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Photon collisions with atoms and ions within an intermediate-energy R-matrix framework

M. P. Scott,* A. J. Kinnen, and M. W. McIntyre
School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom

(Received 13 June 2012; published 12 September 2012)

Recent experimental advances in light technology necessitate the availability of sophisticated theoretical models
which can incorporate an accurate treatment of double-electron continua. We describe here an intermediate-energy
R-matrix approach to photoionization and photo-double-ionization and illustrate its feasibility by application to
photoionization and photo-double-ionization of He and photodetachment and photo-double-detachment of H−.
Results are shown to be in excellent agreement with previous theoretical and experimental studies. This work is
a key step in the development of a multipurpose R-matrix code for multiple-electron ejection.

DOI: 10.1103/PhysRevA.86.032707 PACS number(s): 03.65.Nk

I. INTRODUCTION

Recent advances in the field of attosecond science (see,
e.g., Corkum and Krausz [1]) yield an enhanced insight into
time-resolved dynamics of ultrafast laser-driven excitations
of atoms and ions. In addition, the advancement of x-ray free-
electron laser sources, such as the Linac Coherent Light Source
at the SLAC National Accelerator Laboratory, is generating
exciting new experimental data for inner-shell photoionization
processes (see, e.g., Rohringer et al. [2]). In both areas, the light
fields contain highly energetic photons with sufficient energy
that absorption can lead to the excitation and/or emission of
several electrons. A full interpretation of experimental results
thus necessitates an understanding of multielectron dynamics,
and two-electron dynamics in particular.

To complement the experimental advances in light tech-
nology, it is essential to have advanced theoretical models
which incorporate an accurate treatment of double-electron
continua, both within a time-dependent and time-independent
framework. While the time-independent R-matrix method
for photoionization has been in worldwide use for many
years (see, e.g., Burke and Taylor [3]), it is only recently
that an ab initio time-dependent R-matrix approach has
been developed to facilitate the study of the interaction of
ultrashort light fields with many-electron atoms and ions
(Lysaght et al. [4], Moore et al. [5]). We now seek a suit-
able R-matrix–based approach to incorporate double-electron
continua. Toward this end, we report here the development and
implementation of an intermediate-energy R-matrix (IERM)
approach to photoionization and photo-double-ionization, and
investigate the suitability of this method by comparing results
for photoionization and photo-double-ionization of He, and
photodetachment and photo-double-detachment of H−, with
exisiting theoretical and experimental data.

The IERM approach for the accurate description of double-
electron continua has already been proved highly successful
in the study of electron collisions with one-electron systems
[6–8]. The current work focuses on photon collisions with
two-electron systems within a time-independent framework.
This is an essential first step toward our ultimate goal of
the development of many-electron, time-dependent and time-
independent R-matrix codes, capable of accurate treatment
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of double-electron continua. Such codes will also be able
to provide accurate data to assess the feasibility of planned
experimental studies at leading-edge facilities.

The rest of this paper is organized as follows: In Sec. II
we derive the IERM theory for photon collisions with two-
electron atoms and ions, while in Secs. III and IV we present
results for photoionization and photo-double-ionization of He
and photodetachment and photo-double-detachment of H−.
Conclusions are drawn in Sec. V.

II. THEORY

The differential cross section for photoionization of a two-
electron atom or ion with the ejection of the photoelectron in
the direction k̂ is given, in the length approximation, by

dσL

dk̂
= 8π2αa2

0ω|〈�−
f (k̂) | ê · M | �i〉|2, (1)

where

M = r1 + r2. (2)

Here α is the fine structure constant, a0 is the Bohr radius of
the hydrogen atom, and ω is the incident photon energy in
atomic units, while ê is the polarization vector. The integration
in Eq. (1) is over the spatial coordinates of the two electrons.
The initial- and final-state wave functions �i and �−

f (k̂) are
solutions of the Schrödinger equation

(H − E)� = 0, (3)

where H is the two-electron Hamiltonian operator:

H =
(

−1

2
∇2

1 − Z

r1

)
+

(
−1

2
∇2

2 − Z

r2

)
+ 1

r12
. (4)

The initial state �i has total orbital angular momentum Li ,
total spin angular momentum Si and parity �i ; the final two-
electron state, consisting of the residual ion plus photoelectron,
has corresponding quantum numbers L, S, and �, respectively.
The orbital angular momentum, spin angular momentum, and
parity of the residual one-electron ion are Lf , Sf , and �f .
The final-state wave function �−

f (k̂) satisfies the boundary

condition corresponding to a plane wave in the direction k̂
incident on the residual ion, with ingoing waves in all open
channels. �i and �−

f (k̂) are normalized so that

〈�i | �i〉 = 1 (5)
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and

〈�−
f (k̂) | �−

f ′(k̂′)〉 = δff ′ δ
(

1
2k 2 − 1

2k′ 2
)
. (6)

The total cross section for photoionization by unpolarized
light can be obtained by integrating Eq. (1) over all photo-
electron angles k̂ and averaging over all photon polarization
directions. This gives the following expression for the total
cross section:

σ = 8π2αa2
0ω

3(2Li + 1)

∑
	f L

|〈�−
f ‖M‖�i〉|2. (7)

The summation in Eq. (7) is over all possible final-
state orbital angular momenta L of the two-electron system
permitted by dipole selection rules, and over 	f the orbital
angular momentum of the ejected photoelectron which can
couple with the orbital angular momentum of the residual ion
Lf to give L. We have introduced the reduced dipole matrix
element in the summation on the right-hand side of Eq. (7)
which, according to the Wigner-Eckart theorem, is given by

〈�−
f ‖M‖�i〉 = (2L + 1)

1
2

C
(
Li1L; MLi

μML

) 〈�−
f |Mμ|�i〉. (8)

As in the application of R-matrix theory to other atomic
collision processes, configuration space is divided into two
regions using a sphere of radius r = a, centered on the target
nucleus; r , in this application, is the relative radial coordinate
of the photoelectron. In the internal region, both �i and �−

f are
expanded in terms of appropriate sets of energy-independent,
two-electron R-matrix basis functions {
LiSi�i

k (r1,r2)} and
{
LS�

k (r1,r2)} as follows:

�i =
∑

k

Aki

LiSi�i

k , (9)

�−
f =

∑
k

Akf 
LS�
k . (10)

The R-matrix basis sets {
LiSi�i

k (r1,r2)} and {
LS�
k (r1,r2)}

are constructed from two-electron functions χn1	1n2	2 (r1,r2):
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′
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′
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′
2
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′
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2	

′
2
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′
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′
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′
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(11)

and


LS�
k =

∑
n1	1n2	2

χLS�
n1	1n2	2

(r1,r2)βLS�
n1	1n2	2k

. (12)

We note that

χLS�
n1	1n2	2

(r1,r2)

= 1√
2

{
r−1

1 r−1
2 un1	1 (r1) un2	2 (r2)Y	1	2LML

(r̂1,r̂2)

+ (−)	1+	2+L+Sr−1
1 r−1

2 un1	1 (r2) un2	2 (r1)

×Y	2	1LML
(r̂1,r̂2)

}
if n1	1 �= n2	2

and

χLS�
n	n	 (r1,r2)

= r−1
1 r−1

2 un	(r1) un	(r2)Y	 	LML
(r̂1,r̂1) if n1	1 = n2	2.

(13)

In Eq. (13) the radial functions un	(r) are solutions of the
second-order differential equation

(
d2

dr2
− 	(	 + 1)

r2
+ 2Z

r
+ k2

n	

)
un	(r) = 0, (14)

subject to the boundary conditions

un	(0) = 0,

(
a

un	

)
dun	

dr

∣∣∣∣
r=a

= 0.

We choose the R-matrix boundary radius r = a sufficiently
large so that the radial functions of the physical states of
interest of the residual ion are completely enveloped by this
boundary and generated by Eq. (14). We also ensure that the
initial-state wave function �i is completely enclosed within
the interaction volume defined by r = a. The angular functions
Y	1	2LML

(r̂1,r̂2) are defined by

Y	1	2LML
(r̂1,r̂2)

=
∑

m	1 ,m	2

C
(
	1	2L; m	1m	2ML

)
Y	1m	1

(r̂1)Y	2m	2
(r̂2). (15)

The coefficients βn1	1n2	2k in Eqs. (11) and (12) are obtained
by diagonalizing the appropriate two-electron Hamiltonian
matrix. This ensures that the R-matrix basis functions
{
LiSi�i

k (r1,r2)} and {
LS�
k (r1,r2)} satisfy

〈



LiSi�i

k (r1,r2)
∣∣H ∣∣
LiSi�i

k′ (r1,r2)
〉 = δkk′Eki (16)

and 〈

LS�

k (r1,r2)
∣∣H ∣∣
LS�

k′ (r1,r2)
〉 = δkk′Ekf , (17)

respectively.
We note that other bases could possibly have been con-

sidered to form the orbital set {un	}, e.g., B-splines have
been used very successfully in a number of recent R-matrix
calculations [9,10]. However, in this work we have retained
the same one-electron basis as proposed by Burke et al. [6],
since this basis is consistent with the one-electron basis
used in the recently developed two-dimensional R-matrix
propagator, 2DRMP [11], with which we intend to link for
future many-electron atom and ion calculations. The basis
generated by Eq. (14) is a flexible, orthogonal basis: By careful
choice of the boundary radius we are able to generate the
required physical states of the residual one-electron ion, while
also being able to create a suitably dense pseudostate basis
which can be used to discretize the ionic electron continuum
in photo-double-ionization calculations.

Returning to Eqs. (9) and (10), the expansion coefficients
Aki and Akf are given by (see, e.g., Burke and Taylor [3])

Aki = 1

2a(Eki − Ei)

∑
j

wjk(a)

(
a
dyji

dr
− byji

)
r=a

(18)

and

Akf = 1

2a(Ekf − Ei − ω)

∑
j

wjk(a)

(
a
dy−

jf

dr
− by−

jf

)
r=a

,

(19)
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where Ei is the energy of the initial state; wjk(a) are surface
amplitudes, defined in terms of the radial functions un1l1 (a) on
the boundary of the internal region by

wjk(a) =
∑
n1

βn1	1n2	2kun1	1 (a), j ≡ n2	2	1. (20)

We note that the surface amplitudes wjk(a) in Eqs. (18) and
(19) are not the same, since �i and �−

f have different angular
symmetries and a different set of surface amplitudes will be
obtained for the initial- and final-state calculations. yji and y−

jf

describe the radial motion of the photoelectron in channel j in
the initial and final states, respectively. These functions satisfy
the equation

yjp(a) =
nchan∑
t=1

Rjt

(
dytp

dr
− bytp

)
r=a

j = 1, . . . ,nchan,

(21)

where p represents either i or f as appropriate and Rjt

are elements of the multichannel R-matrix. nchan is the total
number of channels. Rewriting (21) in matrix notation we
obtain

y(a) = R ×
(

a
dyp

dr
− byp

)
r=a

. (22)

Substituting Eq. (22) into Eqs. (18) and (19) yields the
expressions

Aki = GiWT
ki(a)R−1

i yi(a), (23)

Akf = Gf WT
kf (a)R−1

f yf (a), (24)

where we have introduced the diagonal matrices Gi and Gf :

Gi = 1

2a(Eki − Ei)
, (25)

Gf = 1

2a(Ekf − Ei − ω)
. (26)

The W matrices are defined by Eq. (20).
We define matrices Vi and Vf , whose columns consist of

the β coefficients introduced in Eqs. (11) and (12), i.e.,

Vit ′k = β
LiSi�i

t ′k , t ′ ≡ n′
1	

′
1n

′
2	

′
2 (27)

and

Vftk
= βLS�

tk , t ≡ n1	1n2	2. (28)

Defining the reduced dipole matrix M by

M = 〈
χLS�

n1	1n2	2

∥∥M
∥∥χ

LiSi�i

n′
1	

′
1n

′
2	

′
2

〉
, (29)

it is possible to rewrite the expression for the photoionization
cross section σ as

σ = 8π2αa2
0ω

3(2Li + 1)

∑
	f L

∣∣yT
f R−1

f Wf Gf VT
f MViGiWT

i R−1
i yi

∣∣2
.

(30)

We will assume that the interaction volume is sufficiently
large and our approximation sufficiently accurate so that the
energy of the initial state Ei is extremely close to one of
the eigenvalues Ek′i in Eq. (16), and that the contribution to
the initial-state wave function from closed channels in the

external region, as represented by Eq. (21), can be neglected.
The expression for Aki then simplifies considerably to

Aki =
{

1 if k = k′
0 otherwise. (31)

Equation (30) then reduces to

σ = 8π2αa2
0ω

3(2Li + 1)

∑
	f L

∣∣yT
f R−1

f Wf Gf VT
f MVik′

∣∣2
, (32)

where Vik′ is the eigenvector of the initial-state Hamiltonian
matrix associated with the eigenvalue Ek′i . Provided that Ek′i is
sufficiently close to the experimental value for Ei , it is possible
to improve our theoretical value for the initial-state energy by
making a very small adjustment to the appropriate diagonal
element of the Hamiltonian matrix, prior to diagonalization.

All entities in Eq. (32) are evaluated within the internal
region except for yT

f , which is obtained by solving the
scattering problem for the residual ion in the external region,
and matching to the inner region solution on the boundary
through the R-matrix, as illustrated by Eq. (22). One of the
advantages of the R-matrix method is that the bulk of the
computational work lies in the construction and diagonaliza-
tion of the Hamiltonian matrix in the internal region which,
being energy-independent, needs to be carried out only once
for each partial wave. The energy dependence appears in the
denominator of the R-matrix and in the evaluation of yT

f in the
external region, which are considerably less onerous. As such,
it is relatively easy to calculate cross sections over a very fine
energy mesh, once the inner region problem has been solved.

To test the above theory we have applied the IERM
method for photoionization to photoionization and photo-
double-ionization of He and photodetachment and photo-
double-detachment of H−. Details of these calculations are
given in the next two sections.

III. PHOTOIONIZATION AND
PHOTO-DOUBLE-IONIZATION OF He

A. Calculation

We first consider photoionization of the 1Se ground state
of He with the emission of a single electron, focusing on the
energy region between the n = 2 and n = 3 thresholds, due
to the wealth of existing data with which to compare. As seen
from Sec. II, the two-electron wave function for the ground
state of He is described in terms of products of one-electron
He+ orbitals. Clearly, the He+ 1s orbital and the He 1s orbital
of the 1s2 1Se ground state are significantly different. Hence, if
we are to use the He+ one-electron orbital basis, it is essential
that this basis contains a sufficiently large number of pseudo-
orbitals to correct for this. We have therefore chosen to use a
one-electron orbital basis for the residual He+ ion consisting
of the physical He+ orbitals 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d,
and 4f , augmented by pseudo-orbitals n = 5 to n = 38, with
angular momentum 	 = 0, . . . ,3. This choice of basis ensures
that the states of the residual He+ ion for which n � 4,
	 � 3, are physical, and that any resonances present in the
photoionization cross section below the n = 3 threshold of
He+ are real, while the inclusion of the additional pseudo-
orbitals serves to improve the initial-state wave function. The
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basis was generated using a boundary radius of 40.0 a.u. in
Eq. (14). As well as improving the initial He ground state, the
additional pseudo-orbitals give rise to nonphysical, positive-
energy pseudostates, whose inclusion in the expansion of the
final-state wave function provides a mechanism for the study
of photo-double-ionization. The “bound” photoelectron in the
initial state and the ejected photoelectron in the 1P o final state
are described in terms of the same one-electron basis, except
that a total of 80 radial functions (or “continuum functions”)
were included per angular momentum, 	, where, in the final
state, 	 = 0, . . . ,4. This meant that the same approximation
was used in the construction of the R-matrix basis functions
in both the initial and final states. The ground-state energy
was calculated as −2.8997 a.u. However, by making a small
adjustment of −0.0042 a.u. to the diagonal element dominating
the calculation of the associated eigenvalue before diago-
nalization, it was possible to bring the ground-state energy
into agreement with the nonrelativistic limit of −2.9037 a.u.
reported by Perekis [12].

To estimate the photo-double-ionization cross section we
sum the cross section to the positive-energy pseudostates
lying above the double-ionization threshold. A correction
has been incorporated to account for the contribution from
negative-energy pseudostates lying close to threshold, and to
eliminate any overestimate from positive-energy pseudostates
immediately above threshold. In evaluating the photo-double-
ionization cross section we have carried out two calculations.
In the energy region from the double-ionization threshold
to about 10 eV above this threshold we have extended the
R-matrix boundary radius to 70 a.u. in order to increase the
density of pseudostates, while at higher energies we have
used an R-matrix boundary of 40.0 a.u., which, although
giving a less dense pseudo-state basis, spans a much greater
energy range. In both calculations we have again used a
one-electron orbital basis for the He+ residual ion consisting
of the physical orbitals 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, and
4f , augmented by pseudo-orbitals n = 5 to n = 38, with
angular momentum 	 = 0, . . . ,3. We note that the one-
electron basis for the higher-energy calculation is the same
as that used in the photoionization calculation described
above. Both photo-double-ionization calculations included a
total of 146 He+ target states, of which 110 lie above the
double-ionization threshold in the first calculation and 120
in the second. Throughout our calculations we have carefully
checked convergence with respect to the R-matrix boundary
radius, the number and density of pseudostates and the number
of radial continuum functions.

B. Results

In Figs. 1 and 2 we present results for photoionization
cross sections to the 1s, 2s, and 2p states of He+, for photon
energies in the region 67.0–72.5 eV. The dominant feature
in this energy region is the series of resonances converging
onto the He+ n = 3 threshold. In particular, we concentrate
on the closed-channel resonance around 70 eV, and compare
our results with the recent work of Xu and Shakeshaft [13]
and with previous R-matrix calculations of Jiang et al. [14].
Our results are generally in good agreement with both these
studies, although our data for the 2s cross section lie slightly
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FIG. 1. (Color online) Partial cross section for photoionization of
the 1Se ground state of He to the 1s state of He+. Solid line: present
results; triangles: Xu and Shakeshaft [13]; circles: Jiang et al. [14];
stars: Lindle et al. [15].

higher. In Fig. 1 we have also included the experimental results
of Lindle et al. [15], which tend to lie about 5% lower than
theory. For clarity we have not included the results reported
by Jiang et al. above 71 eV, but similar agreement is obtained
at higher energies.

In Figs. 3 and 4 we give results for the photo-double-
ionization calculation by considering the absolute photo-
double-ionization cross section and the percentage ratio of
double-ionization to single-ionization in the photon energy
range 79–130 eV. The results that are presented exhibit small
oscillations which are due to the onset of numerous pseudo-
state thresholds. These oscillations diminish with increasing
pseudostate density and can be removed by a number of
techniques, including T-matrix averaging (see, e.g., Burke
et al. [16]) and box averaging (see, e.g., Bartschat and Bray
[17]). Alternatively, when the oscillations are very small,
smoothing of the cross section using a Chebyshev series
least-squares procedure will suffice. We compare our results
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FIG. 2. (Color online) Partial cross section for photoionization
of the 1Se ground state of He to the 2s and 2p states of He+. Solid
line: present results; triangles: Xu and Shakeshaft [13]; circles: Jiang
et al. [14].
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FIG. 3. (Color online) Photo-double-ionization cross section of
He. Solid line: present results (unsmoothed); stars: Samson et al. [18];
triangles: Ludlow et al. [19].

with the experimental data of Samson et al. [18] and with the
time-dependent close-coupling calculations of Ludlow et al.
[19] and the convergent close-coupling (CCC) data of Kheifets
and Bray [20]. Our evaluations are seen to be in excellent
agreement with theory and experiment for both observables.

IV. PHOTODETACHMENT AND
PHOTO-DOUBLE-DETACHMENT OF H−

A. Calculation

We first consider photodetachment of the 1Se ground state of
H−, leaving the H atom in the state n	, where n � 5 and 	 � 4,
as permitted. Due to the degeneracy of the atomic H energy
levels for a particular n, En	, (	 = 0, . . . ,n − 1), angular
momentum exchange effects exist between the H− electrons,
even out to extremely large distances. For this reason, we
have extended the R-matrix radius to 350 a.u., to accurately
describe some of the resonance features present in the low
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FIG. 4. (Color online) Percentage ratio of double ionization to
single ionization in the photoionization of He. Solid line: present
results (unsmoothed); stars: Samson et al. [18]; diamonds: Kheifets
and Bray [20].
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FIG. 5. (Color online) Total photodetachment cross section of H−

up to the n = 5 threshold of H. Solid line: present results; squares:
Miyake et al. [23].

energy region. Physical H orbitals for n � 5, 	 � 4 were
included in the construction of the initial- and final-state wave
functions, and 200 radial functions were included per angular
momentum, 	, to describe the “bound” photoelectron in the
initial state and the ejected photoelectron in the 1P o final state.
Again this meant that the same approximation was used in the
formation of the R-matrix basis functions in both the initial
and final states. The ground-state energy of H− was calculated
as −0.523 136 a.u., but this was brought into agreement with
the highly accurate nonrelativistic energy of −0.527 751 a.u.,
calculated by Drake [21], by making an adjustment of
−0.008 12 a.u. to the appropriate diagonal element of the
two-electron Hamiltonian matrix prior to diagonalization, as
described earlier.

B. Results

In Fig. 5 we give an overview of our results for the total
cross section for photodetachment of H− in the photon energy
range 0–14 eV, i.e., to just above the H n = 5 threshold. Our
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FIG. 6. Total photodetachment cross section of H− near the n = 2
threshold of H.
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results are compared with the recent results reported by Miyake
et al. [23], where a hybrid approach has been adopted which
combines R-matrix calculations with high-resolution cross
section measurements and previous theoretical results. We note
that our ab initio data are generally in good agreement with
these data throughout the energy region considered, except for
the height of the peak at around 2 eV, where the current results
lie slightly lower.

In Figs. 6 and 7 we show the total photodetachment cross
section in the energy region around the n = 2 and n = 3
thresholds of H. These energy regions are dominated by shape
and closed-channel Feshbach resonances: Detailed results for
the width  and position Er of these structures are given in
Tables I and II.  and Er have been obtained by fitting the
eigenphase sum δS to the form

δS = δ0 + δ1E + δ2E
2 + arctan

(


Er − E

)
, (33)

where E is the energy of the photoelectron. In Tables I and II
we give the resonance position in terms of the total energy Etot

of the residual H atom in atomic units, while the width  is
presented in eV.
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FIG. 7. Total photodetachment cross section of H− near the n = 3
threshold of H. The region close to threshold is shown in more detail
in (b).

TABLE I. Theoretical comparison of widths and positions of
resonances in the photodetachment cross section of H− near the n = 2
threshold of H.

Source Etot(a.u.) (eV)

Present −0.126 05 0.000 038 9
Lindrotha −0.126 05 0.000 034
Sadeghpour et al.b −0.126 014 0.000 028 8
Tang et al.c −0.126 06 0.000 065
Hod −0.126 049 8 0.000 035 9
Present −0.125 03 0.000 000 24
Lindroth −0.125 04 <0.000 000 2
Tang et al. −0.125 03
Present −0.124 50 0.0167
Lindroth −0.124 37 0.0185
Sadeghpour et al. −0.124 242 0.0186
Tang et al. −0.124 32 0.0169
Ho and Bhatiae −0.124 36 ± 3 × 10−5 0.0188 ± 2 × 10−4

aReference [22].
bReference [24].
cReference [25].
dReference [26].
eReference [27].

We compare our results with those of Lindroth [22],
Sadeghpour et al. [24], Tang et al. [25], Ho [26], and Ho and
Bhatia [27]. Lindroth carried out an extremely accurate and

TABLE II. Theoretical comparison of widths and positions of
resonances in the photodetachment cross section of H− near the n = 3
threshold of H.

Source Etot(a.u.) (eV)

Present −0.062 71 0.0322
Lindrotha −0.062 73 0.0326
Sadeghpour et al.b −0.062 695 0.0334
Tang et al.c −0.062 72 0.0326
Hod −0.062 716 75 0.032 40
Present −0.058 57 0.000 24
Lindroth −0.058 57 0.000 24
Sadeghpour −0.058 866 0.000 402
Tang et al. −0.058 59 0.000 261
Ho −0.058 571 8 0.000 244 4
Present −0.056 12 0.000 054
Lindroth −0.056 12 0.000 06
Tang et al. −0.056 14
Ho −0.056 116 7 0.000 057
Present −0.055 92 0.001 83
Lindroth −0.055 90 0.001 93
Sadeghpour −0.055 832 0.001 16
Tang et al. −0.055 91 0.001 55
Ho −0.055 907 0.0019
Present −0.055 66 0.000 009
Lindroth −0.055 66 0.000 01
Present −0.055 57 0.000 14
Lindroth −0.055 58 0.0001

aReference [22].
bReference [24].
cReference [25].
dReference [26].
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detailed study of the photodetachment of H−, using a complex
rotation approach in combination with a discrete numerical
basis to form highly correlated descriptions of both the initial
and final states. Sadeghpour et al. have performed an extensive
eigenchannel R-matrix calculation, while the data of Tang
et al. were obtained using a hyperspherical close-coupling
approach. The work of Ho and Ho and Bhatia employed
Hylleraas wave functions with the use of complex rotation.
Hylleraas wave functions afford a very accurate treatment of
correlation effects.

In Fig. 6 we observe three distinct resonances. The first
resonance is associated with a doubly excited state dominated
by the configurations 2snp and 2pns, while the second
extremely narrow resonance is due to a Rydberg-type state.
The broad shape resonance just above the n = 2 threshold
is dominated by configurations of the form 2snp, 2pns, and
2pnd, and has been the subject of detailed study by various
theoretical methods. In particular, the height of the peak was
investigated by Tang et al., who concluded that this value was
related to the accuracy of the initial-state wave function for
H−. They reported a value of 78.6 Mb for the approximation,
which they considered to be most accurate. The height of
this peak from the current work is 80.09 Mb, while Lindroth
reports a value of 76 Mb. We see from Table I that our results
are in excellent agreement with the other theoretical results
tabulated.

In Fig. 7 the first two resonances are dominated by
configurations of the form n1	1n2	2, where n1 = n2 = 3 and
n1 = 3, n2 = 4. The remaining resonances are associated with
Rydberg-type states. In Table II we compare the width and
positions of the resonances in this energy region with other
theoretical data. We again see that the present results are in
excellent agreement with previous calculations.

Finally, we consider photo-double-detachment of H−. We
illustrate results for this process in Fig. 8 where we compare
data for the percentage ratio for double detachment to single
detachment with CCC results of Kheifets and Bray [20].
In this calculation we have included up to n = 3 physical
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FIG. 8. (Color online) Percentage ratio of double ionization
to single ionization in the photodetachment cross section of H−.
Solid line: present results (smoothed); dotted line: present results
(unsmoothed); diamonds: Kheifets and Bray [20].

states augmented by an additional 27 pseudostates per angular
momentum, and have used an R-matrix boundary of 60 a.u.
The calculation has also been repeated with a boundary radius
of 70 a.u. and 80 a.u., including 32 and 33 pseudostates per
angular momentum, respectively. As these results are in accord
with each other, we only present the results from the first
model, for which we give both the smoothed and unsmoothed
results. We see that the present calculation is in excellent
agreement with the work of Kheifets and Bray.

V. CONCLUSIONS

We have developed and implemented the theory for an
IERM approach to photoionization which, through the use of
suitably constructed pseudostates, allows accurate calculation
of both single- and double-ionization processes. This has
been demonstrated by the excellent agreement obtained with
other highly regarded theoretical methods, such as the CCC
method of Kheifets and Bray [20] and the time-dependent
close-coupling approach of Ludlow et al. [19], and with
experiment, e.g., Samson et al. [18]. We have been able to
describe the two-electron bound initial state and the final
state, where either one or two electrons have been ejected,
in terms of the same one-electron orbital basis. We are
therefore confident that this approach can be successfully
incorporated into a many-electron R-matrix approach, either
time-dependent or time-independent, where (N + 2)-, (N + 1)-,
and N-electron systems would, similarly, be constructed from
a single one-electron orbital basis. As such, it forms a key
step in the development of a multipurpose R-matrix code for
multiple-electron ejection, which will be capable of generating
highly accurate data for time-dependent and time-independent
processes in the burgeoning areas of attosecond science and
application of advanced x-ray lasers.

The IERM approach for electron collisions with atoms and
ions has been extended, by inclusion of a model potential,
to consider electron scattering from quasi-one-electron atoms
and ions [28]. Similar modifications have been made to the
IERM photoionization codes, and photoionization calcula-
tions, with double ionization, are currently being carried out
on suitable ions of Ne and Ar, such as Ne6+, Ne8+, Ar8+,
Ar14+, and Ar16+. We anticipate that data produced will
be of interest in the field of attosecond science, as these
elements are frequently used as the atomic or ionic target
in such experiments. To extend this work further to consider
general many-electron atoms and ions, additional theoretical
and computational developments are underway which will
allow two interacting electrons in the R-matrix external
region. The current IERM codes and the recently developed
two-dimensional R-matrix propagator program 2DRMP [11]
can be used in this region and linked to a modified R-matrix
internal region, thus facilitating accurate treatment of double-
electron continua within an R-matrix framework [29].
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