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Effects of an electric field on Feshbach resonances and the thermal-average scattering
rate of 6Li-40K collisions
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The effects of an electric field on the magnetically induced 6Li-40K Feshbach resonances are investigated
theoretically by using the asymptotic bound-state model. We calculate the positions and widths of the Feshbach
resonances observed in the experiments in the presence of an electric field and give a detailed analysis. An electric
field can change the relative magnetic moment and the coupling strength to a different extent. The variation of
resonant width caused by a strong electric field mainly depends on the coupling strength, and the s-wave scattering
cross section in an electric field is sensitive to the temperature of the colliding system and the magnetic-field
intensity. The maximum of the thermal average scattering rate constant can be changed by several factors by
applying an electric field.

DOI: 10.1103/PhysRevA.86.032713 PACS number(s): 34.50.Cx, 67.85.−d

I. INTRODUCTION

The Feshbach resonance is a useful tool for controlling
the atom-atom interaction in ultracold atom gases [1–4].
By changing the magnetic field around resonance, the s-
wave scattering length, which is a measure of the strength
of the interaction, can be obtained using arbitrary values
[5,6]. Meanwhile, the elastic scattering cross section can be
enhanced by several orders. Recent theoretical works have
demonstrated that a static electric field can induce Feshbach
resonance in heteronuclear mixtures of atomic gases [7–11].
The mechanism stems from the interaction of the instantaneous
dipole moment of a heteronuclear collision complex with the
external electric field. This anistropic interaction couples the
states of different orbital angular momenta. The coupling
between the open-channel and closed-channel bound states
can change the width of Feshbach resonance to some degree.

Wille et al. observed the Feshbach resonances in an
ultracold mixture of 6Li and 40K and found some resonances
below 300 G [12]. The combination of 6Li and 40K fermionic
alkali-metal species is a prime candidate for realizing strongly
interacting Fermi-Fermi systems. Tiecke et al. calculated the
widths and positions of all available Feshbach resonances
for a 6Li and 40K collision complex using the asymptotic
bound-state model (ABM) [13,14]. Naik et al. particularly
researched the inelastic scattering properties and provided
the essential information to identify optimum resonances for
applications relying on interaction control in this Fermi-Fermi
mixture [15]. They also proposed a way to create ultracold
6Li40K molecules. Since the LiK molecule has a relatively
large permanent dipole moment in its ground electronic state,
it is a good candidate for researching the effect of a static
electric field on the Feshbach resonance.

Recently we investigated the external electric-field modula-
tion of the magnetically induced 6Li-40K Feshbach resonances
using the extended ABM [11]. In this paper, we investigate the
effects of an external electric field on magnetically induced
6Li-40K Feshbach resonances, including the resonant position
and width, the scattering cross section, and the thermal average
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rate constant, and give a detailed analysis about the interaction
mechanism in order to interpret experimental results. In Sec. II,
we briefly introduce the ABM theory including an external
electric field. In Sec. III, we discuss the influences of an electric
field on all observable Feshbach resonances for the 6Li-40K
collision complex in experiments. In Sec. IV, a conclusion is
drawn.

II. THEORETICAL APPROACH

The ABM has been successfully used to predict the
magnetic-field position and width of the Feshbach resonance
[11]. In the following, we demonstrate how the ABM can
be used to determine the energy of the coupled molecular
states and the eigenstates of the total Hamiltonian Ĥ , without
solving the actual coupled radial Schrödinger equation. For
the collision of two atoms in external magnetic and electric
fields the total Hamiltonian is given by

Ĥ = p2

2μ
+ Ĥint + V̂ (R) + l̂2

2μR2
+ V̂ζ (R), (1)

where p2

2μ
represents the relative kinetic energy with μ being

the reduced mass and Ĥint is the two-body internal energy
determined by the hyperfine and Zeeman interactions. The
direction of magnetic field B is chosen to be along the
quantization z axis. Hint can be expressed as [14]

Ĥint = Ĥ α
int + Ĥ

β
int

= aα
hf

h̄2 IαSα + (
γeMSα

− γ α
I MIα

)
B + a

β

hf

h̄2 IβSβ

+ (
γeMSβ

− γ
β

I MIβ

)
B, (2)

where Sα (Sβ) and Iα (Iβ) are the electronic and nuclear spins
for atom α (β), respectively, and γe and γ α

I (γ β

I ) are the
respective gyromagnetic ratios. aα

hf (aβ

hf) denotes the hyperfine
energy for atom α (β). MSα

(MSβ
) and MIα

(MIβ
) are the

electronic and nuclear magnetic quantum numbers of atom
α (β), respectively. The hyperfine interaction describes the
coupling between the electronic and nuclear spins, resulting in
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a total angular momentum fα = Sα + Iα (fβ = Sβ + Iβ) for
atom α (β).

The Coulomb interaction potential V̂ (R) depends on the
total electronic spin S = Sα + Sβ and interatomic distance R.
It can be expressed as [8]

V̂ (R) =
∑
SMS

|SMS〉VS(R)〈SMS |, (3)

where VS(R) is the adiabatic molecular potential of the
collision complex in the spin state S. The centrifugal potential

l̂2

2μR2 and Coulomb potential form the effective potentials

V l
S(r), where l denotes the rotational quantum number.

The operator V̂ζ (R), describing the electric-field–complex
interaction, can be written as [7]

V̂ζ (R) = −−→
ζ · −→

d = −ζ (êζ · êd )
∑
SMS

|SMS〉dS(R)〈SMS |, (4)

where êζ and êd represent the unit vectors of the electric field
and the dipole moment, respectively. ζ is the electric-field
magnitude and dS(R) the spin-dependent dipole moment of
the collision complex. The dipole moment is given by [10]

dS(R) = DS exp
[−αS

(
R − RS

e

)2]
, (5)

with the parameters R0
e = 7.5aB, α0 = 0.0406a2

B, and
D0 = 3.807 D for the singlet state, and R1

e = 5.3aB,
α1 = 0.105a2

B, and D1 = 0.95 D for the triplet state, where
the Bohr radius is aB = 0.052 917 7 nm. The numerical data
of dipole moments calculated by Aymar and Dulieu [16] are
fitted well to the above analytical expression.

In the ABM, the Schrödinger equation for Hamiltonian (1)
is solved starting from a restricted set of discrete eigenstates
|ψSl

ν 〉 of relative motion of two-body composed of the
kinetic energy and Coulomb potential including the centrifugal
potential, using binding energy εSl

ν as a free parameter. The set
of {|ψSl

ν 〉} corresponds to the bound-state wave functions in the
effective potentials V l

S(r), with ν being vibrational quantum
numbers.

We specify the ABM basis states as {|ψSl
ν 〉|σ lml〉}, where

the spin basis states |σ 〉 = |SMSMIα
MIβ

〉 and ml denotes
the magnetic quantum number corresponding to the orbital
angular momentum l. The sum MF = MS + MIα

+ MIβ
is a

conserved quantity and limits the number of spin states in the
basis set.

The matrix elements of V̂ζ (R) are evaluated by using the
expression

〈ψ |〈lml|V̂ζ |l′m′
l〉|ψ ′〉 = ζ

〈
ψSl

ν

∣∣dS(R)
∣∣ψSl

′

ν

〉〈lml|êζ · êd |l ′
m

′
l〉,
(6)

where 〈ψSl
ν |dS(R)|ψSl

′
ν 〉 = ∫ ∞

0 (ψSl
ν )∗dS(R)ψSl′

ν dR is defined
as the transition factor from |l〉 to |l′〉 in this paper. Since
it depends on interatomic distance R, the eigenfunctions of
bound state {ψSl

ν } need to be precalculated by using the mapped
Fourier grid method [17–19]. The coupling between an electric
field and a dipole moment depends on the angle χ between
them, that is, êζ · êd = cos χ . It is convenient to define two
angles γ and θ as follows: γ is the angle between the electric
field and quantization z axis, and θ is the angle between
dipole moment and the z axis. The angular calculation can
be expressed as

〈lml|êζ · êd |l′m′
l〉 = 1√

2
sin γ (−1)m

′
l

√
(2l + 1)(2l′ + 1)

(
l 1 l′
0 0 0

) (
l 1 l′

ml −1 −m
′
l

)

+ cos γ (−1)m
′
l

√
(2l + 1)(2l′ + 1)

(
l 1 l′
0 0 0

) (
l 1 l′

ml 0 −m
′
l

)

− 1√
2

sin γ (−1)m
′
l

√
(2l + 1)(2l

′ + 1)

(
l 1 l′
0 0 0

) (
l 1 l′

ml 1 −m
′
l

)
. (7)

To determine the characteristic properties of Feshbach
resonances including the widths and positions, we need
to examine the behavior of the coupled bound states near
the threshold of an open channel. By comparing the total
energy with channel threshold which is determined by the
internal energy of the collision complex, we can distin-
guish the open from the closed channels. Then the Hilbert
space can be partitioned into open- and closed-channel
subspaces [20,21]. The Hamiltonian of the collision system is
written as

Ĥ = ĤPP + ĤQQ + ĤPQ + ĤQP , (8)

with ĤPP = P̂ Ĥ P̂ and ĤQQ = Q̂Ĥ Q̂ and ĤPQ(= Ĥ
†
QP ) =

P̂ Ĥ Q̂, where P̂ and Q̂ are projection operators of the open-
and closed-channel subspaces, respectively. ĤPQ provides a
measure for the coupling between the open P channel and the
closed Q channel.

In order to calculate the width of a Feshbach resonance,
three quantities are required: the binding energy εP of the
open channel, the energy εQ of the closed channel responsive
to the Feshbach resonance, and the coupling matrix element K
between the two channels. Since the width �B is defined as the
difference in magnetic fields between a = 0 and a = ∞, we
define a S matrix as S = SP SQ, where SP denotes the direct
scattering matrix describing the scattering process in the P
space and SQ is the resonance scattering matrix. In the case
without shape resonance, if one open channel is coupled to a
single closed channel in the vicinity of a resonance, the SQ

matrix can be expressed as [22,23]

SQ = 1 − 2πi
|〈φQ|HQP|�+

P 〉|2
E − εQ − γ (E)

, (9)

where φQ is the eigenstate of ĤQQ and �+
P denotes the

scattering eigensate of ĤPP. The collision energy E =
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h̄2k2/(2μ) is defined with respect to the open-channel thresh-
old energy. The complex energy shift γ (E) describes the
dressing of a bare bound state φQ by coupling to the
P space.

Experimentally, the colliding complex is prepared in a
hyperfine state. For an ultracold atomic collision, the energy
thresholds of the open and closed channels can be determined
by the Zeeman hyperfine interaction. Performing a basis
transformation from the spin basis state |σ 〉 to atomic hyperfine
states |f,mf 〉α ⊗ |f,mf 〉β , we can distinguish the open- and
closed-channel subspaces. In the case of one open channel,
ĤPP is a single matrix element on the diagonal of Ĥ , corre-
sponding to the bare binding energy of the least bound state
of the entrance channel, εP = −h̄2κ2

P /(2μ). Then we consider
the second basis transformation in which the closed-channel
subspace is diagonalized and the open-channel subspace keeps
unchanged. We obtain the eigenstates of ĤQQ and are able to
identify the bound state responsive to a particular Feshbach
resonance. The one-dimensional P space is not changed by
the basis transformation. Using the basis of eigenstates of
ĤPP and ĤQQ, we easily find the coupling matrix element
K = 〈φP |ĤPQ|φQi

〉, where |φP 〉 denotes the bare bound state
in the P space and |φQi

〉 is the ith bound state with binding
energy εQi

(i = 1,2, . . .) in the Q space. The resonant width
�B can be expressed as [14]

�B = 1

abg

K2

2κP |εP |μrel
. (10)

The background scattering length abg = aP
bg + aP , where

aP
bg ≈ 1

2 ( 2μC6

h̄
)1/4 and aP = κ−1

P . μrel is the relative magnetic
moment of the collision complex between the open and
the closed channels. The resonant position is related to the
crossing of uncoupled bound state (B ′

0) with the threshold
[14]

B0 = B ′
0 + K2

2μrel|εP | . (11)

The scattering length can be expressed as

a(B) = abg

(
1 − �B

B − B0

)
. (12)

Until now we have considered only the scattering at T = 0.
However, even at ultralow temperature the finite temperature
plays a significant role. In the following description, the
influence of temperature on scattering amplitude and cross
section is taken into account. The s-wave scattering amplitude
f0 is expressed as

f0 = 1

k
eiη0 sin η0 = 1

k cot η0 − ik
, (13)

where η0 is the s-wave phase shift and k =
√

2μkBT/h̄2, with
kB being the Boltzmann constant and T being the temperature
of the collision complex. The s-wave scattering cross section
σ (k) is given by

σ (k) = 4π |f0|2 = 4π
1

k2 cot2 η0 + k2
. (14)

In the absence of shape resonance we can express an energy-
dependent s-wave phase shift as

η0(E) = −kabg − arg(−δ + ik�) = ηbg(E) + ηres(E), (15)

where � = K2

2κP |εP | corresponds to the coupling strength be-
tween the open and the closed channels and δ = μrel(B −
B0) − E is the detuning from the resonance. The resonant
phase shift is given by

ηres(E) = arctan

(
−k

abg�Bμrel

E − μrel(B − B0)

)
. (16)

Assuming the nonresonant phase shift ηbg(E) = −kabg �
− tan kabg in the case of ultralow temperature, we can obtain
the energy-dependent scattering cross section

σ (k) = 4π

k2

(k� − kabgδ)2(
1 + k2a2

bg

)
(δ2 + k2�2)

. (17)

To obtain a thermally averaged cross section we need to
average all possible collision energy E. The collision rate
n〈συ〉 is an important parameter in experiments, where n and
υ = √

2E/μ are the density and the relative velocity of the
collision complex, respectively. Since 〈σ 〉 is independent of r,
we can obtain [24]

〈συ〉 =
√

8

πμ(kBT )3

∫ ∞

0
σ (E)Ee−E/kBT dE. (18)

The above expression can be given analytically when the
Wigner law is valid [25].

III. RESULTS AND DISCUSSIONS

In the present work, we investigate the magnetically in-
duced 6Li-40K Feshbach resonances modulated by an external
electric field. We neglect the weak dipole-dipole interaction
and consider only s- and p-wave bound-state scatterings since
the resonance induced by high-order coupling is very weak
compared to the one induced by direct coupling [10,26]. The
adiabatic molecular interaction potential VS(R) is adopted
from Ref. [27]. The transition factors we calculated are
406.181 and 23.219 cm−1 for the singlet and triplet states,
respectively.

First, we distinguish two different s-wave resonances: the
intrinsic s-wave resonance which exists in the absence of an
electric field, and the electric-field-induced s-wave resonance
which exists only in the presence of an electric field. In order to
investigate the mechanism of electric-field modulation of the
magnetically induced Feshbach resonance, we calculate the
positions and widths of the Feshbach resonances observed in
experiments at ζ = 100 kV/cm in Table I, where the electric
field is directed along the z axis. The inelastic losses caused by
coupling to the p-wave open channel can be neglected since
we choose the energetically lowest spin combination. In the
case of an initial s wave, there is one s-wave channel that
is energetically open. The s-wave resonances shift to different
directions and the shifts are irregular. Specially, two of electric-
field-induced s-wave resonances at 13.9 G for MF = −3 and
17.5 G for MF = −2 shift quickly to a lower magnetic field.
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TABLE I. Survey of s-wave resonances of 6Li-40K in an external electric field. The first four columns list the total angular moment
projections MF , the hyperfine states of 6Li and 40K, the resonant positions B0 and widths �B in the absence of an electric field
in experiments. For all resonances, fLi = 1/2 and fK = 9/2. Here we present the atomic hyperfine states in which the resonances
have been observed in experiments [12,13]. Note that the experimental width of the loss feature �Bexpt is not the same as the field
width �B of the scattering length singularity. The resonant positions we calculated agree well with the experimental results. The last
two columns give the variations of resonant positions and the widths at ζ = 100 kV/cm. Since the p-wave resonance can induce the
s-wave resonance in the presence of an electric field, we also give the variations of electric-field-induced resonances in the last two
columns.

Experiment Theory

MF mfLi ,mfK B0 (G) �Bexpt (G) B0 (G) �B (G) Shift (G) �B′-�B (G)

−5 −1/2,−9/2 215.5 1.7 215.6 0.16 12.75 0.012
−4 +1/2,−9/2 157.6 1.7 157.6 0.08 −6.02 −0.015
−4 +1/2,−9/2 168.2 1.2 168.5 0.08 8.17 −0.002
−4 +1/2,−9/2 249.0 11.0 244.3 p wave 6.53 0.025
−3 +1/2,−7/2 16.1 3.8 13.9 p wave −13.33 <0.0001
−3 +1/2,−7/2 149.2 1.2 149.1 0.12 −5.87 −0.041
−3 +1/2,−7/2 159.5 1.7 159.7 0.31 6.42 0.025
−3 +1/2,−7/2 165.9 0.6 165.9 0.0005 5.98 0.0007
−3 +1/2,−7/2 263.0 11.0 260.7 p wave 6.47 0.024
−2 +1/2,−5/2 Not observed 17.5 p wave −16.77 <0.0001
−2 +1/2,−5/2 141.7 1.4 141.4 0.12 −5.07 −0.040
−2 +1/2,−5/2 154.9 2.0 154.8 0.50 4.89 0.024
−2 +1/2,−5/2 162.7 1.7 162.6 0.07 6.18 −0.012
−2 +1/2,−5/2 271.0 14.0 274.0 p wave 5.86 0.020
+5 +1/2, + 9/2 114.47(5) 1.5(5) 115.9 0.91 −2.50 −0.240

Due to energy repulsion, the shift of s-wave resonance depends
on the relative magnetic moment μrel. The resonances shift to
high magnetic field when μrel > 0, and shift to low magnetic
field if μrel < 0. Though the s-wave resonances in Table I
possess the positive relative magnetic moments, they are
situated at lower magnetic field and the energy level spacing
between the s- and p-wave bound states are small compared to
those at higher magnetic field. The widths of intrinsic s-wave
resonances are changed slightly by the external electric field
except for the resonances at 149.1 G for MF = −3, 141.4 G
for MF = −2 and 115.9 G for MF = 5. Moreover, we can
see that three electric-field-induced Feshbach resonances at
244.3 G for MF = −4, 260.7 G for MF = −3, and 274 G
for MF = −2 are greater than or equal to 0.02 G at ζ =
100 kV/cm, which may be easily observed in experiment.
However, the widths of two s-wave resonances induced
by an electric field at 13.9 G for MF = −3 and 17.5 G
for MF = −2 are very small, <0.0001 G and are hardly
observed.

According to Eq. (10), the width of a Feshbach resonance
in the presence of an electric field is determined directly by
the relative magnetic moment μrel and the coupling strength
K because the open-channel energy is hardly changed by the
electric field [11]. To further research the effect of an electric
field on the width, we plot μrel, K2, and resonant width
in the atomic spin state | 1

2 , 1
2 〉Li ⊗ | 9

2 ,− 5
2 〉K as a function of

electric-field intensity in Fig. 1. In the presence of an electric
field with γ = 0, there are five s-wave resonances. Two of
them, at AS and ES , are the Feshbach resonances induced
by an electric field and the others are intrinsic resonances. In
Fig. 1(a), the relative magnetic moments for the resonances at
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FIG. 1. (Color online) The relative magnetic moment μrel, the
square of coupling strength K, and the resonant width versus the
electric-field intensity. In the presence of an electric field, five s-
wave resonant positions AS ∼ ES in the atomic spin state | 1

2 , 1
2 〉Li ⊗

| 9
2 ,− 5

2 〉K are labeled in the order of increasing magnetic field. Note
that the resonance at AS shift to lower magnetic field with increasing
electric-field intensity and vanishes when ζ � 105 kV/cm.
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BS , CS , and DS decrease with increasing electric-field intensity
and vary slowly when ζ > 500 kV/cm. This is because the
relative magnetic moment is directly related to the energy
of the bound state, μrel = ∂εQ/∂B|B=B0 . The energies of s-
wave and p-wave bound states related to these resonances are
very close to each other. A weak electric field can modify the
energies of s-wave and p-wave bound states and result in an
avoided crossing between them. By increasing the electric-
field intensity, the resonances shift away from the avoided
crossing and the energy spacing between the s- and the p-
wave bound states increases at the resonant positions. The
effect of electric field on the energies of the bound states
and the relative magnetic moment μrel are changed slowly.
While the relative magnetic moments at AS and ES increase
slowly with increasing electric-field intensity since the energy
spacing between the s- and p-wave bound states related to the
two resonances are large enough in the absence of an electric
field.

The electric field cannot only change the relative magnetic
moment of the collision complex; it can also change the
coupling strength between the open channel bound state and
the closed-channel bound state which is responsive to the
Feshbach resonance. Figure 1(b) shows the square of coupling
strength versus the electric-field intensity. The curves do not
exhibit a monotonic variation since the energies of both dressed
and uncoupled bound states are modified by the electric field
by varying degrees. The coupling strengths associated to the
resonances at AS and ES reach their respective maxima and
then decrease with the increase of electric-field intensity. We
also observe the variation of coupling strength for all five
electric-field-induced s-wave resonances listed in Table I and
find they exhibit similar behavior. This can be explained as
follows: A strong electric field can enhance the coupling
between the s-wave and p-wave bound states. However, it
can also shift the position of Feshbach resonance at which
the Zeeman interaction is changed. When the electric field
is weak, the shift of Feshbach resonance is small and the
coupling between the s-wave and p-wave bound states mainly
depends on electric-field intensity. In a strong electric field,
ζ > 200 kV/cm, the shift of Feshbach resonance nearly
linearly changes with the electric-field intensity [11] and the
coupling strength depends on the Zeeman interaction and
the electric-field–complex interaction. The two interactions
have opposite effects on the coupling strength related to the
electric-field-induced resonances for 6Li-40K, which leads to
the decrease of the coupling strength with increasing the
electric-field intensity.

Since the energy of open channel cannot be changed by
an electric field, the variation trend of Feshbach resonant
width is similar to that of K2/μrel. Figure 1(c) shows the
resonant width versus electric-field intensity. By observing
Fig. 1, we conclude that the electric field can change μrel and
K2 to a different extent, and the strong electric field can more
obviously influence K2 than μrel.

Figure 2 displays the changes of s-wave scattering cross
section with electric-field intensity in different magnetic fields
in the atomic spin state | 1

2 , 1
2 〉Li ⊗ | 9

2 ,− 5
2 〉K. The resonance

feature in Figs. 2(a) and 2(b) is the shift of intrinsic magnetic
Feshbach resonance at CS shown in Fig. 1 to a higher magnetic
field, and the resonance feature in Figs. 2(c) and 2(d) is the
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FIG. 2. (Color online) The electric-field dependence of s-wave
scattering cross section in the atomic spin state | 1

2 , 1
2 〉Li ⊗ | 9

2 ,− 5
2 〉K in

different magnetic fields: (a) B = 160 G, (b) B = 158 G, (c) B = 12
G, and (d) B = 10.5 G. The temperature of the collision complex is
12 μK (black solid lines), 1.2 μK (red dashed lines), and 120 nK
(light blue lines).

shift of an electric field-induced resonance at AS shown in
Fig. 1 to a lower magnetic field when the electric-field intensity
increases. For the case of representation, we define the resonant
position ζ0 and width �ζ for the s-wave scattering in an electric
field as a = ∞ and the difference between a = 0 and a = ∞,
respectively. From Fig. 2, we can see that the resonant positions
ζ0 are shifted for k > 0 and converge at the temperature of
nK. We also find the temperature of the collision complex
(or collision energy) has different influences on the resonant
positions at different magnetic-field intensities and the shifts
of ζ0 depend on μrel of the collision complex. At T = 12μK,
the shifts of resonant positions in the electric field are 2.4, 1.6,
1.2, and 1.0 kV/cm at B = 158, 160, 12, and 10.5 G in order.
The relative magnetic moments corresponding to magnetically
induced resonances at B = 158, 160, 12, and 10.5 G decrease
in turn. So temperature has a significant influence on ζ0 for a
larger μrel. The resonant position and width in an electric field
can be changed to a great extent by changing magnetic-field
intensity. At the temperature of nK, the resonant positions are
situated at ζ0 = 69.25 and 43.22 kV/cm for B = 160 and 158
G, respectively. The resonant position shift in an electric field
caused by a magnetic field is 26 kV/cm and the resonant
width is also changed obviously. However, not all s-wave
resonances are sensitive to the magnetic-field intensity. At
the temperature of nK, the resonant positions are located at
55.90 and 63.27 kV/cm for B = 12 and 10.5 G, respectively,
and the widths are nearly the same. The resonant positions and
widths in an electric field at different magnetic-field intensities
are related to �B and B0, as shown in Fig. 1(c). When a
magnetic Feshbach resonance is shifted by an electric field
at a speed of dB0

dζ
, the corresponding resonance in an electric

field is shifted by a magnetic field at a speed of dζ0

dB
(= dζ

dB0
).

The resonance at AS is shifted by an electric field more
quickly than the resonance at CS . As a result, the resonant
positions in Fig. 2(a) can be obviously changed by slightly
varying the magnetic field. In the case of �B unchanged, �ζ
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is mainly determined by dζ

dB0
. From Fig. 1(c), the resonant

width at AS increases a little when ζ changes from 55.90 to
63.27 kV/cm. Similarly, the resonant width at CS increases
when ζ changes from 43.22 to 69.25 kV/cm. However, dζ

dB0
is

nearly unchanged at B0 = 10.5 and 12 G, and increases 50%
at B0 = 158 G compared to the result at B0 = 160 G. This
provides an alternative way to steer the interatomic interaction
by utilizing an external electric field.

Though an electric field can modify the scattering length,
another interesting aspect in experiment is its effect on the
scattering cross section, especially the thermal average cross
section related to the collision rate. Figure 3 displays the
scattering cross section at temperature T = 12 μK and the
thermal average rate constant in the atomic spin state | 1

2 , 1
2 〉Li ⊗

| 9
2 , 9

2 〉K as a function of magnetic-field intensity in different
electric fields with γ = 0. With increasing the electric-field
intensity, the resonant width becomes small and the maximum
of scattering cross section is nearly unchanged. However,
the maximum of the thermal average rate constant decreases
with increasing electric-field intensity. In our calculation, the
maximum of 〈συ〉 at ζ = 200 kV/cm approximately decreases
to one-third of the value in the absence of an electric field.
According to Eq. (17), at ultralow temperature the maximum
of scattering cross section mainly depends on the wave vector
k but not the resonant width, so it varies slightly under the
action of an electric field. Since 〈συ〉 is an average over all
συ, its maximum is related to the resonant width. However, at
a lower temperature, for example, nK, the effect of an electric
field on the maximum of 〈συ〉 weakens. This provides another
interesting way to research the collision rate by applying an
electric field.

The Fano profile of Feshbach resonance can be observed
by measuring the distillation rate (or evaporation rate) of
the Li from the K-rich Li-K mixture in the optical trap as
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FIG. 3. (Color online) (a) The scattering cross section σ (E) at
temperature T = 12 μK and (b) the corresponding thermal average
scattering rate constant 〈συ〉 in the atomic spin state | 1

2 , 1
2 〉Li ⊗ | 9

2 , 9
2 〉K

as a function of magnetic-field intensity in different electric fields.
The amplitudes of the electric fields are 0 kV/cm (black solid lines),
50 kV/cm (red dashed lines), 100 kV/cm (green dashed-dotted lines),
and 200 kV/cm (blue dotted lines).
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FIG. 4. (Color online) The number of Li atoms as a function
of magnetic-field intensity and holding time t in the atomic spin
state | 1

2 , 1
2 〉Li ⊗ | 9

2 , 9
2 〉K in electric fields (a) ζ = 0 kV/cm and (b)

ζ = 200 kV/cm.

a function of magnetic-field intensity. We assume the Li
evaporates at a rate proportional to the interspecies elastic
cross section. Since the component of Li is minor in the Li-K
mixture, this distillation process proceeds at an approximately
constant rate. The distillation of Li as a function of time t
is described by N (t) = N0e

−t/τeve−t/τbg , where N0 = 3 × 103

is the initial number of Li atoms, τbg = 25 s the vacuum
limited lifetime, and τ−1

ev � nK〈σ (k)h̄k/μ〉e−ηLi the thermally
averaged evaporation rate. nK = 2 × 1011 cm−3 is the central
density of the K atoms. ηLi = 2.7 is the truncation parameter of
Li atoms after decompression. Figure 4 displays the distillation
of Li atoms as a function of magnetic-field intensity and
holding time in different electric fields. The resonant position
and width can be determined by observing magnetic-field
dependence of the number of Li atoms at different times.
We can see the resonant position and width are obviously
changed by an electric field. The losses of 50% and 15% in 1 s
holding time at resonant positions for ζ = 0 and 200 kV/cm
are observed, respectively. Since the maximum of thermal
average evaporation rate at ζ = 200 kV/cm reduce to 1/3
of the value in the absence of an electric field, the distillation
of Li atoms decreases. Moreover, the distillation of Li atoms
also depends on the density of K atoms and the truncation
parameter of Li atoms.

In the above discussion, the electric field is parallel to the
magnetic field (angle γ = 0). Li et al. investigated the effect
of nonparallel electric and magnetic fields on the Feshbach
resonances [10]. They found the resonant position of the p-
wave remains unchanged and the scattering cross section of
the p-wave is nearly unchanged for different angle γ . We also
study the effect of nonparallel electric and magnetic fields
on the s-wave resonances (γ = 0). We find that the resonant
position and width of the s-wave scattering are not influenced
by γ . This is because the coupling between the s-wave and
the p-wave bound states, which influences the s-wave resonant
position and width, keeps unchanged for different γ . However,
it is noteworthy that the nonparallel electric and magnetic fields
may influence the transition from the open channel for the s
wave to the open channels for the p wave. This needs to be
further explored.

IV. CONCLUSION

We have investigated theoretically the effect of an electric
field on the magnetic-field-induced Feshbach resonances for
the ultracold 6Li-40K collision complex using the ABM. The
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relative magnetic moment can be changed by an electric field
to varying degrees. The width of a Feshbach resonance in an
electric field mainly depends on the coupling strength between
the open-channel and the closed-channel bound states in a
strong electric field. The s-wave scattering cross section in an
electric field is sensitive to the temperature of the colliding
complex and the magnetic-field intensity. The variation of
temperature can cause a position shift of the maximal cross
section in an electric field for a collision system with a
larger magnetic moment. The resonant feature in an electric
field can be changed to a great extent by slightly changing
magnetic-field intensity. One can steer the interaction of
heternuclear molecules with a small permanent dipole moment

by utilizing an electric field and a magnetic field. An electric
field can change the maximum of thermal average rate for
the ultracold 6Li-40K collision system by several times at the
temperature of μK. However, at the temperature of nK, the
effect of an electric field on the thermal average rate weakens.
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