybrid trap (e.g., Na+ initialized using
REMPI). This extra co-trapped ion gas is much hotter than
the MOT and has a strong (V ∝ 1/r) interaction with the Na+
(or Ca+) ions we are trying to cool. The thermalization of
the different ion clouds would work against the ion-neutral
(V ∝ 1/r4) sympathetic cooling from the MOT. Furthermore,
if additional ions are being created during the cooling period,
the ion density may become too large and will eventually cause
significant ion-ion rf heating. One can continuously and mass
selectively quench the unwanted ions from the Paul trap via a
well-established experimental technique where an additional
ac field is applied to either the end segments (on resonance
with an ion’s axial secular frequency) or the rf segments (on
resonance with an ion’s radial secular frequency) heating the
ions above the pseudopotential trap depth.

Unfortunately, these additional ac fields can have the side
effect of heating the ions we are trying to cool, despite the fact
that the additional field is off-resonance with the cooled ion’s
mass-dependent secular motion. Because of what we will call
ac side-effect heating, we must use as low an ac field amplitude
as possible. Additionally, we found that radial quenching (as
opposed to axial quenching), as well as using higher harmonics
of the quenched ion’s secular motion helped reduce side-effect
heating. This is likely because the radial trap depth is less than
the axial trap depth and there is a larger difference between
various ion species’ secular frequencies at higher harmonics.
We found that the side-effect heating could therefore be
significantly reduced (but not completely removed) such that
it offered effective quenching while negligibly increasing the
equilibrium energy of the sympathetically cooled ions.

While sympathetically cooling and trapping 10 Na+, we
simulated the birth and simultaneous quenching of Na+

2 ions
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FIG. 11. (Color online) Plot of kinetic energy versus time for Na+

(orange) and Ca+ (blue). (a) 10 Na+ ions with only a Na background
gas (Pback = 7 × 10−9 torr), (b) 10 Na+ with 1 mK (10−7 eV) MOT
n = 5 × 1010 cm−3 and r = 0.5 mm. (c) 10 Ca+ under the same MOT
conditions. Ten ions can be cooled to a few Kelvin, but not to ultracold
temperatures.

and found the process did not impede the cooling of the
10 Na+. Although an encouraging result, we should note that
we could not simulate the actual Na+

2 birth rate [47], because
of computational limitations.

We find a dramatic difference in the hybrid trap’s ability
to sympathetically cool one ion (Fig. 3) compared to two or
more ions (Fig. 11). The main factor limiting the equilibrium
energy of cooled multiple co-trapped ions is ion-ion rf heating,
although atom-ion rf heating still exists. In the presence of only
a background gas, atom-ion heating contributes to a mean
energy increase of 10 Na+ seen in Fig. 11 curve (a) [similar to
single ion results in Fig. 3, curve (a)]. The heating is not due
to ion-ion rf heating since 〈rrms〉 is large enough that the ions
are within the Mathieu regime [33].

Ten Na+ (or Ca+) ions [curve (b) and curve (c) of
Fig. 11, respectively] cooled with a MOT density of n = 5 ×
1010 cm−3 do not equilibrate at energies equivalent to sub-
Kelvin temperatures (the ions are only cooled to energies
equivalent to a few Kelvin due to ion-ion rf heating). However,
the MOT sympathetic cooling should cause a significant
extension in trapping lifetime since the ions are cooled well
below the pseudopotential’s radial trap depth of 0.94 eV and
axial trap depth of 5 eV [35]. Due to the ion-neutral mass
ratio resulting in weaker atom-ion rf heating, Ca+ equilibrates
at a lower energy than Na+. At this MOT density there was
approximately no difference in the equilibrium energies for 2,
5, or 10 sympathetically cooled ions. This is likely due the
common final energy barrier associated with the ion-ion rf
heating.

When trapping and cooling multiple ions a cold, nearly
crystallized center was found with one or two hotter atoms
orbiting around the periphery (see Fig. 12). Attempts to
improve overlap with the hotter orbiting ions by increasing
the end segment voltage and placing a positive bias on all four
rf segments (effectively squeezing the cloud, i.e., increasing
the overlap), did not significantly decrease the equilibrium

FIG. 12. (Color online) SIMION trajectories of two ions equilibrat-
ing with the MOT (ion #1 in blue and ion #2 in black). (a) View along
the axis of hybrid trap. (b) View from the side of the hybrid trap. The
cooled ions initially result in a colder ion in the trap’s center (ion #2)
and a hotter ion (ion #1) in an orbit that is poorly overlapped with the
MOT (rMOT = 0.5 mm).

energy. The lack of improvement was consistent with the
results discussed in the single ion case.

2. Ion crystal

Decreasing the MOT temperature to 500 nK
(6 × 10−11 eV) slightly lowered the final energy of the ions
but did not increase the cooling capacity enough to crystallize
the entire ion cloud. Only a high density MOT (n > 1 ×
1011 cm−3) can produce crystallization. Once cold enough to

FIG. 13. (Color online) Plot of kinetic energy versus time for
5 Ca+ ions. Curve (a) shows sympathetic cooling without crystal-
lization (magenta) where TMOT = 100 μK (10−8 eV) and n = 5 ×
1010 cm−3. Curve (b) shows sympathetic cooling with crystallization
(blue) n = 8 × 1011 cm−3, where the image shows SIMION’s rendering
of 5 crystallized ions.
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FIG. 14. (Color online) Plot of 〈rrms〉 versus 5 ions average kinetic
energy for two MOT densities n = 5 × 1010 cm−3 (green or light
gray) which does not crystallize and n = 8 × 1010 cm−3 (black) which
does crystallize. Marker (1) denotes the ion-ion rf heating barrier, that
is not breached at the lower MOT density. At higher MOT density
crystallization is reached at marker (2).

crystallize, we find a difference in final energies between the
2, 5, and 10 ion simulations. The minimum density needed for
crystallization for 2 ions with a 100 μK (10−8 eV) MOT was
4 × 1011 cm−3, 5 ions [shown in Fig. 13 curve (b)] required
at least 8 × 1011 cm−3, and 10 ions were never observed to
crystallize, even at densities as high as 1014 cm−3. When the
MOT density is above the required minimum crystallization
MOT density, further cooling can be realized.

To support the claim that ion-ion rf heating is the mecha-
nism that determines the final energy for sympathetic cooling
of multiple ions, we examined the correlation between mean
energy of the cooled ions and the ion cloud’s 〈rrms〉 (see
Fig. 14). While at initially large 〈rrms〉 and kinetic energy
(i.e., within the Mathieu regime) there is little difference in
the cooling by the high or low density MOT, except for small
fluctuation due to atom-ion rf heating. As the 〈rrms〉 decreases,
we begin to enter the chaotic regime; the heating rate begins to
fluctuate as a function of the ion cloud 〈rrms〉 resulting in both a
loss of clear position and energy correlation [shown by marker
(1) in Fig. 14]. This could be thought of as an energy–〈rrms〉
barrier. Only with the cooling capacity of the higher MOT
density can the ion cloud move past the ion-ion rf heating
barrier into an ion-crystal phase. Once in the approximately
constant 〈rrms〉 crystal state [shown by marker (2) in Fig. 14]
the ions can then be cooled further (by reducing the small
oscillation amplitudes).

To test the effect of atom-ion rf heating on crystallization,
we simulated the sympathetic cooling of 5 ions that were more
massive than Ca+ (mI/mn 	 7.52), but assumed the same
elastic scattering rate coefficient as that of Na-Ca+. We found
that these more massive ions cool to a lower final energy than
Ca+ (as can be expected with reduced atom-ion rf heating), but
that the minimum MOT density required to crystallize the ions
is approximately the same. Hence, the only way to achieve cold
or ultracold ion cloud temperatures is to have a high enough
MOT density to overcome the ion-ion rf heating.

IV. CONCLUSION

We simulated sympathetic cooling of a single ion and
multiple ions (2 � Nion � 10) in a hybrid trap. Our findings
demonstrate that a MOT with a low density ∼109 cm−3 and
modest 1-mK MOT temperature can cool a single ion to
ultracold energies within seconds, even in instances of equal
ion and neutral mass. Therefore, a BEC is not required to
achieve sympathetic cooling of a single ion in a hybrid trap.

To achieve the most effective cooling, we found that it is
critical that the MOT be concentric with the ion cloud and as
dense as possible. The MOT cooling rate is larger than the
atom-ion rf heating rate for only part of the full range of
stable qi values. Decreasing the MOT temperature does
decrease the final ion energy. However, it does not do so
indefinitely, since the atom-ion rf heating rate also increases.

Modest MOT conditions can also sympathetically cool
more than one trapped ion, although not to sub-Kelvin
temperatures. High MOT densities (n > 1 × 1011 cm−3) or
BEC densities are needed to overcome the ion-ion rf heating,
crystallize the ions, and allow for the possibility of further
cooling toward ultracold temperatures. However, this appears
to only be experimentally feasible for a small number of ions
(Nion < 10).

The initial ion cloud’s temperature can be determined via
simulation, as it depends primarily on the initial root-mean-
squared position of the ion cloud 〈rrms〉 rather than the number
of ions created or the temperature of the neutral gas from which
they are born. Last, it should be possible to perform mass
selective ion quenching of one species without significantly
heating other ions that are being sympathetically cooled.
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[14] P. Blythe, B. Roth, U. Fröhlich, H. Wenz, and S. Schiller, Phys.

Rev. Lett. 95, 183002 (2005).
[15] D. J. Larson, J. C. Bergquist, J. J. Bollinger, W. M. Itano, and

D. J. Wineland, Phys. Rev. Lett. 57, 70 (1986).
[16] C. B. Zhang, D. Offenberg, B. Roth, M. A. Wilson, and

S. Schiller, Phys. Rev. A 76, 012719 (2007).
[17] T. J. Harmon, N. Moazzan-Ahmadi, and R. I. Thompson, Phys.

Rev. A 67, 013415 (2003).
[18] F. G. Major and H. G. Dehmelt, Phys. Rev. 170, 91 (1968).
[19] B. Flatt et al., Nucl. Instrum. Methods Phys. Res. Sect. A: Ac-

celerators, Spectrometers, Detectors and Associated Equipment
578, 399 (2007).

[20] R. G. DeVoe, Phys. Rev. Lett. 102, 063001 (2009).
[21] S. Schwarz, in Trapped Charged Particles and Fundamental

Interactions, Lecture Notes in Physics, Vol. 749 (Springer
Berlin/Heidelberg, 2008), pp. 1–21.

[22] S. Schwarz, Nucl. Instrum. Methods Phys. Res. Sect. A: Ac-
celerators, Spectrometers, Detectors and Associated Equipment
566, 233 (2006).
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