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Engineering of fast population transfer in three-level systems
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We design, by invariant-based inverse engineering, resonant laser pulses to perform fast population transfers
in three-level systems. The laser intensities to improve the fidelity or to achieve a perfect transfer are examined
for different protocols. They can be reduced by populating the intermediate state and by multimode driving.
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I. INTRODUCTION

Controlling the internal state preparation and the system
dynamics by electromagnetic pulses is crucial in atomic
and molecular physics for applications such as metrology,
interferometry, quantum information processing, or driving
of chemical reactions [1–5]. In two- or three-level systems,
resonant pulses, rapid adiabatic passage (RAP), stimulated
Raman adiabatic passage (STIRAP), and their variants have
been widely used to perform population transfers [2–4].
Resonant pulses may be fast, but are highly sensitive to the
deviations of pulse areas and exact resonances, whereas the
adiabatic passage techniques are robust versus variations in
experimental parameters but slow. To combine the advantages
of resonant pulses and adiabatic techniques and achieve fast
and high-fidelity quantum state control, some alternative
approaches, like composite pulses [6–8] and optimal control
theory [9–13], have been proposed. Several recent works on
“shortcuts to adiabaticity” have been also devoted to internal
state population transfer [14–22]. The shortcut techniques
include counterdiabatic control protocols [14] or, equivalently,
transitionless quantum driving [15–17], “fast-forward” scaling
[23], and inverse engineering based on Lewis-Riesenfeld
invariants [24,25]. These methods are in fact strongly related,
and even potentially equivalent [18,26]. However, they provide
in general different shortcuts [18,21].

In this paper, we apply invariant-based engineering to
realize fast and robust population transfers in three-level
systems. This method has been applied in trap expansions
[24,25,27–30], rotations [31], atom transport [32–34], me-
chanical oscillators [35], or many-body systems [36,37]. In a
three-level system as the one depicted in Fig. 1, STIRAP allows
one to transfer the population adiabatically from the initial state
|1〉 to the target state |3〉. To speed up the process, a fast-driving
counterdiabatic field connecting levels |1〉 and |3〉 may be
used [16,38]. In general, though, it implies a weak magnetic
dipole transition, which limits the ability of the counterdiabatic
field to shorten the times [16,38]. Invariant-based engineering
solves this by providing alternative shortcuts that do not couple
directly levels |1〉 and |3〉.

II. INVARIANT DYNAMICS

The Hamiltonian for STIRAP within the rotating wave
approximation (RWA) reads

H0(t) = h̄

2

⎛
⎝ 0 �p(t) 0

�p(t) 2�p �s(t)
0 �s(t) 2�3

⎞
⎠ , (1)

where, as shown in Fig. 1, the Rabi frequencies �s (t) and �p(t)
describe the interactions with the pump and Stokes fields,
and the detunings from resonance are defined as �p = (E2 −
E1)/h̄ − ωp, �s = (E2 − E3)/h̄ − ωs , and �3 = �s − �p,
where ωs and ωp are the laser (angular) frequencies, and Ej ,
j = 1,2,3, the bare-basis-state energies.

We consider the so-called “one-photon resonance” case,
�p = �3 = 0, to simplify the Hamiltonian as

H (t) = h̄

2

⎛
⎝ 0 �p(t) 0

�p(t) 0 �s(t)
0 �s(t) 0

⎞
⎠ . (2)

The corresponding instantaneous eigenstates |n〉, with eigen-
values E0 = 0 and E± = ±h̄�/2, with � =√

�2
p+�2

s , are

|n0(t)〉 =
⎛
⎝ cos θ

0
− sin θ

⎞
⎠ , |n±(t)〉 = 1√

2

⎛
⎝ sin θ

±1
cos θ

⎞
⎠ , (3)

where tan θ = �p/�s . When the adiabatic condition, |θ̇ | �
|�|, is satisfied, perfect population transfer from the ground
state |1〉 to the excited state |3〉 can be achieved adiabatically
along the dark state |n0〉, using the counterintuitive pulse order
(Stokes before pump). We shall instead speed up the population
transfer by using a dynamical invariant. To construct it, the
Hamiltonian in Eq. (2) can be rewritten as [39]

H (t) = h̄

2
[�p(t)K̂1 + �s(t)K̂2], (4)

where K̂1, K̂2, and K̂3 are angular-momentum operators for
spin 1 [39],

K̂1 =
⎛
⎝ 0 1 0

1 0 0
0 0 0

⎞
⎠ , K̂2 =

⎛
⎝ 0 0 0

0 0 1
0 1 0

⎞
⎠ , K̂3 =

⎛
⎝ 0 0 −i

0 0 0
i 0 0

⎞
⎠ ,

that satisfy the commutation relations

[K̂1,K̂2] = iK̂3, [K̂2,K̂3] = iK̂1, [K̂3,K̂1] = iK̂2. (5)

The Hamiltonian (2) possesses SU(2) dynamical symme-
try, and an invariant I (t), such that dI/dt ≡ ∂I (t)/∂t +
(1/ih̄)[I (t),H (t)] = 0, is given by [18,40]

I (t) = h̄

2
�0(cos γ sin βK̂1 + cos γ cos βK̂2 + sin γ K̂3)

= h̄

2
�0

⎛
⎝ 0 cos γ sin β −i sin γ

cos γ sin β 0 cos γ cos β

i sin γ cos γ cos β 0

⎞
⎠ , (6)
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FIG. 1. Level scheme of STIRAP for a 	 level configuration. �p

and �s are the Rabi frequencies for the interactions with the pump
and Stokes fields, respectively, and �p and �3 are the detunings from
the resonances.

where �0 is an arbitrary constant with units of frequency to
keep I (t) with dimensions of energy, and the time-dependent
auxiliary parameters γ and β satisfy the equations

γ̇ = 1
2 (�p cos β − �s sin β), (7)

β̇ = 1
2 tan γ (�s cos β + �p sin β), (8)

where the dot represents a time derivative. The eigenstates of
the invariant I (t), which satisfy I (t)|φn(t)〉 = λn|φn(t)〉, (we
use the labels n = 0,±) are

|φ0(t)〉 =
⎛
⎝ cos γ cos β

−i sin γ

− cos γ sin β

⎞
⎠ (9)

and

|φ±(t)〉 = 1√
2

⎛
⎝ sin γ cos β ± i sin β

i cos γ

− sin γ sin β ± i cos β

⎞
⎠ , (10)

corresponding to the eigenvalues λ0 = 0 and λ± = ±1. Ac-
cording to Lewis-Riesenfeld theory [41], the solution of
the Schrödinger equation, ih̄∂t� = H�, is a superposition
of orthonormal “dynamical modes,” �(t) = ∑

n Cne
iαn |φn(t)〉

[41], where Cn is a time-independent amplitude and αn is the
Lewis-Riesenfeld phase,

αn(t) = 1

h̄

∫ t

0
〈φn(t ′)|ih̄ ∂

∂t ′
− H (t ′)|φn(t ′)〉dt ′. (11)

In our case α0 = 0, whereas

α± = ∓
∫ t

0

[
β̇ sin γ + 1

2

(
�p sin β + �s cos β

)
cos γ

]
dt ′.

III. INVERSE ENGINEERING AND FAST
POPULATION TRANSFER

To design �s and �p we write them first, using Eqs. (7)
and (8), in terms of γ and β,

�s = 2(β̇ cot γ cos β − γ̇ sin β), (12)

�p = 2(β̇ cot γ sin β + γ̇ cos β). (13)

Once the appropriate boundary conditions for γ and β are
fixed, we interpolate them with some ansatz, for example,

a polynomial or some other function with enough free
parameters, so that �s and �p are determined.

Our Hamiltonian H (t), Eq. (2), should drive the initial state
|1〉 to the target state |3〉, up to a phase factor, along the invariant
eigenstate |φ0(t)〉 in a given time tf . We therefore write down
the boundary conditions for γ and β, based on Eq. (9),

γ (0) = 0,γ (tf ) = 0, (14)

β(0) = 0,β(tf ) = π/2. (15)

In general, H (t) does not commute with the invariant I (t), and
they do not have common eigenstates. To achieve fast adiabat-
iclike passage (i.e., not really adiabatic all along but leading
to the same final populations), one may impose boundary
conditions to satisfy [H (0),I (0)] = 0 and [H (tf ),I (tf )] = 0,
which give �p(0) = 0 and �s(tf ) = 0. Using Eqs. (12)–(15)
this implies the additional boundary conditions

γ̇ (0) = 0,γ̇ (tf ) = 0. (16)

The set of conditions in Eqs. (14)–(16) guarantees fast
adiabaticlike population transfer. Now we are ready to apply
inverse engineering by means of different protocols. The
examples discussed below are not exhaustive.

Protocol 1. In the first protocol, we set the boundary
conditions for γ and β as follows:

γ (0) = ε,γ̇ (0) = 0,γ (tf ) = ε,γ̇ (tf ) = 0, (17)

β(0) = 0,β(tf ) = π/2. (18)

In contrast to Eq. (14) we have set a small value ε for
γ (0) and γ (tf ), as an exact zero value implies infinite Rabi
frequencies according to Eqs. (12) and (13). Consistent with
these boundary conditions, we can simply choose

γ (t) = ε,β(t) = πt/2tf , (19)

which provides

�s(t) = (π/tf ) cot ε cos (πt/2tf ), (20)

�p(t) = (π/tf ) cot ε sin (πt/2tf ). (21)

Figure 2 shows the time evolution of Rabi frequencies and
corresponding population transfer for �(t) with initial and
final states |φ0(0)〉 and |φ0(tf )〉. We take | − 3〉 = (0,0, − 1)T

as the target state, which corresponds to |φ0(tf )〉 for the ideal
conditions γ (tf ) = 0 and β(tf ) = π/2. (Note that for ε 	= 0
the initial state is not exactly |1〉. Later, in Protocol 3, we
shall examine the case |�(0)〉 = |1〉.) The final fidelity with
the target state is

F ≡ 〈 − 3|�(tf )〉 = cos ε. (22)

From Eqs. (20)–(22), we find

∂�s

∂ε
= −π cos (πt/2tf )

tf sin2 ε
∼ − 1

ε2
, (23)

∂�p

∂ε
= −π sin (πt/2tf )

tf sin2 ε
∼ − 1

ε2
, (24)

and

∂F

∂ε
= − sin ε ∼ −ε, (25)
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FIG. 2. (Color online) (a) Time evolution of Rabi frequencies,
�p (solid red) and �s (dashed blue) for γ (t) = ε and β(t) = πt/2tf .
(b) Time evolution of the corresponding populations of levels 1 (solid
red), 2 (dotted black), and 3 (dashed blue). Parameters are as follows:
tf = 4 μs; ε = 0.2.

respectively. In other words, the fidelity varies smoothly with
ε, whereas the Rabi frequencies decrease dramatically when
increasing ε. Therefore it is possible to achieve a desired
fidelity with relatively small Rabi frequencies.

Improving the fidelity or shortening tf implies increasing
the Rabi frequencies and the laser intensities, proportional
to their squares. Note the behavior of the time-averaged
frequency (interpreted geometrically as a “length” in [11]),

� ≡ 1

tf

∫ tf

0

√
�2

s + �2
p dt = π cot ε

tf
, (26)

and the time-averaged energy,

E ≡ h̄

∫ tf

0

(
�2

s + �2
p

)
dt = h̄

π2 cot2 ε

tf
. (27)

Protocol 2. We design now a different protocol, in which
the intermediate state |2〉 may be populated, and both pump
and Stokes pulses vanish at t = 0 and t = tf . Thus, we set the
following boundary conditions:

γ (0) = ε,γ̇ (0) = 0,γ (tf ) = ε,γ̇ (tf ) = 0, (28)

β(0) = 0,β(tf ) = π/2, (29)

γ (tf /2) = δ,β̇(0) = 0,β̇(tf ) = 0. (30)

The boundary conditions in Eqs. (28) and (29) are the same
as before, but we add now Eq. (30): Since the population
of the intermediate state |2〉 is given by P2 = sin2 γ , the
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FIG. 3. (Color online) (a) Time evolution of Rabi frequencies,
�p (solid red) and �s (dashed blue), for γ (t) = ∑4

j=0 aj t
j , and

β(t) = ∑3
j=0 bj t

j , with the boundary conditions (28)–(30). (b) Time
evolution of the corresponding populations of levels 1 (solid red),
2 (dotted black), and 3 (dashed blue). Parameters are as follows:
δ = π/4; tf = 4 μs; ε = 0.2.

condition γ (tf /2) = δ sets its maximal value at t = tf /2,
whereas β̇(0) = 0 and β̇(tf ) = 0 guarantee that �s(0) = 0 and
�p(tf ) = 0.

By assuming a polynomial ansatz to interpolate at interme-
diate times, γ (t) = ∑4

j=0 aj t
j and β(t) = ∑3

j=0 bj t
j , we can

solve the coefficients in terms of the boundary conditions.
Once γ (t) and β(t) are fixed, we may calculate the time
evolution of pulses and populations (see, e.g., Fig. 3, where
δ = π/4 is chosen as an example). Figure 3 shows that the
intermediate level |2〉 is populated, and the population is 1/2 at
t = tf /2, because γ (tf /2) = π/4. The two first protocols are
compared in Figs. 2 and 3: The laser pulse intensity is smaller
when the intermediate state |2〉 is allowed to be populated.
Note that while sharing the SU(2) dynamical symmetry with
two-level systems [18], the three-level system cannot be
reduced to a two-level system.

We also calculate the time-averaged frequency and energy
of Eqs. (26) and (27) in Fig. 4. They increase for a smaller
ε as before. When ε = 0.002 in Fig. 4, the fidelity F =
cos ε is equal to .999 998, which satisfies the criterion for
a fault-tolerant quantum computer [5]. They also decrease
significantly by populating level |2〉, though the behaviors
of frequency and energy are not the same. Remarkably,
Fig. 4(a) shows that the time-averaged frequency for each
ε can be minimized. For the smallest ε this happens when δ

approaches π/2 and the intermediate state is fully populated.
The time-averaged energy is even flatter for central values of
δ [see Fig. 4(b)]. When the intermediate state is not populated
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FIG. 4. (Color online) Time-averaged frequency (a) and energy
(b) in the second protocol as a function of δ for different values of
ε, where ε = 0.2 (solid red), ε = 0.02 (dashed blue), and ε = 0.002
(dotted black). Other parameters are the same as in Fig. 3.

at all, that is, δ = 0 or δ = π , both time-averaged energy and
frequency increase dramatically.

In general we may combine the invariant-based method
with optimal control to optimize the protocols according
to different physical criteria [28,33,34], for example, (time-
averaged) frequency minimization or energy minimization.
The time-optimal problem with bounded energy, and the
minimum energy cost problem for fixed time have been solved
for the three-level system [11,12].

Protocol 3. Our last protocol is a variant of the first one,
with the same pulses but a different initial state. An important
difference with respect to the previous protocols is that it is
based on multimode driving rather than on a single-mode
driving. This means that the time-dependent wave function
|�(t)〉 will include contributions from the three eigenvectors
of the invariant.

So far we have assumed that the initial state depends on ε

through the dependence of |φ0(0)〉 on ε. Let us instead use the
bare state |1〉 as initial state but keep the designed interactions
ε dependent as before. Figure 5 shows the fidelity 〈 − 3|�(tf )〉
as a function of ε when the initial state is |1〉. The fidelity for the
ε-dependent initial state |φ0(0)〉 is also shown for comparison.

Interestingly, the fidelity oscillates with respect to ε for the
pump and Stokes pulses described by Eqs. (20) and (21). To
analyze this in more detail, we first calculate the final state
�(tf ) = ∑

n Cne
iαn |φn(tf )〉, where Cn = 〈φn(0)|1〉. With the

eigenvectors |φn(t)〉 at t = 0 and tf we have

F ≡ 〈 − 3|�(tf )〉 = eiα0 cos2 ε + 1
2 (eiα+ + eiα− ) sin2 ε. (31)
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FIG. 5. (Color online) Fidelity versus ε for the initial state |1〉:
solid red and dotted black lines correspond to the examples 1 and 2
in Figs. 2 and 3. The fidelity F = cos ε (dashed blue) for the initial
state |φ0(0)〉 is also shown.

The Lewis-Riesenfeld phases αn are

α0 = 0,α± = ∓ π

2 sin ε
, (32)

which finally gives

F = 1 − sin2 ε

{
1 − cos

(
π

2 sin ε

)}
. (33)

When the condition

(sin ε)−1 = 4N,(N = 1,2,3...) (34)

is satisfied, the fidelity becomes 1. By solving Eq. (34), we
get ε = 0.2527 for N = 1, ε = 0.1253 for N = 2, etc. In
particular, the rightmost maximum at ε = 0.2527 combined
with the initial state |1〉 provides perfect population transfer,
as shown in Fig. 6, with less intensities than the ones required
in the first protocol for a good fidelity, since the value of ε is
relatively large now. Compare the values � = 2π × 0.48 MHz
and E/h̄ = 2π × 5.89 MHz for ε = 0.2527 in Protocol 3
(with fidelity F = 1) by using Eqs. (26) and (27), with
� = 2π × 0.62 MHz and E/h̄ = 2π × 9.56 MHz for ε = 0.2
(corresponding to F = 0.9682) in the first protocol. To achieve
higher fidelity in the first protocol, for example, F = 0.9998,
the time-averaged frequency and energy have to be increased
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FIG. 6. (Color online) Time evolution of the populations of
levels 1 (solid red), 2 (dotted black), and 3 (dashed blue), where the
pump and Stokes pulses are described by Eqs. (20) and (21), and the
initial state is |1〉. Parameters are as follows: tf = 4 μs; ε = 0.2527.
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FIG. 7. (Color online) Fidelity versus the change of pump and
Stokes pulses from �s and �p to �s(1 + η) and �p(1 + η). Protocol 1
(dashed blue) with ε = 0.02, Protocol 2 (dotted black) with ε = 0.02
and δ = π/4, and Protocol 3 (solid red) with ε = 0.2527. The initial
state is |1〉 and tf = 4 μs.

up to � = 2π × 6.25 MHz and E/h̄ = 2π × 981.49 MHz by
choosing ε = 0.02. In summary, Protocol 3, based on multi-
mode driving, provides an alternative shortcut to implement a
perfect population transfer with a low energy cost.

To check the stability, we compare the fidelity versus
systematic errors for different Protocols 1, 2 and 3. Protocol 3,
which makes use of multimode interference as in π pulses
for two-level systems, turns out to be more sensitive to
the systematic errors than the other protocols (see Fig. 7),
but the smaller laser intensities make it more robust with
respect to amplitude noise. Different stability properties may
be in general expected with respect to different perturbations
[22], and further work is necessary to optimize the inverse-
engineered protocols with respect to several experimental
conditions.

IV. DISCUSSIONS AND CONCLUSIONS

In this paper we have applied and developed the invariant-
based inverse engineering method to achieve fast population
transfers in a three-level system. Two different single-mode
protocols are applied first in which the fidelity is linked to
the laser intensity. Shortening the time also implies an energy
cost. To achieve the same fidelity, less intensity is required
when the intermediate level |2〉 is populated. The population
of the intermediate level is usually problematic when its time
decay scale is smaller than the process time. While this may
be a serious drawback for an adiabatic slow process, it need
not be for a fast shortcut. Protocols that populate level 2 may

thus be considered as useful alternatives for certain systems
and sufficiently short process times.

A variant of the first protocol in which the initial state
is simply the bare state |1〉 and the dynamics is driven by
a multimode wave function provides a less costly shortcut.
Further exploration of the multimode approach in this and
other systems is left for a separate study.

As we stated in the introduction, different techniques to
find shortcuts to adiabaticity are strongly related, or even
equivalent. The invariant-based inverse method presented
here may be compared to the optimal control approaches
in Refs. [9–11]. Invariant-based inverse engineering provides
a complementary perspective of these approaches, whereas
optimal control is useful to choose among the possible
solutions found by the invariant-based inverse engineering.
In the optimal control method used in Ref. [11], the system
of control differential equations coincides with Eqs. (7) and
(8) in the invariant method. The ultimate reason is that these
equations are in fact equivalent to the Schrödinger equation for
a given wave-function parametrization. The optimal protocol
in Ref. [11] corresponds to single-mode driving: The solution
of the dynamics is assumed to be the eigenstate of invariant
|φ0(t)〉. Multimode driving is allowed in the optimal control
method applied in Refs. [9,10]. The optimal functions for the
pump and Stokes pulses which maximize the unconstrained
cost functional J = 〈 − 3|�(tf )〉 + λ

∫ tf
0 dt(�2

s + �2
p), where

λ is some weight, have the functional structure used in Protocol
3, but note that the fidelity in Protocol 3 is one by construction.

Finally, the present results—–within the on-resonance
condition—are applicable to quantum state transfer with three
qubits [42], adiabatic splitting or transport of atoms in a
double well, and a triple well [43]. In a more general case, the
Hamiltonian (1) (�p 	= 0 and �3 	= 0) does not possess SU(2)
symmetry, so that the invariant I (t) should be constructed
in terms of the eight Gell-Mann matrices for the SU(3)
group [44]. The invariant-based inverse engineering for the
three-level systems with Gell-Mann dynamic symmetry and
the extension to N-level systems with SU(2) or SU(3) dynamic
symmetry [45,46] will be discussed elsewhere.
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[19] S. Ibáñez, S. Martı́nez-Garaot, X. Chen, E. Torrontegui, and
J. G. Muga, Phys. Rev. A 84, 023415 (2011).

[20] M.-A. Fasihi, Y.-D. Wan, and M. Nakahara, J. Phys. Soc. Jpn.
81, 024007 (2012).
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[32] E. Torrontegui, S. Ibáñez, X. Chen, A. Ruschhaupt, D. Guéry-
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