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Resonance fluorescence in ultrafast and intense x-ray free-electron-laser pulses
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The spectrum of resonance fluorescence is calculated for a two-level system excited by an intense, ultrashort
x-ray pulse made available, for instance, by free-electron lasers such as the Linac Coherent Light Source. We
allow for inner-shell hole decay widths and destruction of the system by further photoionization. This two-level
description is employed to model neon cations strongly driven by x rays tuned to the 1s2p−1 → 1s−12p transition
at 848 eV; the x rays induce Rabi oscillations which are so fast that they compete with Ne 1s-hole decay. We
predict resonance fluorescence spectra for two different scenarios: first, chaotic pulses based on the self-amplified
spontaneous emission principle, like those presently generated at x-ray free-electron-laser facilities and, second,
Gaussian pulses which will become available in the foreseeable future with self-seeding techniques. As an
example of the exciting opportunities derived from the use of seeding methods, we predict, in spite of the above
obstacles, the possibility to distinguish at x-ray frequencies a clear signature of Rabi flopping in the spectrum of
resonance fluorescence.
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I. INTRODUCTION

The spectrum of resonance fluorescence which is emitted
by an ensemble of atoms and ions driven by an intense
near-resonant electric field [1,2] is one of the cornerstones
of quantum optics [3,4]. The spectrum is measured experi-
mentally by exposing an atomic ensemble to intense light and
detecting the scattered photons as shown in Fig. 1. During the
last few decades such studies have received wide attention and
have stimulated the development of nonperturbative methods
in quantum electrodynamics for the study of the coherent
interaction between light and matter [5–10].

The resonance fluorescence spectrum of a two-level system
driven by a monochromatic electric field is the simplest
case and has been studied extensively at optical frequencies
[5,6,11–13]. For a sufficiently strong continuous-wave (cw)
driving field a nonlinear three-peak structure appears in the
spectrum [14–16] which is explained theoretically by the
nonperturbative approach of Mollow [5,6]. The presence of
three peaks, frequently called dynamic Stark splitting, is
explained as the result of the dressing of bare levels by the
external field [17].

A cw field is one of the few cases for which an exact
analytical solution of the equations of motion (EOMs) of the
two-level system exists. When the system interacts with a short
pulse, a special class of time-dependent functions, including
the case of a hyperbolic secant pulse, were analytically
explored for particular values of the physical parameters
[18–20], and a rich multipeak structure in the spectrum of
resonance fluorescence was predicted [21–27]. This property,
which still represents a signature of Rabi oscillations induced
by the intense driving field, is also predicted to depend upon
the pulse area, but cannot be intuitively explained by means of
dressed states [28].
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In this paper we investigate, in terms of a two-level model,
the coherent interaction of x rays with core electrons by
exciting K-shell transitions. Previous studies of strong-field
resonance fluorescence have been relevant only at optical
frequencies, for which a wide range of models and schemes
have been investigated [29–35], because of the lack of coherent
and sufficiently intense light sources at short wavelengths.
The recent construction of x-ray free-electron lasers (XFELs)
[36–40] provides one with tunable x-ray pulses of unprece-
dented brilliance, up to one billion times higher than the
intensity available at third-generation synchrotron facilities.
The intense and ultrafast pulses now available at XFELs
offer the opportunity to study nonlinear physics at short
wavelengths [41–50]. In the particular case that we are going to
investigate here, x rays are able to induce stimulated emission
and absorption of photons (Rabi flopping) at a time scale that
can be compared to and, therefore, compete with the ultrafast
inner-shell Auger decay [51,52].

Existing facilities such as the Linac Coherent Light Source
(LCLS) are based on the principle of self-amplified spon-
taneous emission (SASE) [53,54], i.e., the beam shot noise
gives rise to the emitted radiation which, as a result, possesses
only partial temporal coherence and a spiky temporal profile.
An analogous situation occurred at the beginning of optical
laser science, when it was timely to study the interaction with
the chaotic pulses available at that time [55,56]. Self-seeding
or optical laser-seeding methods are being developed, for
which the emitted light is produced by the amplification of a
regular (Gaussian) seeding pulse, which exhibits high temporal
coherence [57–59]. The rapid development of XFEL sources
makes, therefore, further theoretical work timely [60].

In a recent experiment, intense and ultrashort x-ray pulses
from the LCLS have been used to excite the 1s 2p−1 →
1s−1 2p transition at 848 eV in Ne+ [52]. The electron
spectrum of resonant Auger decay was measured to investigate
Rabi flopping. With only partial coherence of the SASE
pulses presently available at LCLS and the lack of means
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FIG. 1. (Color online) An atom ensemble (red) is driven by x
rays (blue) tuned to a resonance. The emitted photons (green) are
measured perpendicularly to the propagation direction of the x rays.

for single-shot diagnostics, though, the clear observation of
Rabi oscillations and its distinction from noise effects is
challenging [52].

Auger decay is the predominant mechanism of inner-shell
hole decay of light elements such as neon. Because of the
large Auger yield, high-resolution electron spectroscopy is
well suited for soft x rays. Besides Auger decay, K holes also
decay by x-ray fluorescence, i.e., by spontaneous emission of
photons, while the system is driven by an external field. The
spectrum of resonance fluorescence represents an alternative
way to study the coherent and nonlinear interaction between
x rays and atoms and ions. It complements the results coming
from the detection of electron spectra of resonant Auger decay.
High gas densities can generally be used for x-ray emission
spectroscopy—orders of magnitude larger than with electron
spectroscopy—which compensates for the small fluorescence
yield and enables high-resolution measurements with gratings
or crystal spectrometers. In the case of resonance fluorescence,
however, self-absorption can produce line broadening [61],
so the gas density and path length need to be adjusted to
minimize self-absorption effects and make them negligible.
Furthermore, photons are scattered much less off electrons or
ions in the interaction volume than electrons, i.e., space-charge
effects are of little concern [62].

For x-ray energies, present instruments are expected to de-
tect the fluorescence spectrum with high frequency resolution.
For the purposes of this paper, there are at least three choices
of instruments: a cryogenic spectrometer [63], a diffraction
grating [64], and a crystal spectrometer [65]. Cryogenic
spectrometers such as microcalorimeters are mostly used in
the astrophysics community for detecting x rays from atoms
with high atomic numbers and high fluorescence yield [66]; at
1 keV, Ref. [67] suggests a frequency resolution lower than
0.8 eV. For modern grating instruments based on the design
described in Refs. [68,69] a resolution of 0.4 eV at 848 eV is
expected. It might also be possible to achieve higher frequency
resolution by using higher-order reflections from gratings and
crystals—though with loss of detection efficiency. With the use
of wavelength-dispersive spectrometers, such as diffraction
gratings and crystal spectrometers, one might take advantage
of their polarization sensitivity in a parallel and perpendicular
setup, e.g., for background reduction [70].

In this paper, we develop a time-dependent theory of
resonance fluorescence to study the interaction of a two-level
model with x-ray pulses. In Sec. II we describe our theoretical
approach, by defining the spectrum of resonance fluorescence
and its main properties and by introducing the two-level model
that is used throughout the paper. Results are discussed in
Sec. III, where the spectrum of resonance fluorescence is
examined for different driving pulses. In particular, we
compare different spectra for the presently available chaotic
pulses produced via the SASE principle and for pulses with a
Gaussian temporal profile that seeding techniques are making
available. Section IV concludes the paper. Atomic units are
used throughout unless otherwise stated.

II. THEORETICAL MODEL

A. Two-level model

The coherent interaction between atoms and ions and x
rays tuned to a particular atomic resonance can be described
in terms of a two-level model when the transition is isolated
from other levels. In our case, we use such a model to study the
1s2p−1

z → 1s−12pz transition in Ne+ at an energy of 848 eV
[52], driven by a near-resonant electric field linearly polarized
along the z direction. The two-level model, which is depicted
in Fig. 2, is justified by the fact that the transition is very
well isolated, by more than 70 natural linewidths separated
from the next Rydberg excitation 1s → 3p of neutral Ne at
867 eV [52]. For neon, relativistic effects and fine-structure
splitting do not play an important role and, therefore, spin-orbit
splitting can be neglected.

We describe the emitted fluorescent light field by a quantum
operator Ê(r,t) = Ê

+
(r,t) + Ê

−
(r,t), where Ê

+
(r,t) and

Ê
−

(r,t) are, respectively, the positive-frequency and negative-
frequency parts of the operator [71]. However, it is sufficient to
describe the relatively strong driving field classically [12], via

E(t) = E0(t) cos[ωXt + ϕX(t) + ϕX,0], (1)

FIG. 2. (Color online) Two-level model used to describe the
coherent interaction between Ne+ and the external driving field tuned
to the 1s2p−1 → 1s−12p transition at 848 eV [52]. The ground state
1s2p−1 is given by |1〉 = |L = 1,ML = 0〉 and the core-excited state
1s−12p is written as |2〉 = |L = 0,ML = 0〉. The external field is
linearly polarized along the z direction and induces Rabi flopping
between these states. Spontaneous decay, however, also allows the
core-excited state to decay to valence-ionized states with ML = ±1.
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where E0(t) is the time-dependent electric-field envelope, ωX

is the x-ray central frequency, ϕX(t) is the time-dependent
phase of the field, and ϕX,0 is the carrier-envelope phase (CEP).
We assume throughout an electric field linearly polarized
along the z direction, E0(t) = E0(t) êz, with the unit vector in
z direction êz. The use of planar undulators at XFEL facilities,
in fact, produces linearly polarized x-ray pulses [40];
experimental evidence for a very high degree of linear
polarization of LCLS x rays has been given in Refs. [42,52].
We further assume a pulse with uniform intensity distribution
profile; spatial averaging is therefore not performed.

In order to properly model the atomic transition, we see
in Fig. 2 that the 1s2p−1 configuration is a spin doublet state
with a total orbital angular momentum of L = 1; consequently,
it is triply degenerate in energy. The three eigenstates of the
unperturbed atomic Hamiltonian Ĥ0 with energy ω1, which
diagonalize the z component of the total orbital angular
momentum operator, are |1+〉, |10〉, and |1−〉, respectively
with ML = +1,0,−1. Conversely, the 1s−12p configuration
corresponds to the single eigenstate |2〉 of the field-free atomic
Hamiltonian, with L = 0, ML = 0, and energy ω2. The energy
of the atomic transition is ω21 = ω2 − ω1. The relevant raising
and lowering atomic operators are

σ̂ij = |i〉〈j |, i,j ∈ {1+,10,1−,2}. (2)

The interaction between the ions and the electric field
is described in the dipole approximation because the 1s

orbital of neon is very compact, involving dimensions much
smaller than the wavelength associated with the transition
1s2p−1 → 1s−12p, such that nondipole terms are small [51].
The Hamiltonian of the system is

Ĥ = Ĥ0 + Ĥint, (3)

where Ĥ0 = ∑
i ωi σ̂ii is the unperturbed atomic Hamiltonian

with eigenvalues ωi , whereas Ĥint represents the interaction
of the ion with the classical, linearly polarized, near-resonant
field (1) [3],

Ĥint = − P̂ · E0(t) cos [ωXt + ϕX(t) + ϕX,0]. (4)

The operator P̂ in (4) is the total atomic polarization operator

P̂ = P̂
+ + P̂

−
, (5)

with P̂
− = [ P̂

+
]† and [72]

P̂
+ = 〈1+| P̂ |2〉 σ̂1+2 + 〈10| P̂ |2〉 σ̂102 + 〈1−| P̂ |2〉 σ̂1−2

= ℘ (êσ+ σ̂1+2 + êz σ̂102 + êσ− σ̂1−2), (6)

where êx , êy , and êz are unit vectors in the x, y, and z directions
and êσ± = (∓êx + i êy)/

√
2 are circular polarization vectors,

positive (negative) for polarizations λ = ±1, with êσ± =
−ê∗

σ∓ . Due to spherical symmetry, the dipole matrix element is
real, ℘ = ℘∗, and is the same for all transitions; as the atomic
states have a definite parity, 〈1±, 0| P̂ |1±, 0〉 = 〈2| P̂ |2〉 = 0,
dipole transitions only couple states with different total angular
momentum quantum numbers, �L = 1 [72].

Since the external electric field is assumed to be linearly
polarized [42,52], the dipole interaction only couples the states
|2〉 and |10〉 satisfying the condition �ML = 0 [72]: in Eq. (4),
within the rotating-wave approximation [3] and by using

Eq. (6), Ĥint reduces to

Ĥint = −�R(t)

2

(
σ̂102e

i[ωXt+ϕX(t)] + σ̂210 e−i[ωXt+ϕX(t)]
)
, (7)

where we have set the CEP ϕX,0 to 0 and where the
instantaneous Rabi frequency

�R(t) = ℘ E0(t) (8)

has been introduced.
In our model the dynamics of the two x-ray coupled

states |2〉 and |10〉 is independent from the other two states
|1±〉 and one can develop an actual two-level description of
the system in which the EOMs exclusively contain the two
aforementioned states |10〉 = |1〉 and |2〉 and neglect the other
two states entirely.

B. Density matrix formulation and equations of motion

We investigate in the following the two-level system
formed by the states |1〉 ≡ |10〉 and |2〉. We introduce the
density matrix

ρij (t) = 〈i|ρ̂(t)|j 〉 = 〈σ̂j i(t)〉 (9)

(i,j ∈ {1,2}), whose evolution is described by the master
equation [73]

dρ̂

dt
= −i[Ĥ ,ρ̂(t)] + Lρ̂(t) + Dρ̂(t). (10)

The first term −i[Ĥ ,ρ̂(t)] describes the coherent dynamics of
the two-level system. In the total Hamiltonian Ĥ [Eq. (3)] the
only relevant terms of the unperturbed atomic Hamiltonian Ĥ0

are ω1σ̂11 and ω2σ̂22. The Lindblad operator Lρ̂(t) represents
the norm-conserving spontaneous decay of the population
from the excited state |2〉 to the ground state |1〉. The rate
at which this process occurs is given by Ref. [3]


R,z = 4ω3
21

3c3
|℘|2. (11)

Atoms and ions with high atomic numbers are usually
characterized by a high fluorescence yield, i.e., the importance
of spontaneous decay increases with the atomic number of
the ion of interest. The last term Dρ̂(t) denotes the norm-
nonconserving term not present in the Lindblad form of the
master equation [74]. We introduce this term to describe
the decrease of the population of both the upper and lower
states [4]. These norm-nonconserving processes include Auger
decay, photoionization of the system due to the intense external
field, and spontaneous decay from the excited level |2〉 to the
two levels |1±〉 which are not coupled by dipole interaction. We
do not include Doppler broadening [61] and collision effects
[4] in our model, because they involve time scales much longer
than the decay time of the system and, at room temperature
and for a pressure of 1 atm, they can be neglected [75].

Auger decay and photoionization destroy the two-level
system by further ionization of Ne+ to levels which need
not be taken into account explicitly. The Auger decay width
is 
A, whereas the rate of photoionization 
P,i(t), i ∈ {1,2},
is [76]


P,i(t) = σX,iJX(t), (12)

with the photoionization cross section for the level i, σX,i =
σi(ωX), the x-ray flux

JX(t) = I (t)/ωX, (13)
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and the x-ray intensity

I (t) = E2
0 (t)

8πα
. (14)

Notice that we evaluate the photoionization cross section and
the flux at ωX since the cross sections do not vary much within
the bandwidth of the field.

The spontaneous decay of the excited level |2〉 to the states
|1±〉 also represents a process which does not conserve the
norm of our two-level system. The total radiative decay rate is
given by


R = 
R,σ+ + 
R,z + 
R,σ− = 3
R,z, (15)

where 
R,z is the spontaneous decay width to the state |1〉
given in Eq. (11) and 
R,σ± are defined analogously for
the other two decay channels; the second equality exploits
Eq. (6). Since the spontaneous decay of the excited level |2〉
only depends on the population of the state itself, as we are
going to show in the following EOMs, the actual dynamics of
states |1±〉 can be indeed neglected for our purposes.

The total decay processes are included in Eq. (10). In
order to derive the EOMs for the four relevant components
of the density matrix, we move to the rotating frame [77], by

introducing the operators

ς̂ii = σ̂ii , ς̂12 = eiωXt σ̂12, ς̂21 = e−iωXt σ̂21, (16)

whose expectation values are denoted by

Rij (t) = 〈ς̂j i(t)〉, (17)

which, from Eqs. (9) and (16), implies that Rii(t) = ρii(t),
R12 = ρ12e

−iωXt , and R21 = ρ21e
iωXt .

We introduce the vector


R(t) = (R11(t),R12(t),R21(t),R22(t))T,

whose components are given by the elements of the density
matrix Rij (t) in the rotating frame. Before the arrival of
the light pulse the two-level system is assumed to be in
the ground state, i.e., 
R0 = (1,0,0,0)T. This assumption is
supported by experimental observations of orbital alignment in
ions produced by strong-field ionization [78]. If the fraction of
ions in the ML = 0 ground state is lower than 1, the resonance
fluorescence spectrum must be multiplied by this factor.

The master equation (10) can be rewritten in matrix form

d 
R(t)

dt
= M(t) 
R(t), 
R(0) = 
R0, (18)

where M(t) is the following time-dependent matrix:

M(t) =

⎛
⎜⎜⎜⎜⎝

−γ1(t) −i �R(t)
2 e−iϕX(t) i �R(t)

2 eiϕX(t) +
R,z

−i �R(t)
2 eiϕX(t) i� − 1

2 [γ1(t) + γ2(t)] 0 i �R(t)
2 eiϕX(t)

i �R(t)
2 e−iϕX(t) 0 −i� − 1

2 [γ1(t) + γ2(t)] −i �R(t)
2 e−iϕX(t)

0 i �R(t)
2 e−iϕX(t) −i �R(t)

2 eiϕX(t) −γ2(t)

⎞
⎟⎟⎟⎟⎠, (19)

with

γ1(t) = σX,1JX(t), (20a)

γ2(t) = σX,2JX(t) + 
A + 
R, (20b)

where we have defined the detuning � = ω21 − ωX.
The knowledge of the time evolution of the atomic one-time

expectation values is used to derive the two-time expectation
values necessary for the computation of the spectrum of
resonance fluorescence. For this purpose, we introduce the
two-time vector


Y (t1,t2) = (Y11(t1,t2),Y12(t1,t2),Y21(t1,t2),Y22(t1,t2))T, (21)

whose elements are defined as

Yij (t1,t2) = 〈ς̂j i(t1)ς̂12(t2)〉. (22)

Applying the quantum regression theorem [77,79] yields

∂ 
Y (t1,t2)

∂t1
= M(t1) 
Y (t1,t2), t1 � t2, (23)

with the initial conditions given by Yij (t2,t2) = δi1R2j (t2). The
solution of the first set of differential equations (18) provides
one with the initial conditions for the second set of differential

equations (23), whose solution gives

Y12(t1,t2) = 〈ς̂21(t1)ς̂12(t2)〉 = 〈σ̂21(t1)σ̂12(t2)〉e−iωX(t1−t2).

(24)

C. Spectrum of resonance fluorescence

The study and computation of the spectral properties of
the fluorescent light requires the knowledge of the first-order
autocorrelation function of the electric-field operator [80,81]

G(1)(t1,t2,r) = 〈Ê
−

(r,t1) · Ê
+

(r,t2)〉. (25)

In the case of cw light, when the first-order autocorrelation
function depends explicitly on the time difference τ = t1 − t2,
i.e., G(1)(t1,t2,r) = G(1)(τ,r), the Wiener-Khintchine theorem
[3] states that the power spectrum of resonance fluorescence
associated with the rate of photons emitted at a given frequency
is well defined and given by the Fourier transform of G(1)(τ,r)
[82]. However, for ultrashort light pulses, G(1)(t1,t2,r) ex-
plicitly depends upon the two distinct instants t1 and t2 and
the Wiener-Khintchine theorem cannot be analogously used
to define a power spectrum. Instead, one needs to study
the energy spectrum of resonance fluorescence, defined as a
quantity proportional to the probability that an ideal photon
detector—modeled itself as a two-level system with tunable

033402-4



RESONANCE FLUORESCENCE IN ULTRAFAST AND . . . PHYSICAL REVIEW A 86, 033402 (2012)

transition energy ω—is excited by the fluorescent light. In
first order of perturbation theory and in the electric-dipole
approximation, the energy spectrum is defined as [80]

S(ω,r) = 1

4πα

∫ +∞

−∞

∫ +∞

−∞
G(1)(t1,t2,r)e−iω(t1−t2)dt1dt2.

(26)

Here, S(ω,r)dω dA represents the energy detected on average
in the differential energy interval [ω,ω + dω] and in a surface
element d A = r2 d� êr centered on r = r êr . Further, α is the
fine-structure constant, d� is the differential solid angle, and
êr = r/|r| is the unit vector in the direction of observation (0
is the position of the atom).

We assume that the driving field propagates along the y axis.
In the far-field limit and in the electric-dipole approximation—
away from the y propagation axis in which also the driving field
would be present—the electric-field operator associated with
the fluorescent light can be related to the atomic polarization
operator P̂

+
(t) [Eq. (6)] via the relation [3,7,12]

Ê
+

(r,t) = ω2
21

c2r
{ P̂

+
(t − r/c) − [ P̂

+
(t − r/c) · êr ]êr}.

(27)

If the detector is placed along the x axis, as shown in Fig. 1,
then êr = êx and one obtains from Eq. (6)

Ê
+

(r êx,t) = Ê+
z (r êx,t)êz + Ê+

y (r êx,t)êy, (28)

with

Ê+
z (r êx,t) = ℘ ω2

21

c2r
σ̂102(t − r/c) (29)

and

Ê+
y (r êx, t) = i√

2

℘ ω2
21

c2r
[σ̂1+2(t − r/c) + σ̂1−2(t − r/c)],

(30)

whereas, because of the placement of the detector, the x

component of the electric-field operator Ê+
x (r êx,t) vanishes.

Analogously, the autocorrelation function is split into two
parts:

G(1)(t1,t2,r êx) = 〈Ê−
z (r êx,t1)Ê+

z (r êx,t2)〉
+〈Ê−

y (r êx,t1)Ê+
y (r êx,t2)〉. (31)

The first term in Eq. (31) is the autocorrelation function of the
fluorescence photons which are polarized along the z direction;
the transition with which they are associated (|1〉 → |2〉) is
driven by the external field, which modulates the polarization
operator along the z direction and induces Rabi flopping. The
general case of a detector placed in the x-z plane, forming an
arbitrary angle θ with respect to the x axis, is discussed in
Appendix A.

With Eqs. (26) and (31), the resonance fluorescence energy
spectrum is also split into two terms S(ω,r êx) = Sz(ω,r êx) +
Sy(ω,r êx). The calculation of Sy(ω,r êx) goes beyond the
two-level approximation we adopt in this paper and requires
a complete four-level description of the system. In this paper
we describe the appearance of Rabi flopping in the resonance
fluorescence spectrum for those photons which are emitted in

the transition to the ground state |1〉. For êr = êx this represents
the only contribution in Sz(ω,r êx) and its observation can
be experimentally realized using a polarization-dependent
detection to selectively detect the radiation which is linearly
polarized in the z direction, in order to select those fluorescence
photons associated with the transition to the state with ML = 0.

Polarization-dependent measurements can be very infor-
mative, e.g., they have played an important role for molecules
where the valence orbitals can be resolved [83,84]. Reflections
from mirrors, gratings, or crystals at angles that achieve
high polarization selectivity at the frequency of the atomic
transition involved allow one to measure the polarization of
the radiation. The use of wavelength-dispersive spectrometers,
which involve reflecting x rays from a grating or crystal, can
provide one with polarization selectivity. Energy-dispersive
spectrometers, such as a cryogenic spectrometer, can be
polarization sensitive if they are pixelated and the x rays
are hard enough to Compton scatter in the absorber. In
addition, polarization-dependent detection in a parallel and
perpendicular setup facilitates background reduction.

By exploiting the polarization properties of the emitted
light, we can focus on the first component of the first-order
autocorrelation function (31), which is expressed as

G(1)
z (t1,t2,r êx) = I(r)〈σ̂21(t1 − r/c) σ̂12(t2 − r/c)〉, (32)

where

I(r) =
(

ω2
21|℘|
c2r

)2

(33)

is a factor dependent on the position of observation at
which the detector is placed and having the dimension of an
intensity [12].

By introducing the time delay τ = t1 − t2 and noticing that
〈σ̂21(t1)σ̂12(t2)〉 = 〈σ̂21(t2)σ̂12(t1)〉∗, we conclude that knowl-
edge of 〈σ̂21(t1)σ̂12(t2)〉 in the region t1 � t2 (and hence τ � 0)
is sufficient for the calculation of the energy spectrum of
resonance fluorescence [77]. We rewrite (26) in compact form
as

Sz(ω,r êx) = 3
R,zω21

8πr2

∫ +∞

−∞

∫ +∞

0
Re[e−iωτ 〈σ̂21(t2 + τ )

× σ̂12(t2)〉]dτ dt2, (34)

where we use Eqs. (11), (32), and (33). As a result, one can use
Y12(t1,t2) from the solution of Eq. (23) to compute the energy
spectrum of resonance fluorescence.

In the following, we are going to compute Sz(ω,�) =
r2Sz(ω,r êx) for a detector along the x axis. Sz(ω,�)d�dω

is the energy emitted into d� and dω; in atomic units Sz(ω,�)
has the dimension of 1/sr. Finally, we notice that the total
detected energy emitted into d� is

E =
∫ +∞

−∞
Sz(ω,�)dω = 3
R,zω21

8

∫ +∞

−∞
R22(t)dt, (35)

exploiting the relation

2πδ(t1 − t2) =
∫ +∞

−∞
e−iω(t1−t2) dω.
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III. RESULTS AND DISCUSSION

Here we apply our two-level model to study neon cations
on the 1s2p−1 → 1s−12p transition at ω21 = 848 eV [52],
i.e., the detuning is � = ω21 − ωX = 0. Scattered x rays
could be observed if the XFEL beam energy is detuned
from resonance. As demonstrated in Ref. [85], for example,
Compton scattering, resonant Raman scattering, and Rayleigh
scattering can be observed as the resonance is approached
from below. At 848 eV, however, resonance fluorescence will
dominate the measured spectrum.

The destruction rate of our effective two-level system is
dominated by the Auger decay width of Ne 1s−1 which is 
A =
0.27 eV [86]. The dipole moment ℘ = 0.0524a0 is com-
puted with the Hartree-Fock-Slater mean-field model [87–89],
whereas the photoionization cross sections are computed using
the Los Alamos Atomic Physics Codes [90,91]. From Eq. (11)
the radiative decay width follows, where 
R,z = 0.0012 eV
and the total decay rate is 
R = 0.0039 eV [92], in good
agreement with Eq. (15).

The spectrum Sz(ω,�) that we will compute represents the
emitted photons linearly polarized along the z direction from
our two-level model. Off-resonant Rayleigh scattering from 2s

and 2p electrons in Ne is, however, not taken into account. This
elastic scattering is predicted to be anisotropically distributed
for a linearly polarized electric field: in our case, E(t) =
E(t)êz, the intensity of the elastic scattering would be affected
by the source-dependent polarization factor sin2 ψ [76], where
ψ is the angle between the z axis and the direction of
detection êr at which the detector is placed. This additional
contribution is not included in the two-level approximation that
we implement in this paper. Its only effect is an enlargement
of the central peak of the spectrum.

A. Gaussian x-ray pulses

Self-seeding techniques at LCLS are providing one with
pulses with an approximately Gaussian temporal profile
[58,59]; it is interesting therefore to predict the evolution of
the atomic properties in time and the spectrum of resonance
fluorescence for Ne+ cations for this case. We write the
Gaussian pulse as

E0,G(t) = Emaxe
−[t2/(2T 2)], ϕX(t) = 0, (36)

where T = τG/(2
√

ln 2) and τG is the FWHM of E2
0,G(t). The

FWHM of |Ẽ0,G(ω)|2 is �ωG = 4 ln 2/τG, where

Ẽ0,G(ω) =
∫

E0,G(t)eiωt dt = T
√

2πEmaxe
−(ω2T 2/2)

is the Fourier transform of E0,G(t) [71]. The peak intensity
[Eq. (14)] is IG = E2

max/(8πα), yielding a maximum Rabi
frequency [Eq. (8)] �RG,max = ℘Emax = ℘

√
8παIG.

Further, we introduce the pulse area

Q =
∫ +∞

−∞
�R(t) dt, (37)

which was shown to play an important role in the description of
the dynamics of a two-level system in interaction with a regular
pulse [ϕX(t) = 0] and in the properties of the corresponding
resonance fluorescence spectrum [21–24]. Let us assume for
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FIG. 3. (Color online) Time evolution of the population of a
two-level system driven by a Gaussian x-ray pulse (36) of peak
intensity IG = 2.6 × 1017 W/cm2 and FWHM duration τG = 5 fs,
corresponding to a pulse area of QG = 14π . The dashed lines show
the total population of the two-level system ρ11(t) + ρ22(t) [Eq. (9)]
in the absence (black line) and presence (red line) of Auger decay.
The solid lines show the corresponding occupation of the excited state
ρ22(t).

now that level decay and photoionization are both negligible.
Then, for � = 0, if n is a natural number and Q = 2πn,
the final population after the interaction with the pulse is in
the ground state, whereas for Q = 2π (n + 1/2) a complete
inversion happens and the total final population occupies the
excited state. For a Gaussian regular pulse the area (37) is
QG = �RG,max τG

√
π/(2 ln 2).

We begin by studying the interaction of Ne+ cations
driven by a Gaussian x-ray pulse with peak intensity IG =
2.6 × 1017 W/cm2 and τG = 5 fs: such x-ray pulses will be
available in the foreseeable future from seeding techniques
implemented at LCLS. In Fig. 3 we show the time evolution of
the two-level system when Auger decay is included and when it
is not included (
A = 0) in the EOMs (18). The time evolution
of the total population of the system reveals that Auger decay
is the major depopulation mechanism. Photoionization makes,
however, also a noticeable contribution at the chosen x-ray
intensity; the maximum rates of photoionization are [Eq. (12)]

P1,max = 0.03 eV and 
P2,max = 0.04 eV, which is small
compared with the Auger decay width 
A = 0.27 eV. In
Ref. [51] this channel was, therefore, neglected entirely. The
decay time associated with Auger decay is approximately
given by �τ = 1/
A = 2.4 fs. As one notices in Fig. 3, the
total population of the system almost completely vanishes
after the pulse of 5 fs. Whether Auger decay is included
or not does not interfere with Rabi oscillations which are
clearly discernible; the pulse area QG = 7 × 2π results in
seven oscillations.

The corresponding energy spectra of resonance fluores-
cence are shown in Fig. 4. The Rabi oscillations induced
by the intense external x-ray field appear in both cases with
and without Auger decay, with nonvanishing contributions
in the region approximately given by [−�RG,max,�RG,max],
with the maximum Rabi frequency �RG,max = 3.9 eV. First,
when only spontaneous decay and photoionization are taken
into account, a multipeak structure is predicted, in analogy to
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FIG. 4. (Color online) Energy spectrum of resonance fluores-
cence for the Gaussian pulse used in Fig. 3 in the absence (black,
dashed line) and presence (red, solid line) of Auger decay. As
indicated by the arrows, the scale on the left refers to the black,
dashed curve, whereas the scale on the right refers to the red, solid
curve.

what was computed in the absence of any decay process [21].
The presence of many peaks is nontrivially related to the
pulse shape of the electric field, i.e., to its finite duration
and width. The seven peaks in the energy spectrum—six
lateral peaks and the seventh central one—are related, as
was shown in Ref. [21], to the pulse area QG = 7 × 2π .
Second, when Auger decay is taken into account, the multipeak
structure of the spectrum becomes smoother because of the
increase in the decay rate. Furthermore, the intensity of the
radiation emitted by the two-level system decreases, since
Auger decay destroys it and, consequently, reduces the fraction
of atoms which can Rabi flop. The resulting maximum Rabi
frequency �RG,max = 3.9 eV is, however, much higher than
the bandwidth of the pulse, �ωG = 0.36 eV, the Auger decay
width, 
A = 0.27 eV, and the frequency resolution of present
spectrometers, �ωres = 0.4 eV [68]. Hence the signature of
Rabi flopping, clearly visible in Fig. 4, will be detectable.

In Figs. 5 and 6 we consider different pulses with τG = 2 fs
and QG = 2π (n − 1/2) [panels (a)] or QG = 2πn [panels
(b)], for n ∈ {1,2,3}. One can clearly see a dependence of
the population of the two-level system upon the area QG.
When this area is an odd multiple of π [Fig. 5(a)], a major
part of the population at the end of the pulse occupies the
excited state: one can discern the n − 1/2 oscillations due
to the interaction with the pulse and the following Auger
decay of the system when the pulse is over. As shown in
Fig. 6(a), the long Auger decay which follows the interaction
with the pulse results in a high Lorentzian peak in the
spectrum of resonance fluorescence at ω = ωX with a width
that can be related to the major decay process, i.e., 
A. This
peak results from the fact that the excited system decays
freely, radiatively and electronically, without Rabi flopping.
In contrast, a considerably different situation appears when
the area of the pulse is an even multiple of π [Fig. 5(b)]: after
n complete oscillations, the population of the excited state is
almost 0 at the end of the pulse. Consequently, the previously
present post-x-ray-exposure decay does not take place. The
total emitted energy is therefore lower because the central
peak at ω21 is reduced by almost one order of magnitude, as
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FIG. 5. (Color online) Time evolution of the population of the
excited state ρ22(t) for a two-level system driven by Gaussian x-ray
pulses [Eq. (36)] of different peak intensities (shown in the legend)
and a FWHM duration τG = 2 fs. In panel (a) pulse areas QG =
2π (n − 1/2), for n = 1 (red, dotted line), n = 2 (black, dashed line)
and n = 3 (green, solid line) are used. In panel (b) pulse areas QG =
2πn, for n = 1 (red, dotted line), n = 2 (black, dashed line), and
n = 3 (green, solid line) are used.
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FIG. 6. (Color online) Spectrum of resonance fluorescence of a
two-level system driven by Gaussian x-ray pulses of different peak
intensities (shown in the legend) and a FWHM duration τG = 2 fs.
Line styles of panels (a) and (b) as in Fig. 5.
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FIG. 7. (Color online) (a) Total emitted energy E =∫ +∞
−∞ Sz(ω,�) dω and (b) peak value of the spectrum S(ωX) multiplied

by π
A/2 as functions of the normalized pulse area QG/(2π )
[Eq. (37)] for τG = 2 fs (red, dashed line), τG = 5 fs (black, dotted
line), and τG = 10 fs (green, solid line).

one can clearly see by looking at Fig. 6(b). In the case of
a longer pulse, so that the two-level system has completely
Auger decayed before its conclusion, the difference between
pulses whose area is an odd or even multiple of π becomes
less important.

The dependence of the resonance fluorescence spectrum
upon the duration of the pulse is an additional point that
needs to be investigated. In order to observe this dependence,
in Fig. 7 we study the main features of the spectrum as
functions of the normalized pulse area QG/(2π ) and of the
pulse FWHM duration τG. We recall that for fixed τG the area
of the Gaussian pulse is directly proportional to the square root
of the intensity, QG = 2π℘τG

√
(α/ ln 2) IG. In Fig. 7(a) we

show the total emitted energy E [Eq. (35)] for three different
values of τG; for the shortest pulses one can clearly observe an
oscillating behavior of the total emitted energy as a function
of QG/(2π ); this behavior is less pronounced for the longest
pulses. It is also worthwhile to notice that, for increasing
values of QG, the intensity can become so high that also
for the shortest pulses the system is in any case completely
destroyed by photoionization within the duration of the pulse
itself. The increasing importance of photoionization implies
a less remarkable difference in the time evolution of systems
driven by pulses whose area is an odd or even multiple of π and,
consequently, resonance fluorescence spectra characterized by
a lower dependence upon the area of the pulse.

In Fig. 7(b) we display π
AS(ωX)/2, where S(ωX) is
the central maximum value of the spectrum of resonance

fluorescence. The constant prefactor π
A/2 allows us to
compare the shape of the spectrum of resonance fluorescence
with that of a Lorentzian function of Auger decay width 
A.
If the only process involved was a decay causing a rate width

, then the spectrum of resonance fluorescence would be a
Lorentzian function

L(ω) = π


2
L0


/(2π )

(ω − ωX)2 + (
/2)2
, (38)

with peak value L0 = L(ωX) and with total emitted energy
EL = ∫ +∞

−∞ L(ω) dω = π
L0/2. By computing in Fig. 7(b)
the quantity π
AS(ωX)/2, we can relate it to the actual total
emitted radiation of Fig. 7(a) and understand the relative
importance of Auger decay in relation to the other decay pro-
cesses. By comparing the oscillating features in Fig. 7(b) with
those of Fig. 7(a), one notices that π
AS(ωX)/2 approaches E
only for short pulses satisfying QG = 2π (n − 1/2). In these
cases, as we have already discussed in Fig. 5(a), the main
term is represented by post-x-ray-exposure Auger decay of
the system. Nonetheless, because of the non-negligible role
played by Rabi flopping, photoionization, and spontaneous
decay, one can notice in Fig. 7 a clear difference between
π
AS(ωX)/2 and E .

Figures 4 and 6 reveal that Rabi flopping produces a
clear signature in the spectrum of resonance fluorescence of
Gaussian pulses, which are becoming available by self-seeding
at LCLS [58,59]. However, since shot-to-shot variations in
pulse intensity and duration are anticipated, we investigate
how the spectrum of resonance fluorescence is influenced
by the presence of these fluctuations. For this purpose, we
compute the energy spectrum of resonance fluorescence for
a wide set of Gaussian pulses [Eq. (36)], by independently
randomizing their duration and energy. The mean duration
is chosen to be τ̄G = 7 fs and the mean peak intensity is
ĪG = 7 × 1017 W/cm2, giving a mean peak Rabi frequency
of ∼6 eV. We compute the energy spectrum of resonance
fluorescence for 500 different realizations of the driving pulses.
Thereby, the duration and the intensity are random variables
whose probability distribution is Gaussian with a variance
of 20% of the mean value. The resulting average resonance
fluorescence spectrum is shown in Fig. 8. It reveals that Rabi
flopping is discernible even if the energy and duration of the
pulse vary appreciably from shot to shot.

B. SASE x-ray pulses

After investigating resonance fluorescence with laserlike
regular Gaussian pulses, we turn to the presently available
SASE pulses at LCLS. The SASE light is modeled with
the partial coherence method (PCM) [93,94], whose details
are discussed in Appendix B. The SASE pulses have a central
photon energy which is tuned to the transition energy of
Ne+ of 848 eV, with a bandwidth (FWHM of |Ẽ(ω)|2) of
�ωSASE = 6 eV. The envelope function f (t) that we adopt
[Eq. (B8)] has FWHM duration τenv = 6.5 fs. Further details
are discussed in Appendix B.

In Fig. 9(a) we display the time-dependent Rabi frequency
[Eq. (8)] �R(t) = ℘ E0(t) induced by the amplitude of a SASE
pulse and in Fig. 9(b) the phase ϕX(t) of a SASE LCLS pulse
obtained with the PCM method. The mean Rabi frequency
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FIG. 8. Average resonance fluorescence spectrum for 500 differ-
ent realizations of the Gaussian driving pulses [Eq. (36)]. The mean
duration of the pulses is τ̄G = 7 fs, and the mean peak intensity is
ĪG = 7 × 1017 W/cm2. Here τG and IG are Gaussian random variables
independently chosen for each realization with a variance equal to
the 20% of the respective mean values.

and phase are also given. In Fig. 10(a) the time evolution of
the population of the excited state and the total population of
the two-level system are plotted if the phase of the pulse is
supposed constant, ϕX(t) = 0, and the spiky time-dependent
Rabi frequency of Fig. 9(a) is used to integrate the EOMs. In
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FIG. 9. (Color online) (a) The Rabi frequency �R(t) induced by
the amplitude of a SASE pulse and (b) the phase ϕX(t) of the SASE
pulse (red, solid lines) and their mean value (black, dashed lines).
The mean pulse has a duration τenv = 6.5 fs and a peak intensity
I = 3.8 × 1018 W/cm2. Its bandwidth is �ωSASE = 6 eV.
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FIG. 10. (Color online) Time evolution of a two-level system
driven by a SASE pulse with the time-dependent Rabi frequency
of Fig. 9(a). The phase is assumed to be (a) constant, ϕX(t) = 0, or
(b) to be equal to the phase of Fig. 9(b). The red, dashed line shows the
evolution of the total population ρ11(t) + ρ22(t) [Eq. (9)]; the black,
solid line represents the occupation of the excited state ρ22(t).

Fig. 10(b) both the Rabi frequency and the phase of Fig. 9
are used to integrate the EOMs. If the phase fluctuations are
neglected, the decay of the system is slower; in both cases, due
to the chaotic SASE pulse shape, the time evolution is very
irregular. For the case displayed in Fig. 10(a), though, one can
see the presence of complete oscillations in ρ22(t), reaching
its minimum at ρ22(t) = 0 and its maximum when ρ11(t) = 0:
this feature disappears when the phase fluctuations of Fig. 9(b)
are taken into account.

In contrast to the case of a Gaussian pulse, one cannot
extract from the time evolution of the system any clear
relation to the pulse area. Nevertheless, one observes a relation
between the Rabi frequency of Fig. 9(a) and the frequency with
which the population of the excited state ρ22(t) oscillates in
Fig. 10. These oscillations, in fact, take place in a time interval
which is shorter than the time characterizing the random
fluctuations of Fig. 9. They are Rabi oscillations induced by the
interaction with the intense driving field; as we show in Fig. 11,
if a pulse of similar bandwidth but of far lower intensity is used
to excite the system, the time evolution of the atomic system
displays slower oscillations, whose mean frequency increases
at increasing intensities. We further notice that, because of
photoionization, the increase in the intensity of the driving
field reduces the actual decay time of the system: this emerges
by comparing the graphs displayed in Fig. 11 with that of
Fig. 10(b).

In Fig. 12 we display the resonance fluorescence spectrum
from SASE x rays. To observe Rabi flopping we need the
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FIG. 11. (Color online) Time evolution of a two-level system
driven by SASE pulses generated with the PCM described in
Appendix B. In both cases the pulses have a mean duration τenv =
6.5 fs and a bandwidth �ωSASE = 6 eV. The peak intensity is
(a) I = 3.8 × 1015 W/cm2 and (b) I = 8.8 × 1017 W/cm2. The red,
dashed line shows the evolution of the total population ρ11(t) + ρ22(t)
[Eq. (9)]; the black, solid line represents the occupation of the excited
state ρ22(t).

Rabi oscillations to occur within the coherence time of the
pulse; for this reason, the intensity of the external electric field
is chosen such that the maximum Rabi frequency is larger
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FIG. 12. (Color online) Resonance fluorescence spectrum for
SASE pulses. The black, dotted line shows the spectrum from a
Gaussian pulse with FWHM duration τG = 6.5 fs and peak intensity
IG = 3.8 × 1018 W/cm2. The red, solid line is the arithmetic mean
over 1000 SASE pulses with average peak intensity IG, FWHM
duration τG, and a bandwidth of �ωSASE = 6 eV. The green, dashed
line is for the pulse in Fig. 9.

than the bandwidth �ωSASE of the pulse itself. We look, in
particular, at the emitted spectrum by averaging over 1000
independent SASE pulses. The tails appearing in the spectrum
of Fig. 12 are nonvanishing contributions at frequencies higher
than the bandwidth of the pulse itself. These tails would not
appear if the field had equal bandwidth but lower intensity:
they represent, therefore, a signature of the Rabi oscillations
described in Fig. 10. These tails are also in good agreement
with the spectrum emitted when a Gaussian transform-limited
pulse of identical intensity and time duration—but clearly
with much lower bandwidth—is used to excite the system.
If the phase of the SASE pulse remained constant and
only its amplitude displayed chaotic fluctuations, then the
spectrum emitted after one single pulse would be symmetric;
furthermore, the average spectrum would present a lower
width, due to the absence of phase fluctuations. A clear
observation of the tails of Fig. 12 and of the enlargement of
the resonance fluorescence spectrum at increasing intensities
might represent a possible way to detect Rabi flopping also at
present SASE facilities.

Analogous conclusions had been drawn for the resonant
Auger electron spectrum [51]: the width of the resonant Auger
electron line profile was expected to help in estimating the pres-
ence of Rabi oscillations in the system. Nonetheless, the very
short coherence times at present XFEL facilities limited the
actual experimental observability of this effect at LCLS [52].

As a last point, we study the dependence of the resonance
fluorescence spectrum on the duration of the SASE pulse.
In Fig. 13 we plot the average spectrum emitted by Ne+
cations when excited by an ultrashort pulse with peak intensity
I = 1.6 × 1018 W/cm2 and bandwidth �ωSASE = 6 eV. The
results are obtained by averaging over spectra resulting from
SASE pulses, respectively, with a FWHM duration of τenv =
6.5 fs and τenv = 2 fs. It is worth noticing a remarkable
difference between different pulse durations. Naively, after
the previous considerations, we would assume that the res-
onance fluorescence peak has a FWHM associated with the
large bandwidth of the pulse �ωSASE = 6 eV. For the shortest
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FIG. 13. (Color online) Average resonance fluorescence spec-
trum over SASE pulses. The pulses have an average peak intensity
of I = 1.6 × 1018 W/cm2 and bandwidth �ωSASE = 6 eV. The red,
solid line shows the average over SASE pulses with average FWHM
duration of τenv = 6.5 fs; the black, dotted line is associated with
pulses of average FWHM duration of τenv = 2 fs.
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pulses, though, the resonance fluorescence spectrum exhibits a
higher central peak whose width is clearly lower than �ωSASE.
The explanation is based on the same arguments that we
used to describe the spectra depicted in Fig. 6(a), in which
the post-x-ray-exposure decay results in a high Lorentzian
peak of width given by the Auger decay width of the system.
Analogously, for the ultrashort SASE pulses with τenv = 2 fs
used in Fig. 13, the interaction with the pulse is shorter than
the time needed by the system to completely decay; hence,
at the end of the pulse, the probability of destruction of the
system is about 90%. The Auger decay which follows the
interaction with an ultrashort SASE pulse implies, therefore,
the high central peak in the resonance fluorescence spectrum
shown in Fig. 13; for the same reason, its width is lower than
the bandwidth of the pulse itself. A similar reduction of the
FWHM was also observed in Ref. [52] in the Auger electron
spectrum. In that case, by using the same x-ray pulse to create
Ne+ ions and to drive the 1s2p−1 → 1s−12p transition, the
system could not completely Auger decay before the end of
the pulse. The decay of the excited state with the natural decay
time of the system turned out to dominate the observation.

IV. CONCLUSION

In this paper we study theoretically the resonance fluo-
rescence for intense ultrashort x rays. The fundamental role
played by resonance fluorescence for the study of the quantum
properties of light renders it a cornerstone of x-ray quantum
optics. It also gives an alternative and more easily available
point of view on resonant Auger decay in ultraintense x
rays, whose study, at present, is not yet fully conclusive
[52]. Therefore, we investigate the nonlinear phenomena of
Rabi flopping, i.e., repeated cycles of stimulated emission
and absorption of photons induced by the interaction with
the ultraintense pulses from XFELs, and its signature in the
resonance fluorescence spectrum at x-ray frequencies.

We develop a two-level model of resonance fluorescence
whose time evolution is described by master equations
which include the coherent interaction of the system with the
classical x-ray field. All processes that destroy the system,
namely, Auger decay and photoionization, are fully taken
into account. We use our model to describe Ne+ cations
driven by an intense linearly polarized x-ray field tuned to the
1s2p−1 → 1s−12p transition at 848 eV; the transition is well
isolated, i.e., separated by more than 70 natural linewidths
from the lowest lying Rydberg excitation, 1s → 3p [52].
The intensity available at present x-ray FELs such as LCLS
is sufficiently high to induce Rabi flopping at frequencies
that compete with the rate of destruction of the system. The
two-level approximation allows us to investigate the resonance
fluorescence of photons associated with the transition to
the state with ML = 0 for two different scenarios. First, we
consider SASE radiation from present XFELs; second, we
explore resonance fluorescence from coherent Gaussian pulses
which are becoming available via the use of self-seeding
techniques at fourth-generation x-ray sources. The
measurement of the spectra predicted in this paper need to take
advantage of the polarization properties of the emitted light.

In the case of laserlike Gaussian pulses a clear signature
of Rabi flopping is predicted. We further show that the

observation of Rabi flopping persists even when intensity
and duration of the pulse vary appreciably from shot to
shot. For SASE pulses, even though Rabi flopping does not
manifest itself as clearly as in the previous case, we predict
the appearance of tails in the spectrum that might represent
a good signature of Rabi oscillations in the atomic system.
These tails would not appear if the system was excited by
a less intense pulse of equally large bandwidth. In the case
of the resonant Auger spectrum, however, the presently large
bandwidth at LCLS represented a limit for the observation of
analogous effects in the resonant Auger electron line [52] and
the signature of Rabi flopping did not appear indistinguishably.
Also in the case of resonance fluorescence the identification
of Rabi flopping in the spectrum might be challenging. The
amplitude of the aforementioned tails in which one is interested
is predicted to be neither very high nor easily distinguishable.
A much clearer signature is, however, identified for ions driven
by Gaussian pulses, making the prospects with self-seeded
LCLS very promising.

The results which have been presented motivate further
experimental investigation of resonance fluorescence at XFEL
facilities. In particular, the method which has been discussed
here is a good candidate for further studies at hard x-ray
frequencies. In the case of argon cations, for instance, the
spectrum of resonance fluorescence, because of the higher
fluorescence yield compared with that of neon, is more intense
than the one predicted in this paper. By including the radiative
decay width in the EOMs (18), the model can be used to study
the resonance fluorescence spectrum of cations, e.g., argon,
with higher fluorescence yield than the cations considered
here. The basic features are discussed in this work and no
qualitative differences are expected in heavier cations. Studies
of resonance fluorescence in different atomic systems might
require the use of a generalized formalism. The two-level
approximation adopted in this paper, in fact, is not always
sufficient to properly describe the atomic transitions of interest:
in these cases multilevel systems have to be considered. In
addition, in order to take into account the atomic properties
for different x-ray transitions, a considerable amount of new
atomic data is necessary, such as, for example, Auger pathways
and decay rates. A detailed theoretical study of the atomic
properties of the system would have to be implemented,
motivating further research in this field.

Studies of resonance excitations followed by K-shell pho-
toionization are receiving a lot of interest also for their potential
applications in the biomedical sector [95–98]: Even though
present facilities are not available yet for medical applications,
studies of resonance fluorescence of K-shell transitions might
also significantly contribute to the development of such
applications of XFELs.

In addition, resonance fluorescence plays a crucial role in
the study of the nonclassical properties of light, such as photon
antibunching [11,12,99,100] and squeezing [101–104]. Our
study opens the x-ray regime up for quantum optical effects
which can be investigated by means of ultraintense pulses now
available at XFELs.

Finally, for nonstationary light, e.g., when the electric field
has a pulse-shaped envelope, the study of the time-dependent
power spectrum [24,77,105–107], i.e., the time-dependent rate
of detected photons, would allow one to investigate how the
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spectral properties of the fluorescent light evolve during the
pulse. Even though such a power spectrum cannot be measured
at present because of the ultrashort nature of XFEL pulses, with
duration of the order of 10–100 fs, and because of the lack
of sufficiently fast detectors, the study of the time-dependent
power spectrum might provide better understanding and
further knowledge of the interaction between matter and x rays.

ACKNOWLEDGMENTS

The work of Z.H. was supported by the Alliance Program
of the Helmholtz Association (HA216/EMMI). C.B., E.P.K.,
S.H.S., and L.Y. were supported by the Chemical Sciences,
Geosciences, and Biosciences Division, Office of Basic Energy
Sciences, Office of Science, US Department of Energy, under
Contract No. DE-AC02-06CH11357.

APPENDIX A: POLARIZATION EFFECTS AND
MEASUREMENT GEOMETRY

We consider here the resonance fluorescence spectrum
emitted by the two-level system displayed in Fig. 2 which
is measured by rotating the detector around the y axis of
Fig. 1, i.e., the spectrum at point r = r êr (θ ), with êr (θ ) =
cos θ êx + sin θ êz, where θ is the angle between êr (θ ) and
the x axis, lying in the x-z plane. We further introduce the
vector êθ (θ ) = − sin θ êx + cos θ êz, which also lies in the x-z
plane and is orthogonal to êr (θ ); in this way, from Eqs. (6)
and (27), one has that Ê

+
(r êr (θ ),t) = Ê+

θ (r êr (θ ),t) êθ (θ ) +
Ê+

y (r êr (θ ),t) êy , with

Ê+
θ (r êr (θ ),t) = ℘ ω2

21

c2r

[
cos θ σ̂102(t ′)

+ sin θ
σ̂1+2(t ′) − σ̂1−2(t ′)√

2

]
(A1)

and

Ê+
y (r êr (θ ),t) = i√

2

℘ω2
21

c2r
[σ̂1+2(t ′) + σ̂1−2(t ′)], (A2)

with t ′ = t − r/c. The autocorrelation function (25)
is G(1)(t1,t2,r êr (θ )) = G

(1)
θ (t1,t2,r êr (θ )) + G(1)

y (t1,t2,r êr (θ )),
with

G
(1)
θ (t1,t2,r êr (θ ))

= I(r)

[
cos2 θ

〈
σ̂210 (t ′1)σ̂102(t ′2)

〉

+ sin2 θ

2
(〈σ̂21− (t ′1)σ̂1−2(t ′2)〉 + 〈σ̂21+ (t ′1)σ̂1+2(t ′2)〉)

]

(A3)

and

G(1)
y (t1,t2,r êr (θ )) = I(r) 1

2 (〈σ̂21− (t ′1)σ̂1−2(t ′2)〉
+〈σ̂21+ (t ′1)σ̂1+2(t ′2)〉), (A4)

where I(r) is defined in Eq. (33) and the application of
the quantum regression theorem allows one to show that
the cross terms 〈σ̂2i(t ′1)σ̂j2(t ′2)〉, with i,j ∈ {1+,1−,10}, i �= j ,
vanish for any t ′1 and t ′2. An analogous spatial dependence

can be displayed also in the resonance fluorescence spectrum
S(ω,r êr (θ )) = Sθ (ω,r êr (θ )) + Sy(ω,r êr (θ )).

In conclusion, we notice that the photons emitted in
transitions to the two undriven states |1±〉 can both be polarized
along the axes êy and êθ (θ ). Conversely, the photons spon-
taneously emitted to the state |10〉 are exclusively polarized
along the axis êθ (θ ) and their intensity, varying in space as
cos2 θ , is maximized for θ = 0,π . For the same angles the
intensity of the photons that are emitted in transitions to the
two undriven states |1±〉 and which are linearly polarized along
êθ (θ ) vanishes. This motivates our choice throughout the paper
of studying the spectrum of resonance fluorescence for θ = 0,
êr = êx , and êθ = êz. Polarization-dependent detection of the
resonance fluorescence spectrum can take advantage of the
properties just presented.

APPENDIX B: PARTIAL COHERENCE METHOD

We use the partial coherence method (PCM) introduced
in Ref. [93] to generate random realizations of the temporal
shape of SASE XFEL pulses, whose knowledge is an important
prerequisite for meaningful investigations of nonlinear x-
ray-matter interaction [51]. Those parameters which can be
measured at present XFELs, such as the average spectral
intensity and the pulse duration, are taken into account as input
parameters [94]. The PCM is used to generate non-transform-
limited pulses, with a coherence time lower than the average
FWHM duration of the pulse and with significant fluctuations
in the pulse shape from shot to shot.

The pulses are generated starting from their frequency
representation Ẽ(ω), whose amplitude is given by the average
spectral intensity of the pulse. If the phase of Ẽ(ω) was
constant, then by Fourier transform one would obtain a
transform-limited pulse. In order to generate a SASE pulse,
we let the spectral phase vary in [−π, π [.

The PCM models the classical electric field E(t) [Eq. (1)].
We introduce the complex electric field [71] E±(t) =
1
2E0(t)e∓i[ϕX(t)+ωXt] and the complex field envelope Ẽ(t) =
1
2E0(t)e−iϕX(t), such that E(t) = Ẽ(t)e−iωXt + Ẽ∗(t)eiωXt . It
follows that [71]

|E(t)|2 = 2|E±(t)|2 = 2|Ẽ(t)|2 = |E0(t)|2
2

. (B1)

We define the Fourier transform of Ẽ(t) as

Ẽ(ω) =
∫ +∞

−∞
Ẽ(t)eiωt dt = |Ẽ(ω)|e−iφ(ω) (B2)

and from Parseval’s theorem it follows that∫ +∞

−∞
|Ẽ(t)|2 dt = 1

2π

∫ +∞

−∞
|Ẽ(ω)|2 dω. (B3)

Analogously one can define E(ω) and E+(ω) as the Fourier
transforms of E(t) and E+(t), respectively. One notices that
E+(ω) = Ẽ (ω − ωX) and therefore E(ω) = Ẽ (ω − ωX) +
Ẽ (ω + ωX), so that, from Parseval’s theorem (B3), one finds
in agreement with Eq. (B1) that∫ +∞

−∞
|E(t)|2 dt = 1

2π

∫ +∞

−∞
2 |Ẽ(ω)|2 dω. (B4)
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The average spectral intensity of a SASE pulse is modeled
here—close to measured spectral intensities—as a Gaussian
function, so that

|Ẽ(ω)|2 = |Ẽsp,max|2e−(ω2/�2), (B5)

whose FWHM is �ωSASE = 2�
√

ln 2. The FWHM duration
of the squared modulus of the inverse Fourier transform of
|Ẽ(ω)| [71], which is here also a Gaussian function, is τSASE =
4 ln 2/�ωSASE. It follows that

|E(ω)|2 = |Ẽsp,max|2(e−[(ω−ωX)2/�2] + e−[(ω+ωX)2/�2]). (B6)

The average spectral intensity, though, does not provide any
information about the spectral phase of the pulse. In analogy to
the phase retrieval in x-ray crystallography [76], the knowledge
of the spectral amplitude is not sufficient to completely
determine the temporal shape of the pulse via inverse Fourier
transform. In the PCM approximate phase retrieval is achieved
by assuming initially a random frequency-dependent spectral
phase varying in [−π,π [.

We define a discrete spectral component of the electric field
Ẽ(ωi) = |Ẽ(ωi)|e−iφi , with a sampling interval |ωi+1 − ωi | �
�ωSASE. φi are random numbers in [−π,π [. The discrete in-
verse Fourier transform of Ẽ(ωi) provides the time-dependent
discrete field R(tj ).

The complex function R(t), obtained by interpolating
R(tj ), spans an infinitely long interval in time because of the
fluctuating φi . To generate SASE pulses of finite duration, we
multiply R(t) by a temporal filter function f (t). This function
is nonzero only in a finite domain and the FWHM duration of
|f (t)|2 is τenv. The finite duration of FEL pulses is determined
by the electron bunch duration [108] and is usually measured.
All together, we approximate the complex electric field
by

Ẽ(t) = 1
2E0(t)e−iϕX(t) = R(t)f (t). (B7)

Along the way, we notice that the Fourier transform of
R(t)f (t) is given by the convolution of the respective inverse
Fourier transforms Ẽ(ω) and f̃ (ω). Ẽ(ω) has a random fluctuat-

ing phase φ(ω), whereas |f̃ (ω)|2 has a spectral FWHM �ωenv

related to the inverse of τenv. Hence, the spectral amplitude of
a single pulse generated with the PCM also displays a spiky
structure, where the average FWHM frequency of each spike
is about �ωenv [108]. In addition, since the average value
of φ(ω) is 0, the average spectral amplitude results from the
convolution of |Ẽ(ω)| and f̃ (ω) and, because τenv � τSASE,
the width of f̃ (ω) is much narrower than the width of |Ẽ(ω)|.
Consequently, the convolution∫ +∞

−∞
|Ẽ(ω − ω′)|f̃ (ω′)dω′ ≈ |Ẽ(ω)|,

i.e., the multiplication by the envelope function f (t) does not
significantly affect the average spectral intensity of Ẽ(t).

To generate SASE pulses for this paper (Fig. 9) we use the
envelope function

f (t) =
{

f0 cos2(πt/T ) if |t | � T/2

0 if |t | > T/2,
(B8)

with T = πτenv/(2 arccos 4
√

1/2) and τenv = 6.5 fs, defined as
the FWHM duration of |f (t)|2 [109]. The Fourier transform
of f (t) is

f̃ (ω) = T

2
f0

sinc
(

ωT
2

)
1 − (

ωT
2π

)2 . (B9)

Then, �ωenv ≈ 2.41/τenv is the FWHM of |f̃ (ω)|2. One
notices that, for τenv = 6.5 fs and �ωSASE = 6 eV, one has
�ωenv = 0.24 eV � �ωSASE = 6 eV.

Alternative approaches have also been developed and
adopted, e.g., in Refs. [56,110]. In these cases, the electric
field is written as a Fourier series in time domain

E(t) =
∞∑

k=−∞
ak cos(ωkt) + bk sin(ωkt), (B10)

where the real coefficients ak and bk are independent zero-
mean Gaussian random variables. Basically, this represents
only a different description of Ẽ(ω) compared with the PCM.
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