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The P-wave hybrid theory of electron-hydrogen elastic scattering [Bhatia, Phys. Rev. A 85, 052708 (2012)]
is applied to the P-wave scattering from He ion. In this method, both short-range and long-range correlations
are included in the Schrodinger equation at the same time, by using a combination of a modified method of
polarized orbitals and the optical potential formalism. The short-range-correlation functions are of Hylleraas
type. It is found that the phase shifts are not significantly affected by the modification of the target function
by a method similar to the method of polarized orbitals and they are close to the phase shifts calculated earlier
by Bhatia [Phys. Rev. A 69, 032714 (2004)]. This indicates that the correlation function is general enough to
include the target distortion (polarization) in the presence of the incident electron. The important fact is that
in the present calculation, to obtain similar results only a 20-term correlation function is needed in the wave
function compared to the 220-term wave function required in the above-mentioned calculation. Results for the
phase shifts, obtained in the present hybrid formalism, are rigorous lower bounds to the exact phase shifts. The
lowest P-wave resonances in He atom and hydrogen ion have also been calculated and compared with the results
obtained using the Feshbach projection operator formalism [Bhatia and Temkin, Phys. Rev. A 11, 2018 (1975)]
and also with the results of other calculations. It is concluded that accurate resonance parameters can be obtained
by the present method, which has the advantage of including corrections due to neighboring resonances, bound
states, and the continuum in which these resonances are embedded.
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I. INTRODUCTION

There are a number of scattering theories and it is
important to test them. Scattering of electrons and positrons
by hydrogenic systems provides such a test because the target
function is known exactly, allowing us to compare and test the
various methods of calculations. At low incident energies, the
distortion of the target produced by the incident electron is
important. In previous papers [1-3] on scattering, we showed
that it is possible to include a long-range polarization potential
proportional to —1/r* and short-range correlations via an
optical potential in the Schrodinger equation at the same time.
One of the methods used to take into account this distortion is
the method of polarized orbitals [4], which includes the effect
of polarization in the ansatz for the wave function for the scat-
tering. In previous papers [1-3], scattering phase shifts were
calculated by using this hybrid method. In [5], the P-wave
calculation was based on the Feshbach projection operator
formalism [6]. We do not use any projection operators in the
present calculation but the important property, namely, that the
phase shifts are rigorous lower bounds to the exact phase shifts,
is retained. The phase shifts obtained by the close-coupling
approach also have this property while those obtained from the
Kohn variational principle, and other methods closely related
to this principle, do not have any bounds except at zero incident
energy. We use Rydberg units: energy in rydbergs and length
in Bohr radius ag. The phase shifts, throughout, are in radians.

Now we apply the formalism given in [3] to the P-wave
elastic scattering of electrons from a Coulombic He™ target.
Phase shifts obtained are compared with other calculations.
We show that the same formalism can be used to calculate 'P
and 3P resonance parameters in electron plus target systems.
Resonances are exhibited, at appropriate energies, when the
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incident electron excites the target electron and itself gets
attached to the excited target for a finite duration of time. These
resonances have been investigated extensively by the use of the
Feshbach projection operator formalism [6], close-coupling
approach [7], complex-rotation method [8], etc.

II. THEORY

Below we describe very briefly the formalism presented in
[3]. In order to replace the many-particle Schrodinger equation
with a single-particle integrodifferential equation, we write the
wave function for any angular momentum L in the form

u(ry)

quh@=[ ImmmmmmiUem]

r

+ Y G} (717, (1)
A

where C; are the unknown coefficients. The (£) above refers
to singlet (upper sign) or triplet (lower sign) scattering,
respectively. The summation over A is from 1 to N, the number
of terms in the expansion. The effective target wave function
can be written as

ol = = - Xp(r) uis—p(rp) cos(6r2)
M%m=mm—%llﬂ2w%,

Vl r
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T

VA
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and 6, is the angle between 7; and 7,. We have replaced the
step function &(ry,r,) used by Temkin [4] by a smooth cutoff

2)

where
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function yg(r;) which is of the form

xp(r1) = (1 —e Py, )

where n > 3. Now the polarization takes place whether the
scattered electron is inside or outside the orbital electron.
The polarization function given in Eq. (2) is valid throughout
the range. This is unlike the step function &(ry,r;) used by
Temkin [4] which ensures that the polarization takes place
when the scattered electron r; is outside the orbital electron r.
Furthermore, the function in Eq. (5) gives us another parameter
B, which is a function of k, the incident electron momentum.
This term guarantees that )(,3(;"1)/;"12 — O when r; — O and it
also contributes to the short-range correlations in addition to
those obtained from the correlation function ®; , and therefore,
is useful to optimize the results.

Beyond the terms containing u(r) explicitly (those are the
terms giving rise to the exchange approximation), the function
@, is the correlation function. For arbitrary L this function is
most efficiently written in terms of the Euler angles [9]:

@ = [f/T(r1.r2r12) DT (0.0,9)
+ £ r) DL (0,0,9)]. ©6)

The D'* functions are called rotational harmonics [9]. The
f’s above are the generalized “radial” functions, which depend
on the three residual coordinates that are required (beyond the
Euler angles) to define the two vectors r; and r;. The distance
between the two electrons is given by rj; = || — 7a].

The radial functions flli for L = 1 are defined as follows:

I = cos(0r2/2)[ f(r1,r2,r12) £ f(ra,riri)],  (7)
F7 = sin@12/2Lf (r1,r2,r12) F f(ra,r1,r12)], ®)

and

I —yri—b
f(rlsr2vr12)ZZClmnrlrEnr?ze yn=en, 9)

Imn

The upper sign in Egs. (7), (8) refers to the singlet state and
the lower sign refers to the triplet state. The minimum value
of [ is equal to 1 while that of m and n is 0. The wave function
of the scattered electron is given implicitly by

/ [¥20(2) P\ F ) (H — YW, 1dF =0, (10)

where H is the Hamiltonian and E is the total energy of the
electron-target system. We have, in Rydberg units,

H=-V?_-V? 2z 2Z-+ 2 (11)
N ! 2 ry ra 712’

E=1k*- 2% (12)

where k? is the kinetic energy of the incident electron and Z
is the nuclear charge which is 2 for He™.
We can write the final scattering equation in the form

d? 2
[D(”ﬁ FR 4G A Vat VP (Ve + VEY) = vo*):l]u(r)

=0. (13)
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We give below a few of the quantities:

43 [ xs(r)7?
m”:Hﬁﬁ[Z]' (14)
The direct potentials are given by
‘Q=%£:2+2KM(Z+1> (15)
r r
and
VI = (o) ) 4 (16)
dr
We give x; below:
x = zgg ) a(r), (17)
a(r) =32 —e 2?7 [(Zr)* +5(Zr)* + AZr)* +9(Zr) + 2].
(18)

All other quantities are fairly complicated and they are
not given here. It can be seen from the detailed expressions
that (x; + x3) has a term 229—4r4 where 9/(224) is the dipole
polarizability of the target with nuclear charge Z. The
exchange term is given by

YA [
Vextt(r) = —Te_zr [;/ dxe ? x?u(x)
0

00 —Zx
+ﬂ/dfﬂum] (19)

The exchange polarization terms are too detailed and are
not given here. The optical potential is now given by

N (Y5 ()PP, 7)) |H — E|W,
VO%OIM(V)ZI’Z ( 10( 1) (rl 72)| | 0)’ (20)

E — &

where W is the wave function W, given in Eq. (1) without the
correlation term @, . The eigenvalues &, are given by

(@7 |H|®}) =¢). Q1)

The functions CD}‘ are normalized to 1. The summation
over s in Eq. (20) is from 1 to N, the number of terms in
the expansion. This optical potential includes the effects of
polarization of the target. The right-hand side of Eq. (20) has
not been given explicitly because it contains a large number of
terms. Provided the total energy E < g, the optical potential
given in Eq. (20) is negative definite and therefore corresponds
to an attractive potential. Gailitis [10] has shown that as the
number of terms in the correlation function is increased, the
optical potential becomes more negative. Consequently, phase
shifts increase as the number of terms is increased.

In order to derive the equation for the scattering function
u(r), the coefficients C; must be known. The detailed
derivation is given in [1] and is not repeated here. In [5], the
optical potential of the type given in Eq. (20), in the absence
of long-range potential, was derived by using the Feshbach
projection operator formalism based on projection operators
P and Q [6]. In [5], the correlation function is such that it
takes into account only the short-range correlations and there
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is no direct long-range potential proportional to 1/r* in the
scattering equation satisfied by u(r). The present formalism is
independent of the projection operators P and Q.

III. CALCULATIONS AND RESULTS

Equation (13) is solved for the continuum function u(r) by
the noniterative method of Omidvar [11] and the phase shift n
is obtained from the value of the function at a large distance:
Z—1

k

+argl"|:L+ 1- Q} +n}. (22)

In(2kr)

r—0o0

Hm u(r) o sin {kr — L% +

Since the Coulomb field extends very far, Eq. (13) has to
be integrated to a large distance, especially for small values of
k. From u(r) and its derivative, the phase shift », the deviation
from the pure Coulomb field of (Z-1) is readily extracted,
provided the higher terms in the expansion of Coulomb
functions F and G [12] are retained in the scattering function

u(r):
u(r) = A[Fi(r)+ tan(n)G(r)], (23)

where F| is the regular Coulomb wave function and G(r) is
the irregular Coulomb wave function, and 7 is the required
phase shift for the L = 1 partial wave.

In order to obtain phase shifts which can be compared
to those obtained by the method of polarized orbitals, we
exclude the correlation terms &, in Eq. (1). The phase shifts,
optimized with respect to the nonlinear parameter 8, obtained
for 'P and 3P, are given in Table I and compared with those
obtained by Sloan [13]. These results include contributions
from the exchange polarization term. The present results have
variational bounds, i.e., they are always lower than the exact
phase shifts. We see that phase shifts, obtained using the
polarized orbital method, which is not variational, are always
higher than the present ones.

In Table II, we give convergence of 'P phase shifts for
k = 0.1 with increasing number of terms in the correlation
function. The results have been optimized with respect to the
nonlinear parameters 8, y, and §, with n = 3, the optimum

TABLE I. Comparison of phase shifts 1 (radians) without corre-
lations with those obtained by the method of polarized orbitals [13].

IP 3P

k Present n npo Present n npo

0.2 —0.047405 —0.0394 0.20143 0.2232
0.4 —0.050130 —0.0404 0.20715 0.2290
0.6 —0.053033 —0.0428 0.21448 0.2364
0.8 —0.054106 —0.0450 0.22119 0.2429
1.0 —0.053466 —0.0436 0.22582 0.2469
1.2 —0.049405 —0.0384 0.22779 0.2479
1.4 —0.042442 —0.0301 0.22726 0.2462
1.6 —0.032978 —0.0193 0.22474 0.2425
1.8 —0.021577 —0.0068 0.22141 0.2375
2.0 —0.009349 +0.0066 0.21699 0.2317
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TABLEII. Convergence of 'P phase shifts (radians) for electron-
helium ion for k = 0.1.

N B Y ) n

0 1.10 —0.04657765
4 1.00 1.75 2.00 —0.04047531
10 0.85 1.40 2.00 —0.03839231
20 0.75 1.50 2.40 —0.03830765
35 0.75 1.50 2.40 —0.03812654

value. The nonlinear parameters are also given in the table.
It is seen from the table that we do not need more than 20
terms to get results comparable in accuracy to those obtained
with 220 terms in [5] without the use of the polarization term
in the target wave function and using the projection operator
formalism of Feshbach, where it is not possible to modify the
formulism in such a way as to produce a direct polarization
potential proportional to 1/r* in the scattering equation for
u(r).

In Table III, we give 'P phase shifts for various values of
the incident momentum for 20 terms and compare them with
those obtained in [5] with 220 terms in the correlation function,
but without the polarization term. We find that the results are
comparable in accuracy to those obtained in [5] with longer
expansions in the correlation function. This indicates that very
long expansions do give fairly accurate results. We compare
the present results with the pseudostate close-coupling results
of Oza [14] and the results of Gien [15] obtained using the
Harris-Nesbet method.

In Table IV, we give the convergence of *P phase shifts for
k = 0.1 with the number of terms in the correlation function.
The results have been optimized with respect to the nonlinear
parameters S, y, and 8, with n = 3, the optimum value. The
nonlinear parameters are also given in the table. We see from
the table that we do not need more than 20 terms to get results
comparable in accuracy to those obtained in [5] without the
use of the polarization term in the target wave function.

In Table V, we give 3P phase shifts for various values of
incident momentum for 20 terms and compare them with those

TABLE III. Phase shifts (radians) of 'P for various k for N = 20.

k Present n npQ n(Oza)* n(Gien)®
0.1 —0.038308 —0.038311 —0.03938

0.2 —0.038956 —0.038958 —0.04002 —0.0407
0.3 —0.039873 —0.039911 —0.04095

0.4 —0.040902 —0.040971 —0.04304

0.5 —0.041469 —0.041951 —0.04203 —0.0428
0.6 —0.041641 —0.042633 —0.04381

0.7 —0.041438 —0.042834 —0.04416 —0.0447
0.8 —0.039927 —0.042383 —0.04391

1.0 —0.037132 —0.039036 —0.04098

1.1 —0.035430 —0.035948 —0.0414
1.3 —0.026419 —0.026592

14 —0.020773 —0.019982

2Close-coupling results of Oza [14].
YHarris-Nesbet method, Gien [15].
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TABLEIV. Convergence of *P phase shifts (radians) for electron-
helium ion for k = 0.1.
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TABLE VI 3P and 'P phase shifts (radians) for electron-helium
ion in the resonance region, N = 20.

N B y b n Incident energy nCP) Incident energy n('P)

0 0.90 0.19981 2.30 0.2426352 2.58 0.0320292

4 1.20 1.65 1.94 0.21332 2.32 0.2426888 2.60 0.0902568

10 1.80 1.65 1.84 0.21500 2.33 0.2427454 2.605 0.1412791

20 1.30 1.75 1.94 0.21511 2.35 0.2426462 2.61 0.3382261

35 1.30 1.75 1.94 0.21516 2.38 0.2432013 2.613 1.0553706
2.40 0.2435423 2.615 2.2412107
241 0.2438905 2.617 2.6999855
2.42 0.2444182 2.619 2.8625805

obtained in [5] with 220 terms in the correlation function, but 243 0.2454991 2.6195 2.8857529

without polarization term. Again, we find that the results are 244 0.2470834 2.6197 2.8939338

comparable to those obtained in [5] with longer expansions 245 0.2493821 2.621 2.9363176

in the correlation function. This indicates that very long 2.46 02547154 2.625 3.0017527

expansions do give fairly accurate results. We compare the 247 0.2719629 2.63 3.0420385

present results with the pseudostate close-coupling results ggi 8;2;322(1) 2.64 3.0792809

of Oza [14] and the results of Gien [15] obtained using the 2.476 0.3358026

Harris-Nesbet method. 2' 478 0’ 5025307

Fairly accurate results have been obtained by optimization 2: 479 1: 4022793

of the nonlinear parameters only once. However, there is 248 30426651

always scope for further improvements of results by repeated 2481 32177122

variation of these nonlinear parameters, requiring a fair amount 2482 3.0738246

of computer time, especially when it is necessary to carry 2484 3.309042

out the calculations in quadruple precision to obtain accurate 2.486 3.326290

results. The main purpose of the variation of the nonlinear 2.488 3.335755

parameters is to obtain the largest value of the phase shift. 2.49 3.3517906

The uncertainty in results can be estimated by looking at  2.50 3.3830000

the convergence of the results given in Tables II and IV. In
the case of singlet P results, increasing N from 20 to 35, the
phase shift changes by two units in the fourth figure, while in
the triplet case it is five units in the fifth figure.

The main aim of the paper has been to show that the
inclusion of the long-range polarization term speeds up the
convergence of the results and very few terms are needed in
the correlation function.

TABLE V. P phase shifts n (radians) for electron-helium ion,
N = 20.

k Present 7 nrQ n(Oza)® n(Gien)®
0.1 0.21516 0.21516 0.2148

0.2 0.21683 0.21681 0.2165 0.217
0.3 0.21945 0.21944 0.2192 0.219
0.4 0.22283 0.22283 0.2226 0.223
0.5 0.22662 0.22661 0.2263

0.6 0.23088 0.23048 0.2302 0.230
0.7 0.23417 0.23415 0.2337

0.8 0.23753 0.23744 0.2368 0.237
0.9 0.24038 0.24008 0.2393 0.240
1.0 0.24205 0.24202 0.2412 0.242
1.1 0.24323 0.24322

1.2 0.24379 0.24378

1.3 0.24370 0.24370

1.5 0.24261

2Close-coupling results of Oza [14].
YHarris-Nesbet method, Gien [15].

IV. RESONANCES

Doubly excited states or Feshbach resonances or autoion-
ization states have been studied extensively [7,8,16,17]. The
resonance parameters can be inferred by calculating phase
shifts at energies where a rapid change in phase shifts is
observed. The phase shifts for the P and 'P in the resonance
regions are given in Table VI. Here we have used only 20 terms
in the correlation function. They are fitted to the Breit-Wigner
form to obtain the resonance parameters,

0.5

E)= AE +tan™! ——
ncalc.( ) no + + (ER — E)

(24)

where E = k? is the incident energy, Ncac. are the calculated
phase shifts, and ng, A, I', and E are the fitting parameters.
E is the resonance position and T" is the resonance width. A
good way to determine resonance parameters from the phase
shifts in the resonance region is to minimize the sum of squares
of the difference between the left and right sides of Eq. (24),
the difference being calculated at resonance energies given in
Table VI. The results of the fit are given in Table VII and
they are compared with the previous calculation of Bhatia
and Temkin [16,17]. We get for *P resonance position at
58.3226 eV with respect to the ground state of the helium atom
and width equal to 0.008 317 eV compared to 58.3209 eV
for the position [16] and 0.008 90 eV [16] for the width,
respectively. The latter results were obtained by using the
Feshbach projection operator formalism [6]. The agreement is
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TABLE VII. Resonance parameters (eV) of 3P, 'P in He atom
and of 3P in hydrogen ion, and comparison with the results of various
calculations and experiments.

3P He P He 3p H-
Position Width Position Width Position Width
58.3226* 0.00832* 60.1450* 0.03560* 9.7399*  0.00631*
58.3209° 0.00890° 60.1450° 0.0363" 9.7385"  0.0063°
58.3599¢  0.01064° 60.2687° 0.04375¢ 9.741¢ 0.0071¢
58.3209° 0.00813° 60.1456" 0.0371F  9.738052 0.005796¢

60.1765"  0.0382"

“Present results; resonances in He are with respect to the ground state
of He atom and the resonance in hydrogen ion is with respect to the
ground state of the hydrogen atom.

"Feshbach formalism [16].

¢Close-coupling approximation [21].

dClose-coupling with correlations [22].

¢Complex-rotation method [23].

fComplex-rotation method [24].

£Complex-rotation method [24].

"Pseudopotential method [25].

quite good, considering that only 20 terms have been used in
the correlation function in the present calculation compared
to 84 terms in [16], and corrections due to neighboring
resonances, bound states, and the continuum need not be
calculated separately in the present calculation. The 'P
results have been determined accurately from photoabsorption
experiments [18,19]. The present results for position and
width, 60.145 and 0.0356 eV, respectively, are very close to
those obtained earlier [16] by using the Feshbach projection
operator formalism [6]. The present results are within the
range of experimental results [18] which are 60.130 +
0.015 eV for the position and 0.038 £ 0.004 eV for the width.
The line-shape parameter ¢ for a resonance which is the result
of the photoabsorption is given by

o, =op(q +&)°/(1+ &), (25)
where
e =(E — ER)/(0.5T). (26)

The quantity op is the background cross section .The line-
shape parameter can be determined by noticing where the cross
section o, goes to zero. This gives us ¢ = —2.533 which is
within the ranges of the experimental values —2.80 % 0.004
[18] and —2.55 £ 0.16 [19]. The value obtained for g in [16] is
—2.2910. Again, it should be emphasized that this calculation
has only 20 terms in the correlation function and there is no
need to calculate separately the various quantities given in
[16,17].

We also calculate the 3P resonance state in H™. The phase
shifts obtained using 20 terms are given in Table VIII. They
are fitted to the Breit-Wigner form given in Eq. (24). We
obtain, with respect to the ground state of the hydrogen atom,
9.7399 eV for the position of the resonance and 0.006 31 eV for
the width. This should be compared to 9.7385 and 0.0063 eV,
obtained in [16], where 84 terms were used in the correlation
function. The present results are also given in Table VII. This
resonance state has been observed by McGowan [20] who

PHYSICAL REVIEW A 86, 032709 (2012)

TABLE VIII. 3P phase shifts for electron hydro-
gen in the resonance region, N = 20.

E n

0.700 0.442647
0.710 0.465710
0.713 0.509599
0.714 0.546607
0.715 0.687203
0.7151 0.720258
0.7152 0.762370
0.7153 0.817625
0.7155 0.999264
0.7157 1.398412
0.7159 2.175179
0.7162 2.968384
0.7165 3.217367
0.7167 3.295281
0.718 3.463877
0.719 3.497541
0.720 3.514710
0.722 3.532638
0.724 3.541605
0.725 3.546689
0.726 3.549036
0.729 3.555882
0.730 3.557156
0.735 3.562830

gets 9.73 eV for the position and 0.01 eV for the width. The
line-shape parameter g obtained in this calculation is —2.62.
However, there is no experimental value available for this
parameter.

Figures 1 and 2 show the 3P and 'P resonances in He and
Fig. 3 shows the 'P resonance in hydrogen negative ion. In
all the cases, we see that the phase shifts on either side of the
resonance differ by m radians.

3.5

3 ]

25

phase shift

-

05 w 7777777
E

O T T T T
225 23 2.35 24 2.45 25
incident energy (Ry)

FIG. 1. (Color online) The lowest P resonance state in a helium
atom at 58.3226 eV with respect to the ground state of the helium
atom. The phase shifts (radians) are for the scattering of an electron
from a helium ion.
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3.5

phase shift
&
T

| /
0.5

0
258 259 26 261 262 263 264 265
incident energy (Ry)

FIG. 2. (Color online) The lowest 'P resonance state in a helium
atom at 60.145 eV with respect to the ground state of the helium
atom. The phase shifts (radians) are for the scattering of an electron
from a helium ion.

To convert resonance parameters to eV, reduced Rydberg
Ry = 13.603976 eV is used for resonances produced by
photoabsorption while Ry, = 13.605 826 eV is used for
resonances produced by electron impact on the target; see
the Appendix in [16] for details.

We also compare in Table VII the present results with the
results obtained from other calculations. Burke and McVicar
[21] carried out calculations in the 1s-2s-2p close-coupling
approximation. Their results for the P and !P resonances in
the He atom are much higher compared to the present results
as well as compared to the projection-operator results [16].
Calculations have been also been carried out by Ho [23,24]
using the complex-rotation method and results obtained are
given in Table VII; they are in good agreement with the present
results. Martin et al. [25] used a pseudopotential method to
calculate 'P resonance in He and their results for the position
and width are again much higher than the present results.

The 3P H~ resonance position and width obtained in
the present calculations are compared with those obtained
from the projection operator formalism [16], 15-state R-
matrix calculation [22], and the complex-rotation method.
The agreement between the results obtained from the various
approaches is quite good.
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\ .

25

2

phase shift

15

1

‘\""“‘H——H\,

0.5

0
07 0705 071 0715 072 0725 073 0735 074
incident energy (Ry)

FIG. 3. (Color online) The lowest P resonance in a hydrogen
negative ion at 9.7399 eV. The resonance position is with respect to
the ground state of the hydrogen atom. The phase shifts (radians) are
for the scattering of an electron from a hydrogen atom.

V. CONCLUSIONS

In conclusion, we have applied the hybrid theory, in the
presence of an optical potential, in which long-range and
short-range correlations, Eq. (13), have been taken into account
at the same time. The present results have been calculated
variationally and therefore have lower bounds to the exact
phase shifts, and they are close to those obtained in Ref. [5],
using the Feshbach projection operator formalism. In the
present calculation, shorter expansions of only 20 terms are
needed in the correlation function to get results comparable in
accuracy to those obtained in [5] with 220 terms. Accurate
resonance parameters have also been obtained using short
expansions and they agree well with those obtained using
the Feshbach formalism, the close-coupling approach, the
R-matrix calculation, and the complex-rotation method. The
calculation in [16,17] is far more complicated than the present
calculation which has the potential to give accurate results.
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