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Long-range forces between polar alkali-metal diatoms aligned by external electric fields

Jason N. Byrd, John A. Montgomery, Jr., and Robin Côté
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Long-range electrostatic, induction, and dispersion coefficients including terms of order R−8 have been
calculated by the sum over states method using time-dependent density-functional theory. We also computed
electrostatic moments and static polarizabilities of the individual diatoms up to the octopole order using
coupled-cluster and density-functional theory. The laboratory-frame transformed electrostatic moments and
van der Waals coefficients corresponding to the alignment of the diatomic molecules were found. We use this
transformation to obtain the coupling induced by an external dc electric field and present values for all XY

combinations of like polar alkali-metal diatomic molecules with atoms from Li to Cs. Analytic solutions to the
dressed-state laboratory-frame electrostatic moments and long-range intermolecular potentials are also given for
the dc low-field limit.
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I. INTRODUCTION

Advances in the formation of ultracold absolute ground-
state polar alkali-metal diatoms [1,2] open up avenues into
many branches of the physical sciences. For chemical physics,
applications of polar diatoms range from precision spec-
troscopy [3,4] to the study [5–8] and control [9] of cold
chemical reactions. Other areas of physics benefit from the
use of polar molecules, such as condensed-matter physics [10],
with the search for novel quantum gases [11] and phases [12].
Furthermore, dipolar gases have been the subject of much in-
terest from the quantum information community [13–15], and
ideas of atom optics (e.g., using evanescent wave mirrors [16])
have been generalized to polar molecules [17,18]. The recent
achievements in molecular alignment and control [19,20] may
also allow us to take advantage of the unique properties and
possible control provided by ultracold polar molecules. In
addition, there is growing interest in reactions of alkali-metal
diatoms to form tetramer structures [21–23] with reasonable
dipole moments and rich molecular structures, which could of-
fer good candidates for quantum computing with dipoles [24].
In each of these applications it is crucial to accurately describe
the intermolecular interactions, themselves dominated by their
long-range behavior [25] at the low temperatures found in
these systems. Because of the weakness of the long-range
intermolecular forces compared to the chemical bond and the
range of nuclear coordinates and phase space involved, it is
advantageous to consider alternative methods of modeling the
intermolecular potential other than ab initio quantum chemical
calculations.

A standard approach to describing the long-range
interaction potential between two molecules, in the limit that
the wave function overlap between the molecules is negligible,
is to expand the interaction energy into three distinct
components,

Eint = Eel + Eind + Edisp. (1)

Here Eel, Eind, and Edisp are the permanent electrostatic,
induction (permanent-induced electrostatic), and dispersion
energies. Each of these terms can be perturbatively expanded

in an asymptotic van der Waals series,

ELR =
∑

n

CnR
−n. (2)

The coefficients Cn are, in general, angular dependent and
can be computed in several ways. In this work we expand the
intermolecular electronic interaction operator in a multipole
expansion [26] and then use first- and second-order perturba-
tion theory to calculate the van der Waals coefficients. Several
papers have discussed the isotropic R−6 interactions of
homonuclear alkali-metal diatoms using both the London
approximation [27] and time-dependent density-functional
theory (TD-DFT) [28,29]. The isotropic and anisotropic
contributions have been investigated using configuration
interaction [30] and TD-DFT [31] to compute van der Waals
coefficients through R−8. However, systematic research on
the heteronuclear alkali-metal diatoms is limited to the R−6

isotropic van der Waals coefficients for the LiX (X = Na, K,
Rb, Cs) species [8]. To date, the only heteronuclear anisotropic
van der Waals coefficients available in the literature are for
KRb and RbCs [32] and are limited to R−6 dispersion forces.
In this paper we present a systematic study of the isotropic
and anisotropic van der Waals interactions through order R−8

of the heteronuclear alkali-metal rigid-rotor diatoms in their
absolute ground state as a continuation of our work on the
homonuclear species [31]. Also included is the transformation
of the long-range interaction potential from the molecule-fixed
(MF) frame to the laboratory-fixed (LF) frame for use in
molecular alignment computations. After a brief description
of dressed-state diatomic molecules in Sec. II, we review
the sum-over-states method of calculating van der Waals
coefficients in Sec. III. In Sec. IV the transformation to and
matrix elements of the laboratory-fixed frame van der Waals
interaction potential are described. Analytic expressions
of the low-field field-coupled electrostatic moments and
van der Waals coefficients are also provided. The ab initio
methodology is outlined in Sec. V, and we conclude in Sec. VI
with a discussion of our numerical results.

II. DRESSED-STATE DIATOMIC MOLECULES

The orientation and alignment [〈cos θ〉 and 〈cos2 θ〉, respec-
tively [37], as illustrated in Fig. 1(a)] of polar molecules can be
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FIG. 1. (Color online) (a) Schematic representation of an aligned
diatomic molecule. Classically, the molecule precesses on a cone of
angle θ about the electric field F, with 〈cos θ〉 describing the average
orientation of the molecule: its dipole moment D points towards F
for 〈cos θ〉 > 0 and in the opposite direction for 〈cos θ〉 < 0. The
alignment, 〈cos2 θ〉, describes the tightness of the rotational cone.
(b) Lab-fixed frame molecular interaction geometry in the presence
of an external field, where θF is the angle between the field and the
vector R joining the two molecules.

achieved through several mechanisms, the most direct of which
is the coupling of rotational states by a polarizing external
dc electric field F. Increasing the strength F of the external
electric field increases the number of rotational states coupled,
thus tightening the orientation of the molecule in a cone of
angle θ about the orientation of the field. To account for this
rotational coupling adiabatically, we expand the dressed-state
rotational wave function of the molecule as a superposition of
field-free symmetric top states,

|J̃ M̃�〉 =
∑
J,M

aJ
M |JM�〉, (3)

where the symmetric top states are given in terms of Wigner
rotation matrices DJ

−M−�(α,β,γ ) [38]:

|JM�〉 = (−1)M−�

(
2J + 1

8π2

)
DJ

−M−�(α,β,γ ), (4)

where (α,β,γ ) are the Euler angles of the molecule and J is
the total angular momentum quantum number with projections
M in the laboratory frame and � onto the molecular axis.
The expansion coefficients aJ

M dictate the levels of mixing
between the different rotational states and can be solved for by
diagonalizing 〈J̃ ′M̃ ′�′|H |J̃ M̃�〉. Here H is the symmetric
top and dipole-field Hamiltonian

H = B
(
J2 + J 2

z

) − DF cos θ, (5)

where J is the angular momentum operator, Jz is the angular
momentum projection on the z axis, B is the molecular rota-
tional constant, D is the dipole moment of the molecule, and
θ is the angle between the external electric field of magnitude
F and the molecular axis. The coefficients aJ

M (F ) then depend
on the strength F of the field. While theoretically simple, this

process can become experimentally challenging for molecules
with small dipole moments or rotational constants due to the
large external fields required for strong alignment.

An alternative to simply increasing the static field mag-
nitude is to add a separate polarizing laser field [39] that
directly couples the rotational states of the molecule. However,
to achieve both alignment and orientation control, time-
dependent nonadiabatic effects are introduced into the dressed-
state wave function [20]. For the purposes of this work the
investigation and inclusion of these nonadiabatic effects are
unimportant as only the final dressed state is of interest. As
such we present our alignment in terms of an applied external
static field and, where practical, the number of strongly
coupled rotational states.

III. ANISOTROPIC LONG-RANGE INTERACTIONS

Given a linear molecule in the Born-Oppenheimer ap-
proximation (no nuclear motion), at any given configuration
the orientation of each molecule can be described by the
vector r̂i = (θi,φi) with the relative position between the
molecular center of mass defined as R = (R,θ,φ). Here θi is
the projection angle of r̂i on R, φi is the projection angle of r̂i

on the x axis, and (R,θ,φ) are the spherical vector components
of R. Due to the rotational invariance of the interaction energy
between two molecules, it can be separated into a series of
radial and angular basis functions:

Eint(r̂1,r̂2,R) =
∑

L1,L2,L

EL1L2L(R)AL1L2L(r̂1,r̂2,R̂). (6)

Here EL1L2L(R) are purely radial functions for a rigid rotor and
AL1L2L(r̂1,r̂2,R̂) is an angular basis which, when R is oriented
along the z axis, can be expressed as [40]

AL1L2L(r̂1,r̂2,R̂) =
min(L1,L2)∑

M=0

ηM
L1L2L

P M
L1

(cos θ1)P M
L2

(cos θ2)

× cos[M(φ1 − φ2)], (7)

where

ηM
L1L2L

= (−1)M (2 − δM,0)(L1M; L2 − M|L0)

×
[

(L1 − M)!(L2 − M)!

(L1 + M)!(L2 + M)!

]1/2

, (8)

(L1M; L2 − M|L0) is a Clebsch-Gordan coefficient, and
P M

L (cos θ ) is an associated Legendre polynomial. The radial
functions EL1L2L(R) can be evaluated using first- and second-
order perturbation theory by expanding in terms of the
electronic multipole operators Q�m = ∑

i zir
�
i C�m(r̂i), where

the sum is over each charge i, zi is the charge at each ith center,
r�
i is the distance from each ith charge to the center of mass,

and C�m(r̂i) is a Racah spherical harmonic [38].
Following the standard approach [26,31,41], the first- and

second-order interaction energy for two linear molecules can
be expressed as

Eint(R,θ1,θ2,φ) =
∑

n,L1,L2,M

(
W

(1)
nL1L2M

− W
(2)
nL1L2M

)
Rn

×P M
L1

(cos θ1)P M
L2

(cos θ2) cos[Mφ], (9)
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where φ ≡ φ1 − φ2 and

W
(1)
nL1L2M

= (−1)L1+M (2 − δM,0)
(L1 + L2)!

(L1 + M)!(L2 + M)!
×〈01|QL10|01〉〈02|QL20|02〉 (10)

is the first-order electrostatic contribution, where |0i〉 is the
electronic ground state of molecule i. In Eq. (9),

W
(2)
nL1L2M

= W
(2,DIS)
nL1L2M

+ W
(2,IND)
nL1L2M

(11)

contains the second-order contributions from dispersion,

W
(2,DIS)
nL1L2M

(R) =
∑
�1,�

′
1

�2,�
′
2

ζ
�1�

′
1;�2�

′
2

L1L2M
δ�1+�′

1+�2+�′
2+2,n

×
∑
k1 �=0
k2 �=0

T
01k1

�1�
′
1L1

T
02k2

�2�
′
2L2

εk1 − ε01 + εk2 − ε02

, (12)

and induction,

W
(2,IND)
nL1L2M

(R) =
∑
�1,�

′
1

�2,�
′
2

ζ
�1�

′
1;�2�

′
2

L1L2M
δ�1+�′

1+�2+�′
2+2,n

×
(
T

01k1

�1�
′
1L1

∑
k2 �=0

T
02k2

�2�
′
2L2

εk2 − ε02

+ (1 � 2)

)
. (13)

The scalar coupling coefficient ζ
�1�

′
1;�2�

′
2

L1L2M
is given [40] as

ζ
�1�

′
1;�2�

′
2

L1L2M
= (−1)�2+�′

2 [(2L1 + 1)!(2L2 + 1)!]1/2

×
[

(2�1 + 2�2 + 1)!(2�′
1 + 2�′

2 + 1)!

(2�1)!(2�′
1)!(2�2)!(2�′

2)!

]1/2

×
∑
L

ηM
L1,L2,L

(�1 + �20; �′
1 + �′

20|L0)

×
⎧⎨
⎩

�1 �′
1 L1

�2 �′
2 L2

�1 + �2 �′
1 + �′

2 L

⎫⎬
⎭, (14)

the symbol between curly brackets being a Wigner 9j

symbol [38], and T
0i ki

�i�
′
iLi

is the coupled monomer multipole
transition moment, defined as

T
0i ki

�i�
′
iLi

=
∑
m

〈0i |Q�im|ki〉〈ki |Q�′
i−m|0i〉(�im; �′

i − m|Li0),

(15)

where the indices ki go over ground and excited states of
the ith molecule’s electronic wave function |ki〉 [42]. It is
convenient, when discussing molecular properties, to work
with the uncoupled dynamic multipole polarizability:

α��′m(ω) =
∑
k �=0

(εk − ε0)〈0i |Q�m|ki〉〈ki |Q�′−m|0i〉
(εk − ε0)2 − ω2

. (16)

The zero-frequency limit of Eq. (16) represents the static
multipole polarizability.

IV. DRESSED-STATE VAN DER WAALS INTERACTION

A. General expressions

To consider the interactions between rigid-rotor linear
molecules dressed by an external electric field it is necessary
to first transform the van der Waals interaction energy from
the MF to the LF. The laboratory-fixed frame van der Waals
interaction can be generally expressed by referring to Eq. (6)
and removing the constraint on Eq. (7) which specified that R
is aligned to the z axis. The angular basis can then generally
be expressed [41] as

AL1L2L(R̂,r̂1,r̂2) =
∑

mL1 ,mL2 ,mL

(
L1 L2 L

mL1 mL2 mL

)

×YL1mL1
(r̂1)YL2mL2

(r̂2)YLmL
(R̂), (17)

where Y�m�
(r̂) is a spherical harmonic and (:::) is a Wigner

3j symbol [38]. Because of the change in angular basis, it is
necessary to recouple the radial W

(1,2)
nL1L2M

functions. This can
be done readily by integrating Eq. (9) over the angular phase
space:

ELF
L1L2L

(R) = 1√
8π

∫ 2π

0
dφ

∫ π

0
dθ1

∫ π

0
dθ2 sin(θ1) sin(θ2)

×A′
L1L2L

(θ1,θ2,φ)EMF
int (R,θ1,θ2,φ), (18)

where A′
L1,L2,L

(θ1,θ2,φ) is Eq. (17) projected onto the
molecule-fixed frame and is given by Ref. [43]

A′
L1L2L

(θ1,θ2,φ) =
(

2L + 1

2π

)1/2 min(L1,L2)∑
m=0

(−1)m(2 − δm,0)

×
(

L1 L2 L

m −m 0

)
�L1m(θ1)

×�L2m(θ2) cos[mφ], (19)

where �lm(θ ) are normalized associated Legendre polynomi-
als. The resulting integrand has the solution

ELF
L1L2L

(R) =
∑
M

(−1)M
(

L1 L2 L

M −M 0

)

×
(

(L1 + M)!(L2 + M)!

(L1 − M)!(L2 − M)!

)1/2

×
(

2L + 1

(2L1 + 1)(2L2 + 1)

)1/2

×
∑

n

(
W

(1)
nL1L2M

− W
(2)
nL1L2M

)
Rn

. (20)

The adiabatic dressed-state basis for two molecules at large
separation is given in terms of the product of each molecule’s
dressed rotational wave functions:

|φ〉 = |J̃1M̃1�1〉 ⊗ |J̃2M̃2�2〉. (21)

The dressed-state (DS) van der Waals interaction EDS
int (R)

is calculated from the matrix elements of Eq. (20) in the
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dressed-state basis,

EDS
int (R,F ) = 〈J̃ ′

2M̃
′
2�

′
2|〈J̃ ′

1M̃
′
1�

′
1|ELF

int (r̂1,r̂2,R)|J̃1M̃1�1〉|J̃2M̃2�2〉 =
√

4π
∑
J1,M1
J ′

1,M
′
1

∑
J2,M2
J ′

2,M
′
2

∑
L1,mL1
L2,mL2

δ�1,�
′
1
δ�2,�

′
2

× (−1)M1−�1+mL1 (−1)M2−�2+mL2 ρ
J ′

1J1

M ′
1M1

(F )ρ
J ′

2J2

M ′
2M2

(F )[(2J1 + 1)(2J ′
1 + 1)(2J2 + 1)(2J ′

2 + 1)(2L1 + 1)

× (2L2 + 1)]1/2

(
J ′

1 L1 J1

M ′
1 mL1 −M1

)(
J ′

1 L1 J1

�1 0 −�1

)(
J ′

2 L2 J2

M ′
2 mL2 −M2

)(
J ′

2 L2 J2

�2 0 −�2

)

×
∑
L,mL

(
L1 L2 L

mL1 mL2 mL

)
YLmL

(R̂)ELF
L1L2L

(R), (22)

where

ρ
J ′

i Ji

MiM
′
i
(F ) = a

J ′
i

M ′
i
(F )aJi

Mi
(F ) (23)

is the coupled rotational state density of molecule i and YLm(r̂) is a spherical harmonic [38]. In addition to the transformation
of the van der Waals interaction energy as given by Eq. (22), it is useful to have the dressed static moment 〈QDS

�0 〉 of a given
molecule. For molecule i, this is readily obtained to be〈

QDS
�0

〉 = 〈J̃ ′
i M̃

′
i�

′
i |〈0i |Q�0|0i〉|J̃iM̃i�i〉(F ) =

∑
Ji ,J

′
i

Mi

δ�i ,�
′
i
δMi,M

′
i
ρ

J ′
i Ji

MiMi
(F )[(2Ji + 1)(2J ′

i + 1)]1/2

× (−1)Mi−�i

(
J ′

i � Ji

M ′
i 0 −Mi

)(
J ′

i � Ji

�i 0 −�i

)
〈Q�0〉. (24)

B. Low-field solution

In the low-field limit, coupling between rotational states
can be limited to just two states, allowing Eq. (5) to be solved
analytically (note that � ≡ 0 and M = 0, as discussed below in
Sec. VI). From this it is possible to obtain general expressions
for the expectation value of the static and alignment moments
as a function of the applied field. Transforming to the unitless
field parameter ξ = ξ0F , with ξ0 ≡ D/2B, the low-field limit
is defined by ξ � 1. With this approximation, the dressed-state
dipole and quadrupole moments can be shown to be

〈
QDS

10

〉
(ξ ) = 〈Q10〉 6ξ + 2ξ 3

8(1 + ξ 2)
(25)

and

〈
QDS

20

〉
(ξ ) = 〈Q20〉 2ξ 2

15(1 + ξ 2)
, (26)

respectively, while the octopole moment has no two-state
contribution by symmetry. The orientation moment 〈cos θ〉
is given trivially by

〈cos θ〉(ξ ) = 〈
QDS

10

〉
(ξ )/〈Q10〉, (27)

while alignment 〈cos2 θ〉 can be calculated by noting that
cos2 θ = 1

3 [1 + 2C1,0(θ )] [where C�,m(r̂i) is a Racah spherical
harmonic], providing the expression

〈cos2 θ〉(ξ ) = 15 + 19ξ 2

45(1 + ξ 2)
. (28)

So long as the number of coupled states is dominated by
the first two states and ξ � 1, these approximate formulas
are accurate to a few percent. We have evaluated ξ0 for all

the heteronuclear alkali-metal diatoms from the spectroscopic
data in given in Table I, and we present the results in
Table II. It is also possible to evaluate Eqs. (22) and (23)
using the two-state low-field approximation. Following the
prescribed method discussed above, the low-field dressed-
state van der Waals potential can be written to leading
order as

EDS
2st (R,ξ ) 	 W̃

(1)
320(θF ,ξ )

R3
+ W̃

(1)
540(θF ,ξ )

R5

− W
(2)
6000

R6
− W

(2)
8000

R8
. (29)

Here θF is the angle between the intermolecular vector R
and the field vector, as illustrated in Fig. 1(b). The dipole-
dipole and quadrupole-quadrupole contributions are (up to
order ξ 5)

W̃
(1)
320(θF ,ξ ) = 〈Q10〉2 3

√
3ξ + 6ξ 2 + 4

√
3ξ 3 + 4ξ 4

27(1 + ξ 2)2

× (1 − 3 cos2 θF ) (30)

and

W̃
(1)
540(θF ,ξ ) = 〈Q20〉2 ξ 4

75(1 + ξ 2)2

× (3 − 30 cos2 θF + 35 cos4 θF ), (31)

respectively (note that there is no dipole-octopole contribution
in the two-state approximation), while W

(2)
n000 is the isotropic

dispersion + induction coefficient (see Tables IV and V).
The anisotropic terms contribute less than a percent to the
interaction energy and can be safely neglected.
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TABLE I. Center-of-mass multipole electrostatic moments 〈Q�0〉
(� = 1,2,3 corresponds to dipole, quadrupole, and octopole moments,
respectively) of all the ground-state heteronuclear alkali-metal di-
atoms through cesium evaluated at the equilibrium bond length re.
The variable Rq denotes the distance where the R−5 electrostatic
term overcomes the dipole-dipole R−3 contribution. All values are
presented in atomic units.

System Method re
a 〈Q10〉 〈Q20〉 〈Q30〉 Rq

LiNa CCSD(T)b 5.45 0.20 10.07 −47.33 95
VCIc 5.43 0.22

CCSDTd 5.45 0.21

LiK CCSD(T)b 6.27 1.39 6.07 −59.99 15
VCIc 6.21 1.39

CCSDTd 6.27 1.38

LiRb CCSD(T)b 6.50 1.63 2.76 −62.41 13
VCIc 6.48 1.63

CCSDTd 6.50 1.59

LiCs CCSD(T)b 6.93 2.15 −2.29 −49.88 10
VCIc 6.82 2.17

CCSDTd 6.93 2.11

NaK CCSD(T)b 6.61 1.12 10.56 −26.54 19
CCSD(T)e 6.592 1.156 10.60

VCIc 6.49 1.09

NaRb CCSD(T)b 6.88 1.35 6.94 −56.00 16
VCIc 6.84 1.30

NaCs CCSD(T)b 7.27 1.85 2.49 −60.45 12
VCIc 7.20 1.83

KRb CCSD(T)b 7.69 0.25 15.14 −69.09 109
VCIc 7.64 0.23
relf 7.7 0.30

KCs CCSD(T)b 8.10 0.75 13.00 −105.70 38
VCIc 8.02 0.76

RbCs CCSD(T)b 8.37 0.49 15.88 −50.28 60
VCIc 8.30 0.40

aThe re values are taken from experimental results where available;
see Deiglmayr et al. [33] and references therein.
bThis work.
cReference [34].
dReference [8].
eReference [27].
fReference [35] performed a four-component Dirac-Fock valence
bond calculation in calculating the dipole moment.

V. ELECTRONIC STRUCTURE CALCULATIONS

The ab initio calculation of van der Waals coefficients,
and more generally multipole polarizabilities, requires special
care in both the basis set and level of theory used [44–46].
Electrostatic moments similarly require careful consideration
of the theoretical method, though the basis-set dependence is
less severe [47]. For all calculations in this work we use the
Karlsruhe def2-QZVPP [48] basis set augmented with two
additional even-tempered diffuse spdf functions designed to
accurately describe higher-order static polarizabilities [31].
The Karlsruhe def2 basis sets are available for nearly the entire
periodic table and are known for both their robustness and good
cost-to-performance ratio in large molecular Hartree-Fock and

TABLE II. Tabulated values of the field strength coefficient
ξ0 = D/2B using the spectroscopic and electrostatic constants from
Table I. All units are in cm2/kV.

23Na 39K 95Rb 133Cs

7Li 0.0114 0.116 0.159 0.246
23Na 0.253 0.413 0.684
39K 0.141 0.529
95Rb 0.635

density-functional theory calculations. As such, they remain
attractive for use in calculations that involve many different
atoms across the periodic table.

As has been demonstrated previously, the use of time-
dependent density-functional theory [49,50] is a cost-effective
and accurate way to calculate multipole transition moments
and excitation energies for diatomic molecules. We chose
to limit our calculations in this work to only include the
PBE0 functional for simplicity; however, for various cases
it was observed that the B3PW91 functional also provides
consistent results. The electrostatic moments were calculated
using coupled-cluster theory including all singles, doubles,
and perturbative triples [CCSD(T)] [51] using a two-step
finite-field method (with field spacings of 10−6 a.u.). Core-
valence and core-core correlation energy was accounted for by
including the inner valence s and p electrons in the CCSD(T)
calculations, while for the TD-DFT computations all electrons
not replaced by an effective core potential (ECP) are implicitly
correlated. All TD-DFT calculations were done using a locally
modified version of the GAMESS [52,53] suite of programs;
the CCSD(T) finite-field calculations were done using the
MOLPRO [54] quantum chemistry program package. For further
details on the methodology used in evaluating the transition
dipole moments and excitation energy we refer to our previous
paper on homonuclear alkali-metal diatomic molecules [31].

VI. COMPUTATIONAL RESULTS AND DISCUSSION

The leading-order term of the long-range expansion Eq. (9),
and thus the longest-ranged interaction in the series, involves
products of the electrostatic moments of each monomer, and
for dipolar molecules, it is the dipole-dipole R−3 term. The
dipole-dipole scattering [55] and applications of dipole-dipole
interactions [14] are well studied in the literature; however,
higher-order terms can be necessary for accurately describing
intermediate intermolecular distances [31] and are often
neglected if only for a lack of available data. Inclusion of
just the quadrupole-quadrupole interaction to a dipole-dipole
model can introduce significant changes in the form of
potential energy barriers for collinear geometries (θ1 = θ2 =
φ = 0) at long range [56]. It is possible to estimate whether
the inclusion of higher-order electrostatic terms could lead to a
barrier by introducing the outer zero-energy turning point Rq,

which occurs when the R−5 repulsion overcomes the attractive
R−3 dipole-dipole force. Keeping only the two leading terms
in Eq. (9) and setting

Eint(Rq,0,0,0) = −〈Q10〉2

R3
q

+ 3〈Q20〉2 − 4〈Q10〉〈Q30〉
R5

q

= 0,

(32)
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we obtain

Rq =
√

3〈Q20〉2 − 4〈Q10〉〈Q30〉
〈Q10〉 . (33)

When this outer turning point is sufficiently long range
(Rq � 20 a.u.), the introduction of these higher-order terms
can be important and lead to long-range barriers [56] and thus
should be examined in further detail [57]. As such, we have
calculated the ab initio electrostatic dipole, quadrupole, and
octopole moments (higher-order moments do not contribute
up to R−5 in the long-range expansion; see Sec. V for
details on the methodology used). In Table I we present our
calculated static moments, the outer turning point Rq for
each system, and various dipole and quadrupole moments
found in the literature. Our computed static dipole moments
agree closely with both the valence full-configuration in-
teraction results of Aymar and Dulieu [34] and González-
Férez et al. [58] across all the molecules investigated, and

the CCSDT (CCSD with all triples) results of Quéméner
et al. [8] for the highly polar LiX (X = Na, K, Rb, Cs)
species. Other than the CCSD(T) quadrupole moment of
Zemke et al. [27] (with which we compare well), little to no
published quadrupole values exist for the heteronuclear alkali-
metal diatoms. It has been demonstrated for the homonu-
clear alkali-metal diatoms that the finite-field CCSD(T)
higher-order static moments compare well with other
methods [31,47]; similar accuracy is anticipated for the
heteronuclear species.

Dispersion and induction contributions to the van der Waals
series are proportional to products of the dipole, quadrupole,
and octopole polarizabilities. As such, we have calculated
and presented in Table III the dipole and quadrupole static
polarizabilities with comparisons to some of the existing
literature (octopole static polarizabilities are not listed but
are available upon request). As discussed previously [31],
the n-aug-def2-QZVPP basis sets are well converged for

TABLE III. Multipole static polarizabilities α��′m and isotropic van der Waals dispersion coefficients W
(2,DIS)
n000 up to order n = 8 of all the

ground-state alkali-metal diatoms through cesium evaluated at the equilibrium bond lengths re listed in Table I. All values are presented in
atomic units, and [n] denotes ×10n.

System Method α110
a α111

a ᾱb α220 α221 α222 W
(2,DIS)
6000 W

(2,DIS)
8000

LiNa PBE0c 300.0 185.5 223.7 9418.9 7035.6 3356.2 3.279[3] 4.982[5]
VCId 347.6 181.8 237.0

CCSDTe 237.8 3.673[3]f

LiK PBE0c 455.1 261.8 326.3 24164.4 15899.8 5939.6 5.982[3] 1.378[6]
VCId 489.7 236.2 320.7

CCSDTe 324.9 6.269[3]f

LiRb PBE0c 445.5 256.1 319.2 27815.3 18110.7 6359.2 6.193[3] 1.583[6]
VCId 524.3 246.5 339.1

CCSDTe 346.2 6.323[3]f

LiCs PBE0c 525.2 289.1 367.8 38723.9 24996.3 7935.8 7.700[3] 2.297[6]
VCId 597.0 262.5 374.0

CCSDTe 386.7 7.712[3]f

NaK PBE0c 472.7 280.6 344.6 16572.0 13035.0 6739.5 6.818[3] 1.268[6]
VCId 529.2 262.3 351.3

CCSD(T)g 363.8 6.493[3]h

NaRb PBE0c 504.6 285.3 358.4 25217.0 17771.7 7547.5 7.688[3] 1.790[6]
VCId 572.0 280.3 377.5

NaCs PBE0c 587.3 323.2 411.2 37633.3 25245.7 9444.6 9.453[3] 2.641[6]
VCId 670.7 304.2 426.4

KRb PBE0c 729.6 420.9 523.8 36974.1 27588.8 13100.9 1.349[4] 3.385[6]
VCId 748.7 382.9 504.8

KCs PBE0c 836.7 468.6 591.3 56372.9 38791.7 16262.9 1.657[4] 5.038[6]
VCId 822.3 425.62 571.1

RbCs PBE0c 901.0 502.0 635.0 48325.3 36401.8 18619.8 1.884[4] 5.188[6]
VCId 904.0 492.3 602.8

aNote that the parallel and perpendicular static dipole polarizabilities, α‖ and α⊥, correspond to ��′m = 110 and 111, respectively.
bᾱ = 1

3 (α‖ + 2α⊥) is the average static dipole polarizability.
cThis work.
dReference [33].
eReference [8].
fReference [8] evaluated using CCSD and the Tang-Slater-Kirkwood formula [36].
gReference [27].
hReference [27] evaluated using the London formula.
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computation of static polarizabilities of homonuclear alkali-
metal diatoms up to octopole order, and we find the same
is true for the heteronuclear species. Density-functional
methods are known to provide average static polarizabili-
ties to within 5–10% of experimental or highly correlated
results [59,60]. Furthermore some variance is expected in
the parallel (α110) polarizability as all computations are
done at the experimental (or theoretical where necessary)
equilibrium bond length, and it is well known that the
polarizability is sensitive to the internuclear separation in the
alkali-metal diatoms [33]. It is expected that the perpendicular
polarizability (α111) should agree much more closely with
other methods, which we find to be the case, as illustrated in
Table III.

Van der Waals dispersion and induction coefficients of the
heteronuclear alkali-metal diatoms are sparsely given in the
literature. Currently, only a few values exist and are restricted
to isotropic contributions (corresponding to W

2,DIS
6000 ). The only

systematically calculations are for the LiX species [8]. In
Table III we note the reasonable agreement between our re-
ported TD-DFT isotropic C6 = W

2,DIS
6000 dispersion coefficients

and the Tang-Slater-Kirkwood [36] values from Quéméner
et al. [8] for the LiX species. Additionally Kotochigova [32]
has calculated, using multireference configuration interaction
theory, the isotropic and anisotropic dispersion coefficients
of order R−6 for both KRb and RbCs. However, these
values contain non-Born-Oppenheimer contributions and
so are not directly comparable to our numbers; because
of this we have not included these values in Table III. To
determine the accuracy of the van der Waals coefficients

FIG. 2. (Color online) A comparison of interaction curves at
various orientations for molecule-fixed-frame LiNa + LiNa (in the
absence of an external electric field) at different levels of theory.
The black open circles are a fully ab initio curve computed at the
CCSD(T)-f12a–QZVPP level of theory (see text for computational
details), the solid red line is the evaluation of the van der Waals
expansion of Eq. (9) using TD-DFT to compute the dispersion
coefficients (see Tables IV and V), and the dashed red line is the usual
isotropic approximation containing angular-dependent electrostatic
terms where the dispersion contribution is truncated at the isotropic
C6 coefficient.

calculated here, we have computed ab initio curves for
LiNa + LiNa at two different molecular frame geometries
using the CCSD(T)-F12a–QZVPP [explicitly correlated
CCSD(T)] level of theory [61,62]. These ab initio curves
are plotted in Fig. 2 along with the electrostatic plus
isotropic dispersion approximation and the van der Waals
curves of this work including all anisotropic terms through
R−8. As can be seen, the TD-DFT van der Waals curves
agree to a few cm−1 with the ab initio results [63], while
the isotropic curves fail completely in the intermediate
range (it should be noted that for the collinear case of
LiNa + LiNa the isotropic curves do not turn over at
all and predict an infinite repulsive wall). In Tables IV
and V we have listed the W

(1,2)
nL1L2M

coefficients for all of the
heteronuclear alkali-metal diatoms, including all terms up
through order R−8.

In evaluating the field coupling and alignment of the various
alkali-metal diatomic molecules, the rotational wave-function
expansion is greatly simplified by making use of the initial

TABLE IV. LiX (X = Na, K, Rb, Cs) calculated CCSD(T)
electrostatic and TD-DFT dispersion + induction van der Waals
coefficients W

(1,2)
nL1L2M for unique combinations of L1L2M . All values

are presented in atomic units and calculated at the equilibrium bond
length re listed in Table I, and [n] denotes ×10n.

nL1L2M LiNa LiK LiRb LiCs

Electrostatic: W
(1)
nL1L2M

3110 −7.076[0] −3.799[0] −5.170[0] −9.094[0]
3111 0.038[0] 1.900[0] 2.585[0] 4.547[0]
4210 −5.893[0] −2.547[1] −1.431[1] 1.324[1]
4211 1.965[0] 8.489[0] 4.771[0] −4.412[0]
5220 6.086[2] 2.276[2] 5.284[1] 2.568[1]
5221 −1.353[2] −5.058[1] −1.174[1] −5.707[0]
5222 8.453[0] 3.161[0] 0.734[0] 0.357[0]
5310 3.674[1] 3.306[2] 2.887[2] 3.942[2]
5311 −9.186[0] −8.266[1] −7.218[1] −9.855[1]

Dispersion + induction: W
(2)
nL1L2M

6000 3.289[3] 7.243[3] 7.254[3] 1.062[4]
6200 4.036[2] 3.479[2] 4.874[2] 2.739[1]
6220 1.768[2] 1.180[3] 1.094[3] 2.567[3]
6221 −3.929[1] −2.621[2] −2.430[2] −5.705[2]
6222 4.911[0] 3.277[1] 3.038[1] 7.131[1]
7100 1.075[3] −4.898[2] −5.906[3] −3.740[4]
7210 1.460[2] −7.641[3] −8.641[3] −3.110[4]
7211 −2.433[1] 1.273[3] 1.440[3] 5.184[3]
7300 7.411[2] 4.567[3] 1.057[3] −9.020[3]
7320 4.259[2] −7.013[2] −2.682[3] −1.687[4]
7321 −7.099[1] 1.169[2] 4.470[2] 2.812[3]
7322 5.070[0] −8.349[0] −3.193[1] −2.008[2]
8000 5.586[5] 1.539[6] 1.715[6] 2.722[6]
8200 3.552[5] 1.270[6] 1.534[6] 2.793[6]
8220 9.460[4] 5.702[5] 6.695[5] 1.636[6]
8221 −1.406[4] −8.078[4] −9.379[4] −2.272[5]
8222 1.234[3] 4.607[3] 4.642[3] 9.978[3]
8400 3.896[4] 4.574[4] 6.320[4] 1.371[5]
8420 2.706[4] 7.284[4] 8.377[4] 2.485[5]
8421 −3.666[3] −9.822[3] −1.124[4] −3.320[4]
8422 2.001[2] 5.287[2] 5.965[2] 1.740[3]
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TABLE V. XY (X,Y = Na, K, Rb, Cs) calculated CCSD(T) electrostatic and TD-DFT dispersion + induction van der Waals coefficients,
W

(1,2)
nL1L2M, for unique combinations of L1L2M . All values are presented in atomic units and calculated at the equilibrium bond length re listed

in Table I, and [n] denotes ×10n.

nL1L2M NaK NaRb NaCs KRb KCs RbCs

Electrostatic: W
(1)
nL1L2M

3110 −2.470[0] −3.651[0] −6.813[0] −0.125[0] −1.164[0] −0.432[0]
3111 1.235[0] 1.826[0] 3.406[0] 0.063[0] 0.582[0] 0.216[0]
4210 −3.528[1] −2.818[1] −1.377[1] −1.134[1] −2.960[1] −2.221[1]
4211 1.176[1] 9.393[0] 4.590[0] 3.785[0] 9.867[0] 7.403[0]
5220 6.717[2] 2.900[2] 3.710[1] 1.375[3] 1.004[3] 1.524[3]
5221 −1.493[2] −6.444[1] −8.245[0] −3.056[2] −2.231[2] −3.386[2]
5222 9.329[0] 4.028[0] 0.515[0] 1.910[1] 1.395[1] 2.116[1]
5310 1.175[2] 7.346[1] 5.962[1] 6.909[1] 1.955[2] 1.106[1]
5311 −2.937[1] −1.836[1] −1.490[1] −1.727[1] −4.887[1] −2.764[0]

Dispersion + induction: W
(2)
nL1L2M

6000 7.777[3] 8.680[3] 1.233[4] 1.354[4] 1.726[4] 1.921[4]
6200 5.519[2] 7.837[2] 3.327[2] 2.001[3] 2.375[3] 2.909[3]
6220 9.762[2] 1.223[3] 2.694[3] 1.028[3] 1.826[3] 1.857[3]
6221 −2.169[2] −2.717[2] −5.986[2] −2.284[2] −4.059[2] −4.127[2]
6222 2.712[1] 3.397[1] 7.482[1] 2.855[1] 5.073[1] 5.159[1]
7100 1.157[4] 2.268[3] −2.114[4] 6.069[3] 1.457[4] 1.755[4]
7210 −1.657[1] −4.434[3] −2.312[4] 9.929[2] −8.871[2] 2.795[3]
7211 2.762[0] 7.391[2] 3.853[3] −1.655[2] 1.479[2] −4.658[2]
7300 9.136[3] 4.795[3] −1.280[3] 4.176[3] 1.234[4] 1.231[4]
7320 4.931[3] 1.142[3] −9.091[3] 2.772[3] 7.134[3] 8.669[3]
7321 −8.219[2] −1.903[2] 1.515[3] −4.621[2] −1.189[3] −1.445[3]
7322 5.870[1] 1.360[1] −1.082[2] 3.300[1] 8.492[1] 1.032[2]
8000 1.444[6] 1.928[6] 3.016[6] 3.734[6] 5.391[6] 5.667[6]
8200 8.920[5] 1.503[6] 2.766[6] 2.606[6] 4.295[6] 3.923[6]
8220 3.296[5] 6.003[5] 1.466[6] 7.941[5] 1.494[6] 1.296[6]
8221 −4.768[4] −8.470[4] −2.042[5] −1.162[5] −2.138[5] −1.878[5]
8222 3.368[3] 4.596[3] 9.349[3] 9.098[3] 1.356[4] 1.351[4]
8400 6.476[4] 6.275[4] 1.107[5] 2.931[5] 3.258[5] 4.238[5]
8420 5.979[4] 7.214[4] 1.962[5] 2.200[5] 2.678[5] 3.389[5]
8421 −8.081[3] −9.702[3] −2.625[4] −2.970[4] −3.612[4] −4.566[4]
8422 4.380[2] 5.183[2] 1.380[3] 1.603[3] 1.945[3] 2.453[3]

premise that the molecules are in the rovibrational ground
state. As such � ≡ 0 and M = 0 (the use of a dc external
field will not mix different M values), reducing both Eqs. (22)
and (24) significantly. In Fig. 3 we have plotted the dc field
dressed electrostatic moments as a function of the external
field strength. While the very high field strengths in Fig. 3
are generally experimentally challenging, it is illustrative to
show how difficult it is to obtain both strong orientation
(〈cos θ〉 > 0.85) and alignment (〈cos2 θ〉 > 0.85) in molecules
with small rotational constants, regardless of the strength
of the dipole moment. It is also instructive to examine the
low-field strengths of Fig. 3, where the linear trend of each
curve on the log-log scale shows the general scaling of the
static moments as a function of the external field as discussed
in Sec. IV B. In Fig. 4 we have evaluated Eq. (22) for KRb
(KRb is chosen for its medium-strength dipole moment and
large rotational constant) at various dc field strengths. This
is done by numerically diagonalizing Eq. (5) for each field
strength F to obtain Eq. (23), after which Eq. (22) can

evaluated for any intermolecular distance R. In diagonalizing
Eq. (5) a question of the size of the rotational basis set
expansion in Eq. (3) arises. Performing a convergence test,
it was determined that including between 15 and 30 rotational
states in the expansion is sufficient for all the molecules
studied. Examining Fig. 4, the difference between the low
and high field strengths is easily identified by the change in
behavior from most similar to the field-free case (e.g., isotropic
contributions dominate the interaction potential) to the regime
where the dressed-state van der Waals interaction energy
more closely resembles the molecule-fixed-frame van der
Waals potential (e.g., when electrostatic contributions become
key). This high-field-strength regime is more quantitatively
defined when both 〈cos θ〉 and 〈cos2 θ〉 are greater than
0.9 (which corresponds to roughly seven strongly coupled
rotational states). Also in Fig. 4 the approximate two-state
model of Eq. (29) can be seen to agree very well with
the fully coupled equations in the low-field limit. Fully
field-coupled potentials for the other heteronuclear molecules

032711-8



LONG-RANGE FORCES BETWEEN POLAR ALKALI-METAL . . . PHYSICAL REVIEW A 86, 032711 (2012)

FIG. 3. (Color online) Dressed-state electrostatic moments
〈QDS

�0 〉 (� = 1,2,3 corresponds to dipole, quadrupole, and octopole
moments, respectively) of (a) LiX and (b) NaX, KX, and RbCs
(X = Na, K, Rb, Cs as appropriate) as a function of an external dc
electric field.

listed in this work have been calculated and are available upon
request.

VII. CONCLUSIONS

This work completes our systematic TD-DFT computation
of the alkali-metal diatomic species by computing accurate
multipole electrostatic moments and anisotropic van der
Waals coefficients for the heteronuclear alkali-metal diatomic
species. The multipole electrostatic moments were computed
using a finite-field treatment of the CCSD(T) molecular
energy employing the augmented Karlsruhe def2-QZVPP
basis set and were found to produce excellent agreement
with the existing literature. Excitation energies and multipole
transition moments were calculated using TD-DFT and the
same augmented QZVPP basis set. Static polarizabilities as
well as van der Waals induction and dispersion coefficients
were evaluated using the sum-over-states approach and were
found to be consistent with the existing literature. Using the

FIG. 4. (Color online) The dc field-coupled van der Waals curves
[Eq. (22) with Mi = M ′

i = 0] of 40K87Rb for both low and high fields
as well as the approximate two-state van der Waals curve [Eq. (29)].
Here F ∼ 20 kV/cm is the intermediate field strength where more
than two rotational states begin to strongly couple.

simple form of Eq. (9) and the values from Tables IV and V, it is
possible to completely characterize the long-range interaction
between two heteronuclear alkali-metal diatoms up through
order R−8. A sample FORTRAN program for evaluating Eq. (9)
is included in the supplemental material of Ref. [31] or upon
request to the authors.

The transformation of the van der Waals series for linear
molecules from the molecule-fixed frame to the laboratory-
fixed frame was described. This was followed by the computa-
tion of the dressed-state electrostatic moments as a function of
an external dc electric field. It was noted that in the low-field
limit the coupling of the molecule to the external field can be
approximated by only considering two rotational states. With
this in mind, the orientation and alignment of the molecule as
a function of the applied field can be approximated using only
molecular spectroscopic constants by Eqs. (25)–(28), which
are valid for field values F � 2B/D. We have also illustrated
the effects of an external dc electric field on the intermolecular
potential by evaluating Eq. (22) for 40K87Rb at a variety of
field strengths. It can be seen then that introducing rotational
state coupling leads to a richer interaction phase space
beyond the usual isotropic approximations. Finally, a two-state
approximation of the dressed-state long-range potential [see
Eq. (22)] has been derived and is given by Eq. (29) in terms of
molecular spectroscopic constants and isotropic van der Waals
coefficients
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P. Schmelcher, Europhys. Lett. 83, 43001 (2008).

[59] P. Calaminici, K. Jug, and A. Köster, J. Chem. Phys. 109, 7756
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