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Multichannel ultracold collisions between metastable bosonic 88Sr and fermionic 87Sr atoms
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Ultracold collisions between metastable bosonic 88Sr [(5s5p) 3P2] and fermionic 87Sr [(5s5p) 3P2 (i = 9/2)]
atoms are investigated based on an approach of tensorial analysis. The scattering physics of two atoms in fully
polarized s-wave entrance channels is studied in detail. In the Born-Oppenheimer approximation, the strong
anisotropic interatomic interaction is demonstrated to induce formations of long-range molecular potential wells.
However, besides significantly modifying the elastic scattering, the anisotropic interatomic interaction leads to
the strong multichannel coupling between different partial waves, which triggers a high rate of inelastic losses. By
applying an external static magnetic field B0 = B0ez, the inelastic scattering can be suppressed while the elastic
scattering is significantly enhanced. Additionally, the energy-dependent complex s-wave scattering lengths at a
given relative collision energy strongly depend on the strength of magnetic field. We, moreover, self-consistently
investigate ultracold collisions of two atoms at low temperatures in an optical lattice site. In the δ-function
pseudopotential approximation, we derive the effective s-wave scattering lengths, energy eigenvalues, elastic
and inelastic scattering rates, and their dependence on the external magnetic field. We find that (i) the effective
scattering lengths of ultracold atoms in entrance channels of interest display resonance behavior at certain values
of magnetic field and (ii) the extra Zeeman interaction not only leads to the suppression of inelastic scattering
but also enlarges the elastic scattering rates.
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I. INTRODUCTION

Recently, alkaline-earth-metal atoms have moved into
the focus of interest in atomic physics and offered many
possibilities for practical application and fundamental studies;
e.g., an optical Ramsey-Bordé atomic interferometer based
on 40Ca [1] is a powerful tool for precise frequency and
phase measurements in modern science, an optical lattice
clock [2–4] with a large number of ultracold strontium atoms
separately trapped in the Lamb-Dicke regimes and with a zero
net ac Stark shift of the clock (5s2) 1S0-(5s5p) 3P0 transition is
being developed toward the realization of the next-generation
atomic clock, a complete scheme for quantum information
processing can be realized, in principle, based on 87Sr [5],
omnidirectional photonic band gaps have been theoretically
proved in dipolar atomic lattices formed by the ultracold 88Sr
atoms [6,7], etc. All of these applications are based on the
unique features of alkaline-earth-metal atoms, which have
a spin-nondegenerate electronic ground (ns2) 1S0 state and
can be easily cooled down to a Doppler temperature of the
order of mK by using the strong dipole (ns2) 1S0-(nsnp)1P1

transition. Due to two valence electrons, alkaline-earth-metal
atoms display spin singlet- and triplet-level manifolds at low
excitation energies, which give rise to narrow intercombination
(ns2) 1S0-(nsnp) 3P1 transitions. By exploiting this transition
line, Katori et al. [8] achieved a 88Sr atomic gas at a
temperature of 1 μK, and Binnewies et al. [9] cooled a
cloud of 40Ca atoms down to 10 μK. Recently, Bose-Einstein
condensations of 84Sr [10,11], 86Sr [12], and 40Ca [13] have
been realized via the last evaporating cooling stage.

Alkaline-earth-metal atoms in their lowest metastable
(nsnp) 3P2 level are exceptionally long-lived [14] and can be
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magnetically trapped [15]. Due to the nonzero angular mo-
menta, the nonspherical atomic structure leads to anisotropic
long-range interactions between two metastable alkaline-
earth-metal atoms. This anisotropy affects the rotational
motion of the diatomic system and couples states of different
rotational quantum numbers. Based on a diatomic system
of practical interest, i.e., two 88Sr atoms in the metastable
(5s5p) 3P2 excited state, Derevianko et al. [16] were the first to
theoretically approach the problem of anisotropic long-range
interactions between metastable alkaline-earth-metal atoms in
an external magnetic field and predicted the existence of a
long-range molecular potential well for the electronic state
of the highest Zeeman energy. Almost at the same time,
Santra and Greene [17] studied the same system via an
approach of tensorial analysis and gave a similar qualitative
prediction. The scattering length on this potential well can
be tuned by adjusting the magnetic-field strength, which
enables the control of sign and strength of the effective
interatomic interaction at ultracold temperatures. Additionally,
Kokoouline et al. [18] pointed out that the strong coupling
between different partial waves of relative motion not only
modifies the shape of adiabatic potential-energy curves but
also produces larger nonadiabatic dynamical effects, hence
the large inelastic losses.

So far, most realistic theoretical treatments of ultracold
collisions and the corresponding experiments have ignored
the effect of hyperfine coupling on the short-range interatomic
interaction because of the relatively smaller energy of the
hyperfine-structure splitting. However, the hyperfine interac-
tion plays an important role in the ultracold collision dynamics,
especially the collision loss induced by the hyperfine coupling
[19]. Additionally, the large number of hyperfine and magnetic
sublevel combinations can give rise to numerous individual
interatomic potentials and the possibility of the existence of
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long-range molecular potential wells because of the numerous
avoided crossings [20].

In this paper, we investigate ultracold collisions between
bosonic 88Sr and fermionic 87Sr atoms in their metastable
(5s5p) 3P2 state with the hyperfine interaction of 87Sr being
taken into account. For two atoms in fully polarized s-wave
entrance channels, all collision dynamics at ultracold tempera-
tures (<10 μK) take place at interatomic distances of about 102

Bohr radii, which justifies a pure long-range description. In the
adiabatic (Born-Oppenheimer) approximation, the s-wave en-
trance channels of interest have long-range molecular potential
wells arising due to the avoided crossings. However, since the
anisotropic interatomic interaction leads to the pronounced
coupling between different partial waves of relative motion,
the strong multichannel coupling causes large inelastic losses
in addition to significantly modifying the elastic scattering.
Nevertheless, based on the coupled multichannel-scattering
calculation, we find that by applying an external magnetic
field the extra Zeeman interaction not only can suppress the
inelastic scattering but also can enhance the elastic scattering
of ultracold atoms in entrance channels of interest. Finally,
we investigate ultracold collisions of two atoms confined in
an optical lattice site. The effective s-wave scattering lengths,
elastic and inelastic scattering rates, and their dependence on
the external magnetic field are self-consistently computed via
the coupled multichannel-scattering calculation.

This paper is organized as follows. In Sec. II we provide a
systematic framework for describing anisotropic interatomic
interactions based on an approach of tensorial analysis, where
we take into account the long-range electric dipole-dipole,
quadrupole-quadrupole, and dipole-quadrupole interactions as
well as the magnetic dipole-dipole interaction. In Sec. III, we
numerically diagonalize the Hamiltonian matrix of interatomic
interactions so as to derive the adiabatic potential-energy
curves. The elastic and inelastic scattering rates and the energy-
dependent s-wave scattering lengths of atoms in fully polarized
s-wave entrance channels are computed via the coupled
multichannel-scattering calculation. Ultracold collisions at
low temperatures in the presence of an external magnetic
field are considered in Sec. IV. Section V is devoted to
investigating the scattering physics of two atoms confined in
an optical lattice site. We first study how to realize a three-
dimensional isotropic optical lattice. Then, in the δ-function
pseudopotential approximation, we self-consistently calculate
the effective s-wave scattering lengths, energy eigenvalues,
elastic and inelastic collision rates, and their dependence on the
external magnetic field. Finally, we summarize our discussion
in Sec. VI.

II. HAMILTONIAN OF COLLISION BETWEEN
TWO ATOMS

The complete Hamiltonian describing the relative (rel)
motion of two interacting atoms, a (88Sr) and b (87Sr), can
be written as

Hrel = − h̄2

2m

(
∂2

∂r2
+ 2

r

∂

∂r

)
+ L2

2mr2
+ Vint(r) + Hhpf(b),

(1)

where m = mamb/(ma + mb) is the reduced mass with ma,b

masses of atoms 88Sr and 87Sr, r = |ra − rb| is the internuclear
distance, ra and rb are absolute positions of two nuclei in
the space-fixed frame, L is the angular momentum associated
with the rotation of the molecular frame, and Vint(r) is the
interatomic interaction including the electric dipole-dipole
(∼r−3), quadrupole-quadrupole (∼r−5), dipole-quadrupole
(∼r−4), and magnetic dipole-dipole (∼r−3) interactions.
Hhpf(b) describes the hyperfine interaction of fermionic 87Sr.
For a diatomic system, the wave function for a bound or
scattering state of the relative motion can be described in a
close-coupling expansion as ψα(E,r) = ∑

α

φα′ ,α (E,r)
r

|α′(r)〉,
where E is the total energy of internal states and relative
motion of two atoms. The expansion basis {|α(r)〉} is an
implicit function of r, which equals the asymptotic channel
state basis as r → ∞.

For two atoms, 88Sr and 87Sr, at long-range interatomic
distance r > 50 Bohr radii, two electron clouds do not overlap
each other, and atoms can be identified by their respective
nuclei. Thus, the splitting between neighboring atomic energy
levels corresponding to the same fine-structure manifold of
a single atom is much larger than energies of interatomic
interactions. Consequently, both atoms are in the same well-
defined fine-structure level (5s5p) 3P2.

Without the interatomic coupling, the full Hilbert space of
the diatomic system in the body-fixed frame is spanned by the
direct products of single-atom states |ξ,j,mj 〉a|ξ,j,i,f,mf 〉b.
j = 2 is the electron’s total angular momentum quantum
number of the LS coupling for both 88Sr and 87Sr with a
projection of mj on the body-fixed axis. ib = 9/2 denotes the
nuclear spin of 87Sr. fb represents the total angular momentum
of 87Sr resulting from the magnetic interaction between
momenta of jb and ib. The projection of fb on the body-
fixed axis is mf . ξ symbolizes all other electronic quantum
numbers of a single atom. For two-body collision, an individual
fragmentation channel to the dissociation limit (r → ∞) can
be specified by |(ξ,j )a,(ξ,j,i,f )b,F,MF 〉, where the angular
moment F results from the coupling between ja and fb and
MF is the corresponding projection on the internuclear axis.

A. Interatomic interactions in the body-fixed frame

We follow the approach of tensorial analysis developed
in Ref. [17] to consider the expression of the interatomic
interaction Vint(r), which arises from the multipole interactions
between two atoms, in the body-fixed frame. The electrostatic
multipole moments of an electron cloud can be written as
spherical tensors q(l) with components [21]

ql,m = −
N∑

u=1

erl
uGl,m(θu,ϕu), (2)

where e is the electron’s charge, u denotes the uth electron
with the spherical coordinates (ru,θu,ϕu), and m = −l, . . . ,l.

Gl,m(θ,ϕ) =
√

4π

2l + 1
Yl,m(θ,ϕ) (3)

is a Racah spherical harmonic with Yl,m(θ,ϕ) being the
spherical harmonic function. For two atoms, a and b, the
interaction between multipoles q(la ) and q(lb) can be expressed
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in the well-known spherical expansion

V (q(la ),q(lb),r)

=
∑
ma

∑
mb

cla,lb,ma,mb

qla,ma
qlb,mb

rla+lb+1
Gla+lb,−ma−mb

(θ,ϕ), (4)

where ma,b = −la,b, . . . ,la,b and cla,lb,ma,mb
is defined as

cla,lb,ma,mb

= (−1)lb

√
(2la + 2lb + 1)!

(2la)!(2lb)!

(
la lb la + lb

ma mb −ma − mb

)
.

(5)

One can see that V (q(la ),q(lb),r) only depends on the relative
internuclear coordinate r rather than the absolute coordi-
nate ra,b of each atom. In the body-fixed frame, the z

axis is chosen to be along the internuclear axis. Thus,
the electric dipole-dipole Vdd ≡ V (q(1a ),q(1b),r), quadrupole-
quadrupole Vqq ≡ V (q(2a ),q(2b),r), and dipole-quadrupole
Vdq ≡ V (q(1a ),q(2b),r) + V (q(2a ),q(1b),r) interactions can be
written as [17]

Vdd = − 1

r3

(
q1a ,1a

q1b,−1b
+ 2q1a ,0a

q1b,0b
+ q1a ,−1a

q1b,1b

)
,

(6)

Vqq = 1

r5

(
q2a ,2a

q2b,−2b
+ 4q2a ,1a

q2b,−1b
+ 6q2a ,0a

q2b,0b

+ 4q2a ,−1a
q2b,1b

+ 4q2a ,−2a
q2b,2b

)
, (7)

Vdq = −
√

3

r4

(
q1a ,1a

q2b,−1b
+

√
3q1a ,0a

q2b,0b
+ q1a ,−1a

q2b,1b

− q2a ,1a
q1b,−1b

−
√

3q2a ,0a
q1b,0b

− q2a ,−1a
q1b,1b

)
, (8)

and, similarly, the magnetic dipole-dipole interaction Vμμ ≡
V (μ(1a ),μ(1b),r) reads

Vμμ = − 1

r3

(
μ1a ,1a

μ1b,−1b
+ 2μ1a ,0a

μ1b,0b
+ μ1a ,−1a

μ1b,1b

)
.

(9)

Here we have chosen atomic units in the above expressions;
i.e., the length is in units of the Bohr radius a0 ≈ 0.053 nm,
and the energy is in units of rydbergs (13.6 eV). The magnetic
dipole tensors of two atoms are defined as

μ(1a ) = −μB

(
gl l(1a ) + gss(1a )

)
, (10)

μ(1b) = −μB

(
gl l(1b) + gss(1b) + gi i(1b)

)
, (11)

where μB is the Bohr magneton, l(1a,b) is the orbital angular
momentum of an atom, s(1a,b) is the spin angular momentum,
and the electronic Landé g factors are gl = 1 and gs =
2.002319. The Landé g factor for the nuclear spin i(1b) of
87Sr is gi = −0.000131753 [22,23]. By using definitions of
tensors

D(L) = [
q(1a ) ⊗ q(1b)

](L)
, (12)

Q(L) = [
q(2a ) ⊗ q(2b)

](L)
, (13)

M(L) = [
μ(1a ) ⊗ μ(1b)

](L)
, (14)

all multipole interactions can be simplified as

Vdd = −
√

6

r3
D2,0, (15)

Vqq =
√

70

r5
Q4,0, (16)

Vμμ = −
√

6

r3
M2,0. (17)

The zero components of second-rank tensors D(2) and M(2)

are related to electric and magnetic dipole-dipole interaction
operators Vdd and Vμμ, respectively. Vqq depends on the zero
component of a fourth-rank tensor Q(4).

In the electronic fine-structure Hilbert space of the diatomic
system, the basis of degenerate model space in the coupled
representation reads {|(ξ,j )a,(ξ,j )b,J,MJ 〉}, where J is the
total electronic angular momentum of the (ξ,j )a and (ξ,j )b
coupling and MJ is the projection of J on the internuclear
axis. In this model space, we conclude that

〈(ξ,j )a,(ξ,j )b,J,MJ |Vdd |(ξ,j )a,(ξ,j )b,J
′,M ′

J 〉 = 0 (18)

and

〈(ξ,j )a,(ξ,j )b,J,MJ |Vdq |(ξ,j )a,(ξ,j )b,J
′,M ′

J 〉 = 0 (19)

because all atomic eigenstates comprising the model space
have the same parity. Thus, we need to consider the pertur-
bation induced by the coupling of electronic states inside
the model space to those outside the model space via the
dispersion interactions of Vdd and Vdq . The atomic eigenstates
in the coupled representation can be expanded by eigenstates
{|(ξ,j )a,(ξ,j )b〉 ≡ |(ξ,j )〉a|(ξ,j )〉b} in the uncoupled repre-
sentation via Clebsch-Gordan coefficients.

To the second-order perturbation, the Hamiltonian of the
interatomic interaction can be written as

Vint(r) = P(Vμμ + Vqq + Vdis)P, (20)

where the projection operator is

P =
∑
J,MJ

|(ξ,j )a,(ξ,j )b,J,MJ 〉〈(ξ,j )a,(ξ,j )b,J,MJ | (21)

of the model space,

Vdis = VddO{E0[(ξ,j )a,(ξ,j )b] − OH0O}−1OVdd (22)

is the Hamiltonian of the electric dipole-dipole dispersion
interaction, H0 is the Hamiltonian of the noninteracting system
with corresponding energy eigenvalues

E0[(ξ,j )a,(ξ,j )b] = 〈(ξ,j )a,(ξ,j )b|H0|(ξ,j )a,(ξ,j )b〉, (23)

and O = 1 − P . Here we have neglected the perturbation
of electric dipole-quadrupole interaction Vdq , which is
proportional to r−8 and mainly affects the short-range
interaction potential of the relative motion. Following the
same approach in Ref. [17], we can prove that the interatomic
Hamiltonian Vint(r) is related to the reduced matrix
elements M(f,f ′,F,F ′) ≡ 〈β||M(2)||β ′〉, Q(f,f ′,F,F ′) ≡
〈β||Q(2)||β ′〉, IK (f,f ′,F,F ′) ≡ 〈β||I(K)||β ′〉, (|β〉 =
|(ξ,j )a,(ξ,j,i,f )b,F 〉, and |β ′〉 = |(ξ,j )a,(ξ,j,i,f ′)b,F ′〉),
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i.e.,

M(f,f ′,F,F ′,i) =
√

30

2
gls

√
[f,F,2,f ′,F ′]

⎧⎪⎨
⎪⎩

2 2 1

f f ′ 1

F F ′ 2

⎫⎪⎬
⎪⎭

×
[

(−1)i+f ′
√

30

2

{
f 1 f ′

2 i 2

}
gls + (−1)i+f

√
i(i + 1)

{
f 1 f ′

i 2 i

}
gi

]
μ2

B, (24)

Q(f,f ′,F,F ′,i) = (−1)i+f ′√
[f,F,4,f ′,F ′]

⎧⎪⎨
⎪⎩

2 2 2

f f ′ 2

F F ′ 4

⎫⎪⎬
⎪⎭

{
f 2 f ′

2 i 2

}
〈q2〉2, (25)

IK (f,f ′,F,F ′,i)

=
j+f∑

J=|j−f |

j+f ′∑
J ′=|j−f ′|

(−1)F+i+J ′ [J,2,J ′]
3

√
[f,F,K,f ′F ′]

{
2 2 J

i F f

} {
2 2 J ′

i F ′ f ′

}{
F K F ′

J ′ i J

}
WK,J,J ′ , (26)

where gls ≡ gl + gs , [n] = 2n + 1, and K = 0,2,4. 〈q2〉 ≡ 〈(5s5p) 3P2||q(2)||(5s5p) 3P2〉 ≈ 34.3 a.u. denotes the electric
quadrupole moment of the atomic (5s5p) 3P2 state [24], and the function WK,J,J ′ is defined as

WK,J,J ′ =
∑
j1,j2

C̃
j1,j2
6

j1+j2∑
J̃=|j1−j2|

[J̃ ]

{
2 2 K

J J ′ J̃

}⎧⎪⎨
⎪⎩

2 j1 1

2 j2 1

J J̃ 2

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

j1 2 1

j2 2 1

J̃ J ′ 2

⎫⎪⎬
⎪⎭ . (27)

j1,2 denote the total angular momenta of any other fine-structure levels outside the model space. The intermediate (uncoupled)
dispersion coefficients C̃

j1,j2
6 have been listed in Ref. [16]. Here we should note that Eqs. (24)–(26) are also suitable for other

alkaline-earth-metal atoms, such as ultracold collisions between bosonic 24Mg [(3s3p) 3P2] and fermionic 25Mg [(3s3p) 3P2

(i = 5
2 )] atoms and ultracold collisions between bosonic 40Ca [(4s4p) 3P2] and fermionic 43Ca [(4s4p) 3P2(i = 7

2 )] atoms.

B. Hamiltonian in the space-fixed frame

Above we have only considered interatomic interactions in the body-fixed frame; i.e., the diatomic axis is chosen as the
quantization direction. However, the relative movement of the diatomic axis to the laboratory-fixed quantization axis leads to a
coupling between molecular rotations and electronic degrees of freedom. We need to transform the expression of Vint(r) from
the body-fixed space to the space-fixed frame, for which we choose the asymptotic fragmentation channel basis {|α(r)〉} in
the laboratory frame as {|l,(ξ,j )a,(ξ,j,i,f )b,F,T ,MT 〉}, where l is the angular momentum quantum number associated with
the rotation of the molecular frame, T is the total angular moment resulting from the coupling between l and F , and MT is
the projection of T on the space-fixed axis. Following the same approach in Ref. [17], we obtain the matrix element of the
interatomic interaction Vint between collision channels |α〉 ≡ |α(r → ∞)〉 = |l,(ξ,j )a,(ξ,j,i,f )b,F,T ,MT 〉 and |α′〉 ≡ |α′(r →
∞)〉 = |l′,(ξ,j )a,(ξ,j,i,f ′)b,F ′,T ′,M ′

T 〉,

〈α|Vint(r)|α′〉 = δT,T ′δMT ,M ′
T

∑
n=3,5,6

Fn(l,l′,f,f ′,F,F ′,T )

rn
, (28)

where the r−n-dependent parameters read

F3(l,l′,f,f ′,F,F ′,T ,i) = (−1)F+T +1
√

[l,l′]
√

6

(
l′ 2 l

0 0 0

) {
l F T

F ′ l′ 2

}
M(f,f ′,F,F ′,i), (29)

F5(l,l′,f,f ′,F,F ′,T ,i) = (−1)F+T
√

[l,l′]
√

70

(
l′ 4 l

0 0 0

){
l F T

F ′ l′ 4

}
Q(f,f ′,F,F ′,i), (30)

F6(l,l′,f,f ′,F,F ′,T ,i) = (−1)F+T
∑

K=0,2,4

νK

{
l F T

F ′ l′ K

} (
l′ K l

0 0 0

)
IK (f,f ′,F,F ′,i), (31)

and ν0 = 12√
5
, ν2 = −12

√
2
7 , and ν4 = 36

√
2

35 . We can see F3 only includes the magnetic dipole-dipole interaction, F5 completely
arises from the electronic quadrupole-quadrupole interaction, and all van der Waals dispersion effects are involved in F6.
Additionally, for the interatomic interaction Vint(r), the total angular momentum T and its projection MT on the space-fixed axis
are two conserved quantities.
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The matrix elements of the molecular rotation can be expressed as

〈α| L2

2mr2
|α′〉 = δl,l′δf,f ′δF,F ′δT,T ′δMT ,M ′

T

l(l + 1)

2mr2
, (32)

and the matrix elements of the hyperfine interaction of fermionic 87Sr are given by

〈α|Hhpf(b)|α′〉 = δl,l′δf,f ′δF,F ′δT,T ′δMT ,M ′
T

{
A

(
f (f + 1) − 123

4

)
+ B

432

[(
f (f + 1) − 123

4

)2

− 297

2

]}
, (33)

where the hyperfine interaction constants [25] for the (5s5p) 3P2 state of 87Sr are A = −212.765 MHz and B = 67.215 MHz.
Thus, we obtain all the elements of Hamiltonian H in the representation of the space-fixed fragmentation channels {|α〉}.

III. ULTRACOLD COLLISIONS OF TWO ATOMS
IN THE FREE SPACE

Now we consider ultracold collisions between two
metastable 88Sr and 87Sr atoms in the free space. First, we
investigate the diatomic system in the adiabatic approximation,
which can provide a qualitative description of the two-body
scattering with anisotropic interatomic interactions. Then we
consider the elastic and inelastic scattering rates by solving
the system of coupled radial Schrödinger equations.

A. Adiabatic potential-energy curves

The adiabatic potential-energy curves can be derived by
diagonalizing the matrix L2

2mr2 + Vint(r) + Hhpf(b). Since no
external magnetic field is applied to the diatomic system, the
total angular momentum T and its projection MT on the space-
fixed axis are conserved at all stages of collisions between two
metastable atoms. Thus, the adiabatic potential-energy curves
can be classified by (T ,MT ). Based on Eq. (28), we find that
at interatomic distances within the range from 50a0 to 100a0,
energies of electric dipole-dipole and quadrupole-quadrupole
interactions are of the order of 10−7–10−8 rydberg, which
are comparable with the hyperfine-structure splitting of
the metastable (5s5p) 3P2 level of 87Sr, and the magnetic
dipole-dipole interaction is of the order of 10−9 rydberg.
Collision channels with different quantum numbers fb are
strongly coupled to each other in this region due to the
anisotropic interatomic interactions, as shown in Fig. 1. When
the interatomic distance is larger than 100a0, the adiabatic
potential-energy curves converge to five different dissociation
limits, which correspond to five hyperfine-structure levels of
fermionic 87Sr. In addition, at interatomic distances larger
than 50a0, the interatomic interactions are unable to distort the
spin-orbit coupling patterns in 88Sr and 87Sr. The formalism
established in Sec. II is still useful for the quantitative
description.

In experiments, it is easy to prepare two atoms in fully
polarized s-wave entrance channels. For example, if two atoms
are initially prepared in |ξ,j = 2,mj = 2〉a and |ξ,j,i,f,mf =
f 〉b states to the dissociation limit (r → ∞) and in a rotational
s-wave state |l = 0,ml = 0〉, the only allowed entrance chan-
nel in the coupled representation is

|
 = F 〉 = |l = 0,(ξ,j )a,(ξ,j,i,f )b,

F = j + f,T = F,MT = F 〉, (34)
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FIG. 1. (Color online) Ultracold collisions between two
metastable strontium atoms (5s5p) 3P2 and (5s5p) 3P2 (i = 9

2 ) in the
free space. (a) Adiabatic potential-energy curves for (T = 9

2 ,MT =
9
2 ). The maximum partial wave taken into account for these curves
is lmax = 20. The fully polarized s-wave entrance channel |
 = 9

2 〉
is marked by a big arrow, and the corresponding curve (dashed line)
presents a long-range molecular potential well at the distance of
r ∼ 70a0. All the asymptotes are marked by the quantum number
fb. (b) Adiabatic potential-energy curves for (T = 11

2 ,MT = 11
2 ).

The potential-energy curve (dashed line) for the entrance channel
|
 = 11

2 〉 is marked by a big arrow.
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which can be further written in a decoupled form,

|
 = F 〉
= |l = 0,ml = 0〉|ξ,j,mj = 2〉a|ξ,j,i,f,mf = f 〉b. (35)

For our diatomic system, two atoms can be prepared in five
fully polarized s-wave entrance channels |
 = 9

2 , 11
2 , 13

2 , 15
2 , 17

2 〉
in experiments.

Figure 1(a) displays all the adiabatic potential-energy
curves for a total angular momentum of T = 9

2 and a projection
of MT = 9

2 . The partial waves up to the maximum of lmax =
20 are taken into account. The fully polarized s-wave en-
trance channel |
 = 9

2 〉 = |l = 0,(ξ,j )a,(ξ,j,i,f = 5
2 )b,F =

9
2 ,T = 9

2 ,MT = 9
2 〉 has been marked by a big arrow. As one

can see, there exist numerous avoided crossings at interatomic
distances in the range of 50a0 < r < 70a0 since the electric
quadrupole-quadrupole interaction plays a major role in this
region. The key feature in Fig. 1(a) is the pronounced avoided
crossing at r ∼ 70a0, primarily formed by the entrance-
channel curve and a curve converging to a lower dissoci-
ation limit with |l = 10,(ξ,j )a,(ξ,j,i,f = 7

2 )b,F = 11
2 ,T =

9
2 ,MT = 9

2 〉. This avoided crossing leads to a long-range
molecular potential well in the entrance-channel curve. Simi-
larly, for two atoms in the entrance channel |
 = 11

2 〉 = |l =
0,(ξ,j )a,(ξ,j,i,f = 7

2 )b,F = 11
2 ,T = 11

2 ,MT = 11
2 〉, a deeper

long-range molecular potential well can be found in the
entrance-channel curve due to the pronounced avoided cross-
ing at r ∼ 70a0, as shown in Fig. 1(b). This avoided cross-
ing is mostly formed between the entrance-channel curve
and a curve converging to a dissociation limit with |l =
10,(ξ,j )a,(ξ,j,i,f = 9

2 )b,F = 9
2 ,T = 11

2 ,MT = 11
2 〉.

Other important information we can obtain from Fig. 1 is
that at interatomic distances r < 60a0 the repulsive potential,
which is much larger than the relative collision energy of
two atoms at ultracold temperatures (<10 μK), dominates
the two-body collisions in both entrance channels |
 = 9

2 〉
and |
 = 11

2 〉. Thus, almost no atomic flux can penetrate
into the inner region (r < 50a0), and the two-body scattering
is mainly governed by long-range interatomic interactions.
In the adiabatic approximation, we numerically compute the
bound states and probability distributions of two atoms in two
entrance-channel potential wells by applying the well-known
Numerov method. As shown in Fig. 2, the potential well in
the entrance channel |
 = 9

2 〉 can hold only one bound state,
while two bound states exist in the deeper potential well in the
entrance channel |
 = 11

2 〉.
In addition to (T = 9

2 ,MT = 9
2 ) and (T = 11

2 ,MT = 11
2 ),

we have also computed the adiabatic potential-energy curves
for the total angular momentums of (T = 13

2 , 15
2 , 17

2 ) and the
corresponding projections of (MT = 13

2 , 15
2 , 17

2 ). For simplicity,
we do not show them here. Unlike the potential-energy curves
for entrance channels |
 = 9

2 , 11
2 〉 in the adiabatic approxima-

tion, the attractive interactions dominate ultracold collisions
of two atoms in entrance channels |
 = 13

2 , 15
2 , 17

2 〉 at the
interatomic distance of about 50a0, and no long-range potential
wells exist in the entrance-channel curves. In this case, we
have to involve the short-range interatomic interactions of two
atoms in entrance channels |
 = 13

2 , 15
2 , 17

2 〉. Unfortunately, we
do not have the relevant data. In the following discussion we
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FIG. 2. (Color online) Adiabatic potential-energy curves for
entrance channels (a) |
 = 9

2 〉 and (b) |
 = 11
2 〉. The potential well

in the entrance channel |
 = 9
2 〉 can hold only one bound state while

two bound states exist in the deeper potential well in the entrance
channel |
 = 11

2 〉. The corresponding atomic distributions have been
marked.

are going to concentrate on ultracold collisions of two atoms
in entrance channels |
 = 9

2 〉 and |
 = 11
2 〉.

B. The diabatic description of two-body collisions

Above, we have considered the adiabatic potential-energy
curves of ultracold collisions between two metastable 88Sr and
87Sr atoms. However, this adiabatic approximation can only
give a qualitative description of the two-body scattering with
anisotropic interatomic interactions. In order to implement a
quantitative analysis, especially to obtain the elastic and in-
elastic scattering rates, we have to solve the system of coupled
radial Schrödinger equations in the diabatic representation,
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which relies on the fact that all diagonal and nondiagonal
elements of Hamiltonian H vary smoothly with the interatomic
distance r .

By substituting ψα(E,r) into the stationary Schrödinger
equation and applying the Hamiltonian in Eq. (1), one can
obtain a set of coupled radial Schrödinger equations for a
given asymptotic collision energy E in an entrance channel |α〉.
Here we apply the multichannel log-derivative method [26] to
numerically solve the coupled radial Schrödinger equations.
The standard boundary conditions imposed on φα′,α(E,r) for
a scattering state |α′〉 are φα′,α(E,r → 0) → 0 and

φα′,α(E,r) = Jα′,α(kα′r) +
∑
α′′

Nα′,α′′ (kα′′r)Kα′′,α, (36)

where we have defined the channel wave number kα =√
2m�Eα/h̄ and the relative kinetic energy �Eα = E − Eα .

Since the interatomic potentials at r ∼ 50a0 in entrance
channels |
 = 9

2 , 11
2 〉 are positive and much larger than the

relative collision energy of two atoms at ultracold temperatures
(<10 μK) as shown in Fig. 1, the minimal interatomic distance
in this paper is chosen to be rmin = 50a0. Thus, the boundary
condition at the short-range interatomic distance should be
modified as φα′,α(E,r → 50) → 0.

Channels with thresholds greater than E are said to be
closed; otherwise, they are open. The matrices J = (Jα,α′ ) and
N = (Nα,α′ ) are diagonal matrices, whose matrix elements for
the open channels are made up of Riccati-Bessel functions and
of modified spherical Bessel functions for the closed channels.
The well-known scattering S = (Sα,α′ ) matrix is related to the
open-open submatrix Koo of K = (Nα,α′ ) by

S = (1 + iKoo)−1(1 − iKoo). (37)

Once we obtain the scattering S matrix, the elastic (el)
and inelastic (inel) scattering rates of atoms in the entrance
channel |α〉 can be calculated straightforwardly by the for-
mulas �el

α = πh̄
mkα

|Sα,α − δα,α|2 and �inel
α = ∑

α′ �=α
πh̄
mkα

|Sα′,α −
δα′,α|2, respectively. Moreover, the inelastic processes and
the resulting loss from the entrance channel |α〉 of interest
are more appropriately described by an energy-dependent
complex scattering length [27],

ã (|α〉,�Eα) = ar,α + iai,α ≡ − 1

k2l+1
α

tan

(
ln Sα,α

2i

)
,

(38)

where the real part ar,α of the complex scattering length
corresponds to the usual elastic scattering length, while the
imaginary part ai,α is a measure of the loss from the scattering
channel |α〉 to all other open channels. We should note that
since the atomic temperature achieved in experiments is not
absolutely in the zero-energy limit, we need to consider the
energy-dependent complex scattering length [28] here, which
will be also used in next section, rather than the zero-energy
one.

By solving the coupled radial Schrödinger equations within
the range from rmin = 50a0 to rmax = 2500a0, we derived
the elastic and inelastic scattering rates of atoms in entrance
channels |
 = 9

2 , 11
2 〉 as a function of the relative collision

energy �E, as shown in Fig. 3. (We have verified that our
results, especially the calculated S matrix, are converged with
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FIG. 3. (Color online) The elastic and inelastic scattering rates
of atoms in entrance channels |
 = 9

2 〉 and |
 = 11
2 〉 as a function

of the relative incident kinetic energy �E. In general, the atomic
temperature available in experiments is in the range from 0.1 to
10 μK.

respect to variations of the integration limits rmin and rmax.)
As one can see, the inelastic scattering dominates ultracold
collisions of atoms in both entrance channels and leads to
the large inelastic losses. It coincides with what we have
pointed out in Sec. I that although an avoided crossing can
produce an adiabatic potential well in a fully polarized s-
wave entrance channel, the strong coupling between different
scattering partial waves and electronic degrees of freedom
by long-range anisotropic interatomic interactions can lead to
severe depolarization of atoms and thus to inelastic losses.
In addition, at relative collision energies �E < 10 μK, the
complex s-wave scattering lengths of atoms in entrance
channels |
 = 9

2 , 11
2 〉 are ã(|
 = 9

2 〉,�E) ≈ (165 + i86)a0

and ã(|
 = 11
2 〉,�E) ≈ (91 + i116)a0, respectively. (Here we

should note that at a relative collision energy �E lower
than 10 μK the difference between ã(|
〉,�E < 10μK) and
the zero-energy complex scattering length ã(|
〉,�E ≈ 0) is
smaller than 0.5%.) In each entrance channel, the imaginary
part of the complex scattering length is close to (or even larger
than) the real part, which, again, means a high inelastic loss
of atoms in the entrance channel. We conclude this section
by remarking that in the free space without external magnetic
field, the two-body scattering between metastable 88Sr and
87Sr is governed by the long-range anisotropic interatomic
interactions, which leads to the strong coupling between
different partial waves and results in a high rate of inelastic
losses.

IV. TWO-BODY COLLISIONS IN AN EXTERNAL
MAGNETIC FIELD

Above we have considered ultracold collisions of atoms
in the free space. Now we consider the effect of an external
static magnetic field B0 = B0ez (ez is the z direction in the
space-fixed frame) on the two-body collisions. The element of
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Zeeman interaction

Hz = −(
μ(1a ) + μ(1b)

) · B0 (39)

of the atomic magnetic dipole momentums with the external magnetic field B0 is given by

〈α|Hz|α′〉 = (−1)2T −MT +l+F ′
δl,l′δMT ,M ′

T

√
30

2

√
[F,T ,F ′,T ′]

(
T 1 T ′

−MT 0 MT

){
T 1 T ′

F ′ 1 F

}

×
[

(−1)f +F ′
δf,f ′

{
F 1 F ′

2 f 2

}
gls − (−1)

9
2 +f ′+F

√
[f,f ′]

{
F 1 F ′

f ′ 2 f

}(
(−1)f

′
{

f 1 f ′

2 9
2 2

}
gls

+ (−1)f
√

33

{
f 1 f ′
9
2 2 9

2

}
gi

)]
μBB0. (40)

As one can see, the existence of magnetic field B0 breaks the
local rotational invariance, and the total angular momentum
T is no longer a good quantum number. In Ref. [17], it is
pointed out that electronic states with different F do not couple
with each other in the case of identical atoms. However, this
conclusion does not hold true for two nonidentical atoms, as
shown in Eq. (40), which reduces the symmetry of the diatomic
system.

Due to the Zeeman interaction Hz, two atoms cannot
be completely prepared in a certain fully polarized s-wave
entrance channel. In this case, we need to consider to what
extent the external magnetic field does not affect much the
preparation of atoms in the entrance channel |
〉. We assume
that two metastable atoms are initially completely prepared in
|
〉 at the zero magnetic field B0 = 0. Then we turn on the
magnetic field and check the probability of atoms remaining
in |
〉. Figure 4 displays the normalized number of atoms
remaining in |
〉 as a function of the strength of magnetic
field B0. For |
 = 9

2 〉, the larger B0 transfers more atoms to
other collision channels, but atoms still have more than a 98%
probability of remaining in the entrance channel |
 = 9

2 〉 at
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FIG. 4. The normalized number of two atoms initially prepared in
different entrance channels |
〉 as a function of the external magnetic
field B0.

magnetic fields B0 < 100 gauss. For other entrance channels
|
 = 11

2 , 13
2 , 15

2 , 17
2 〉, the dependence of the preparation of

atoms on the magnetic field B0 becomes weaker; in particular,
the magnetic field B0 does not transfer any atoms in |
 = 17

2 〉
to other collision channels since the Zeeman interaction Hz

keeps the quantum number l conserved.
Now we investigate the magnetic-field dependence of the

energy-dependent complex s-wave scattering lengths and the
elastic and inelastic scattering rates of atoms in entrance chan-
nels |
 = 9

2 , 11
2 〉 based on the coupled multichannel-scattering

calculation. Here we focus on the ultracold collisions at a
temperature as low as 1 μK, which is available in experiments.
As shown in Fig. 5(a), the complex scattering length in the
entrance channel |
 = 9

2 〉 strongly depends on the weak mag-
netic field and displays a resonance behavior, which is associ-
ated with inelastic processes, atB0 ≈ 8.7 gauss. A similar reso-
nance behavior can be found atB0 ≈ 11.1 gauss in the entrance
channel |
 = 11

2 〉. Around each resonance, the imaginary part
of the complex scattering length is several orders smaller than
the real part. In this resonance regime, couplings to other
collision channels due to long-range anisotropic interactions
can be neglected, which implies that the interatomic interaction
between two atoms in the entrance channel |
 = 9

2 〉 or |
 =
11
2 〉 can be treated to good approximation as a single channel

scattering. Additionally, we find that in the regime of 25 <

B0 < 100 gauss no such a resonance exists in both entrance
channels.

The corresponding dependence of the elastic and inelastic
scattering rates on the magnetic field is shown in Fig. 5(b).
Increasing B0 can suppress the inelastic scattering and enlarge
elastic scattering rates because the incident and outgoing
channels, which have the same quantum number fb, are well
separated and the Zeeman effect can eliminate many avoided
crossings at the long-range interatomic distances. In each
resonance regime the elastic scattering rate is much larger
than the inelastic one, which coincides with the complex
scattering lengths in Fig. 5(a). However, after each resonance
regime there exists a certain B0 at which the real part of the
complex scattering length is zero ar = 0. Passing this point,
the elastic scattering rate first strongly decreases and then
increases again. Additionally, we find that for two interacting
atoms in entrance channels |
 = 9

2 , 11
2 〉 the elastic scattering

rates are always larger than the inelastic scattering rates in the
regime of 25 < B0 < 100 gauss.
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FIG. 5. (Color online) Magnetic-field effect. (a) The dependence
of the energy-dependent complex s-wave scattering lengths as a
function of magnetic field B0 at a relative collision energy of �E =
1 μK. (b) The corresponding elastic and inelastic scattering rates
changing withB0. In the coupled multichannel-scattering calculation,
the maximum partial wave taken into account for these curves is
lmax = 20.

We should note that at different relative collision energies
�E, the dependence of the energy-dependent complex scatter-
ing length and the elastic and inelastic scattering rates on the
magnetic field will be different. For example, we find that at a
relative collision energy of �E = 10 μK there are two certain
values of B0 at which the complex scattering length behaves
resonantly in both entrance channels |
 = 9

2 〉 and |
 = 11
2 〉.

Since the atomic temperature available in experiments can be
as low as 1 μK, here we only focus on the ultracold collisions
in this low-temperature regime.

V. TWO INTERACTING ATOMS IN AN OPTICAL
LATTICE SITE

So far, we have studied ultracold collisions of atoms without
extra confinement. Now, we consider the system of two atoms

confined in an optical lattice site. In order to eliminate the
anisotropy induced by the optical lattice, here we choose a
three-dimensional optical lattice formed by three orthogonal
standing waves along the directions

ε1 = 1 + √
3

2
√

3
ex + 1 − √

3

2
√

3
ey − 1√

3
ez, (41)

ε2 = 1 − √
3

2
√

3
ex + 1 + √

3

2
√

3
ey − 1√

3
ez, (42)

ε3 = 1√
3

ex + 1√
3

ey + 1√
3

ez (43)

and linearly polarized along ε3, ε1, and ε2, respectively. (ex,y,z

are three unit vectors in the Cartesian coordinate system.)
Three polarizations have relations εi · εj = δi,j , ε1 × ε2 = ε3,
ε2 × ε3 = ε1, and ε3 × ε1 = ε2. The lattice field in the space-
fixed frame can be expressed as

E(ωL,t) = 2EL {ε1 cos(kLε2 · r) cos[ωLt + ϕ1(t)]

+ ε2 cos(kLε3 · r) cos[ωLt + ϕ2(t)]

+ ε3 cos(kLε1 · r) cos[ωLt + ϕ3(t)]} , (44)

where EL, ωL, and kL = 2π/λL are the amplitude, frequency,
and wave number of the lattice field, respectively. The noise
phases ϕi(t) are introduced so as to eliminate the interference
effect between different standing waves, i.e., 〈cos[ϕi(t) −
ϕj (t)]〉t = δi,j , where 〈· · · 〉t denotes the time average. Thus,
three standing waves are independent, and the ac Stark shift of
an atomic state is equal to the sum of light shifts induced by
each standing wave.

A. ac Stark shift

For a fine-structure |ξ,j,mj 〉a = (5s5p) 3P2(mj ) state of
88Sr, its ac Stark shift induced by the far-off-resonance lattice
field is given by

Umj
(λL,IL) = −2cμ0ILαmj

(λL)D(x,y,z), (45)

where the induced atomic polarizability

αmj
(λL) =

∑
ξ ′,j ′

2πε0c
3A(ξ ′,j ′),(ξ,j )

ω2
(ξ ′,j ′),(ξ,j )

(
ω2

(ξ ′,j ′),(ξ,j ) − ω2
L

) [j ′]
[2]

(46)

can be derived from the method in Ref. [29], IL = E2
L/(2cμ0)

is the intensity of lattice field, and the distribution of the optical
lattice potential is described by the function

D(x,y,z) =
∑

i

sin2(kLεi · r). (47)

(ξ,j ) stands for the fine-structure (5s5p) 3P2 level, while
(ξ ′,j ′) denotes any other fine-structure levels that are electric-
dipole transition allowed between (ξ,j ) and (ξ ′,j ′), such as
3S1 and 3D1,2,3. ω(ξ ′,j ′),(ξ,j ) is the frequency of the atomic
(ξ ′,j ′) → (ξ,j ) transition. The respective Einstein coefficients
A(ξ ′,j ′),(ξ,j ) from the upper (ξ ′,j ′) level to the lower (ξ,j )
level can be found in Ref. [30]. From Eq. (46), one can
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FIG. 6. The induced atomic polarizability α0(λL) as a function of
the wavelength λL of the optical lattice field.

see that due to the full symmetry of optical lattice the light
shift of the |ξ,j,mj 〉 state is unrelated to the projection mj

of the total angular momentum j . We can simplify αmj
(λL)

as α0(λL).
Similarly, the ac Stark shift of a hyperfine-structure

|ξ,j,i,f,mf 〉b = (5s5p) 3P2(f,mf ) state of 87Sr reads

Uf,mf
(λL,IL) = −2cμ0ILαf (λL)D(x,y,z), (48)

where the induced atomic polarizability

αf (λL) =
∑

ξ ′,j ′,f ′

2πε0c
3A(ξ ′,j ′),(ξ,j )[f ′][j ′]

ω2
(ξ ′,j ′,f ′),(ξ,j,f )

(
ω2

(ξ ′,j ′,f ′),(ξ,j,f ) − ω2
L

)

×
{

j ′ 9
2 f ′

f 1 j

}2

(49)

and ω(ξ ′,j ′,f ′),(ξ,j,f ) is the frequency of the atomic (ξ ′,j ′,f ′) →
(ξ,j,f ) transition. Since the frequency ωL of the lattice field is
far off resonance to any (ξ ′,j ′,f ′) → (ξ,j,f ) transitions, one
can ignore the effect of hyperfine splitting on the light shift,
i.e., ω(ξ ′,j ′,f ′),(ξ,j,f ) ≈ ω(ξ ′,j ′),(ξ,j ), which leads to αf (λL) ≈
α0(λL).

We arrive at a conclusion that the optical lattice field does
not change the relative frequency differences between any
two atomic hyperfine-structure states of 87Sr, and the lattice
potential for each fine-structure sublevel of 88Sr and hyperfine
sublevel of 87Sr is given by U (r) = U0(λL,IL)D(x,y,z), where
we have defined U0(λL,IL) = −2cμ0α0(λL)IL. Figure 6 dis-
plays the induced atomic polarizability α0(λL) changing with
the wavelength of the optical lattice field. For the red-detuned
optical lattice usually used for strontium in experiments, whose
wavelength is about λL = 813.4 nm and lattice constant is
λL/2, we have α0(λL) = 334.6 a.u.

B. Harmonic approximation

Now we consider two interacting atoms in an optical
lattice with a wavelength of λL = 813.4 nm. The Hamiltonian

describing two atoms with coordinate vectors ra and rb in a
three-dimensional optical lattice is expressed as

H (ra,rb) = p2
a

2ma

+ p2
b

2mb

+ U (ra) + U (rb) + Vint(ra,rb),

(50)

where p2
a,b/(2ma,b) are the kinetic energy operators for atoms

a and b, U is the sinusoidal trapping potential, and Vint is
the interatomic interaction. It is convenient for us to treat the
two-body problem in center-of-mass (c.m.) and relative (RL)
motion coordinates.

Assuming a sufficiently strong optical lattice, the lowest-
energy state of a lattice cell is approximated by the harmonic
oscillator ground state. For the reduced atomic mass m =
mamb/(ma + mb) and lattice potential U0, one can define the
single-site harmonic oscillator frequency ωh = kL

√−U0/m.
The extent of the harmonic oscillator ground state is given
by dh = √

h̄/(mωh), and the localization at a lattice site
is quantified by the Lamb-Dicke parameter η = kLdh. We
normally assume that atoms are in the Lamb-Dicke regime
η 
 1 and each optical lattice site traps one 88Sr atom and
one 87Sr atom. By defining the c.m. coordinate R = ra + rb

and the RL coordinate r = ra − rb, two interacting atoms in
an optical lattice site can be described by the decoupled c.m.
and RL coordinate Hamiltonians,

Hc.m. = P2
R

2M
+ 1

2
Mω2

hR
2, (51)

HRL = p2
r

2m
+ 1

2
mω2

hr
2 + Vint(r) + Hhpf(b), (52)

in the harmonic approximation, where M = ma + mb is the
total mass and we have added the hyperfine interaction of
87Sr in Eq. (52). Comparing Eq. (1) with Eq. (52), the only
difference is the term of extra isotropic harmonic potential
URL(r) = 1

2mω2
hr

2.
Generally, the intensity of lattice field IL applied in

experiments is chosen to be 10 kW/cm2, which gives an optical
lattice potential of U0 = −30 μK and the harmonic oscillator
frequency of ωh = 2π × 65.8 kHz. The characteristic length
of the harmonic trap, i.e., the extent of harmonic oscillator
ground state, is about dh = 790a0, and the corresponding
Lamb-Dicke parameter is η ≈ 0.32. Since the extra harmonic
potential URL(r) is much weaker than the interatomic in-
teraction in the range of r < 500a0, the distortion of the
interatomic potential due to URL(r) can be neglected. Next we
will investigate ultracold collisions of two atoms in a harmonic
trap via a self-consistent approach.

C. Self-consistent treatment of the diatomic collision
in an optical lattice site

Since the characteristic length scale of the interatomic
interaction is typically much smaller than the characteristic
length dh and the s-wave scattering dominates the ultracold
collisions under consideration here, the interatomic interaction
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Vint(r) can be replaced by a zero-range effective-scattering-
length pseudopotential [31],

Veff(E,r) = 2πh̄2

m
aeff(E)δ(r)

∂

∂r
r, (53)

where E is the total energy of the internal states and relative
motion for two atoms in an asymptotic scattering state. The
scattering length aeff(E) is written in an energy-dependent
form, which can reproduce not only the s-wave phase shifts in
the Wigner threshold regime but also the correct asymptotic
behavior of the wave function at large r .

We consider the Schrödinger equation of the relative motion
by applying the effective pseudopotential,(

p2
r

2m
+ Veff(E,r) + Hhpf(b)

)
ψ(r) = Eψ(r). (54)

The eigenvalues can be obtained from solutions of the
equation

dh

4aeff(E − Eα)
=

�
(

3
4 − E−Eα

2h̄ωh

)
�

(
1
4 − E−Eα

2h̄ωh

) , (55)

which is derived in the same approach in Ref. [32]. Here Eα is
the energy of an asymptotic scattering channel |α〉 of interest.
On the other hand, the energy-dependent effective scattering
length can be derived from the s-wave phase shift δ0(k) for
two untrapped atoms scattering in the interatomic potential

aeff(E − Eα) = − tan δ0(k)

k
, (56)

where the incident wave number k = √
2m(E − Eα)/h̄. The

energy eigenvalue and the effective s-wave scattering length
of two atoms scattering in an optical lattice site can be
self-consistently solved from Eqs. (55) and (56), which
reproduce the asymptotic wave function and the s-wave phase
shift.

Figure 7 displays the effective s-wave scattering length aeff

(solid curves) as a function of the relative collision energy
�E = E − Eα in the entrance channel |α〉 = |
 = 9

2 〉, which
is derived from Eq. (55). Here we only consider the positive
collision energy �E � 0. For no interatomic interactions, i.e.,
aeff = 0, one recovers the unshifted harmonic oscillator energy
�E = 3

2h̄ωh ≈ 4.7 μK of the ground state (the cross in Fig. 7).
For infinitely positive and negative scattering lengths aeff →
±∞, the ground-state energy is shifted maximally by ±h̄ωh,
respectively. In Fig. 7, we also show the energy-dependent
s-wave scattering lengths (dashed lines) of two untrapped
atoms in different magnetic fieldsB0 changing with the relative
collision energy �E, which are numerically computed via the
coupled multichannel-scattering calculation. The intersections
(circle) give the self-consistent effective s-wave scattering
lengths and energy eigenvalues of two interacting atoms in an
optical lattice site. At B0 = 0, the energy eigenvalue is about
�E ≈ 6.1 μK. When we increase the magnetic field and track
the intersection at B0 = 0, both effective scattering length and
energy eigenvalue increase. At the relative collision energy
of �E ≈ 8 μK, the effective scattering length approaches
positive infinity and then changes its sign. On the other hand,
when B0 is larger than about 3 gauss, a new intersection
comes out on the lower-energy side of the intersection at

B0 0

6
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FIG. 7. The s-wave scattering length as a function of the relative
collision energy �E ≡ E − Eα of two atoms in the entrance channel
|
 = 9

2 〉. The solid lines, which are also suitable for two ultracold
atoms in the entrance channel |
 = 11

2 〉, are derived from Eq. (55).
The dashed lines are results from the coupled multichannel-scattering
calculation for two untrapped atoms in different magnetic fields B0.
The intersections (circles) give the self-consistent s-wave scattering
lengths and energy eigenvalues of two interacting atoms in an optical
lattice site. The cross corresponds to the zero effective scattering
length aeff = 0.

B0 = 0, which is to say, a new ground state appears instead
of the former one. Since the atomic temperature achieved in
experiments can be as low as 1 μK, here we only focus on the
lower-energy eigenvalues.

Figure 8(a) displays energy eigenvalues of ground states
of two interacting atoms in an optical lattice site in entrance
channels |
 = 9

2 〉 and |
 = 11
2 〉 as a function of the external

magnetic field. The corresponding effective s-wave scattering
lengths changing with B0 are shown in Fig. 8(b). In the
entrance channel |
 = 11

2 〉, the new ground state with lower
energy appears at magnetic fields B0 > 3.75 gauss. In both
entrance channels |
 = 9

2 〉 and |
 = 11
2 〉, energy eigenvalues

increase with B0. The corresponding self-consistent scattering
lengths approach positive infinity and change signs at about
B0 ≈ 11.5 gauss and B0 ≈ 14.5 gauss, respectively. Thus,
the interatomic interactions can be turned by the external
magnetic field. In the regime of lower-energy eigenvalues,
the effective s-wave scattering lengths can be much larger
than the characteristic length dh of the external trapping
potential. Since in our model the effective scattering length is
chosen to be energy dependent, the self-consistent method still
works here, as discussed in Refs. [33–35]. The self-consistent
elastic and inelastic scattering rates are shown in Fig. 8(c). In
both entrance channels |
 = 9

2 〉 and |
 = 11
2 〉, increasing B0

can enlarge elastic scattering rates and suppress the inelastic
scattering.

VI. SUMMARY AND DISCUSSION

By applying an approach of tensorial analysis, we have
studied the ultracold collisions between metastable bosonic
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FIG. 8. (Color online) The self-consistent treatment of two
interacting atoms in an optical lattice site. (a) The self-consistent
energy eigenvalues of two colliding atoms in an optical lattice site
relative to energies of the asymptotic scattering channels |
 = 9

2 〉
and |
 = 11

2 〉, respectively, as a function of magnetic field B0. B0 is
increased from 0 to 25 gauss with each step of 0.25 gauss. Since the
atomic temperature achieved in experiments can be as low as 1 μK,
we only show energy eigenvalues in the range from 0 to 2.5 μK.
(b) The corresponding self-consistent s-wave scattering lengths as
a function of magnetic field B0. (c) The corresponding elastic and
inelastic scattering rates as a function of B0.

88Sr [(5s5p) 3P2] and fermionic 87Sr [(5s5p) 3P2 (i = 9
2 )]

atoms at long-range interatomic distances. In the adiabatic
approximation, we numerically diagonalized the Hamiltonian
matrix including the molecular rotation, interatomic interac-
tions, and the hyperfine interaction of 87Sr, which leads to the
complicated adiabatic potential-energy curves. We focused on
two fully polarized s-wave entrance channels, in which the adi-
abatic long-range molecular potential wells exist. As we have
pointed out, the scattering physics is governed by the strong
anisotropic interatomic interactions, which lead to the pro-
nounced coupling between different scattering channels. Thus,
at low temperatures, <10 μK, ultracold collisions of two
atoms in the entrance channels of interest are dominated by
the inelastic scattering.

We have also studied the dependence of ultracold atomic
collisions on the external magnetic field Bz = B0ez based on
the coupled multichannel-scattering calculation. We find that
increasing B0 not only can enlarge the elastic scattering rates
but also can reduce the inelastic scattering of two ultracold
atoms in the entrance channels of interest. Moreover, we have
investigated the two-body collisions in an optical lattice site.
The effective s-wave scattering lengths, energy eigenvalues,
and elastic and inelastic scattering rates are self-consistently
computed.

As we have said, the effect of short-range interatomic
interactions has been neglected in this paper since we do not
have the relevant data. However, because (i) the interatomic
distances we focused on are far away from the short-range
region, for which the interatomic interactions are unable to
distort the spin-orbit coupling patterns in 88Sr and 87Sr, and
(ii) the repulsive (positive) interaction potential dominates
the ultracold collisions of two atoms at the minimal inter-
atomic distance (rmin = 50a0) chosen in this paper, for which
no atomic flux penetrates into the inner region, we have
confidence in the correctness of the results obtained in this
paper.

So far, most research on the ultracold atomic physics,
especially the condensed quantum gases in an optical lattice
[36], mainly relies on the alkali-metal atoms, which have only
one valence electron in their outermost orbits, due to the mature
experimental technologies and the thorough understanding of
their atomic structures and interatomic interactions [37]. The
quantum many-body physics based on alkaline-earth-metal
atoms, in particular, the dynamics of phase transitions in an
optical lattice, has not been well developed because of less
relevant knowledge of the interatomic interactions. However,
an ensemble of ultracold atoms with two valence electrons
must lead to new phenomena, which are different from those
based on the alkali-metal atoms, such as a novel degenerate
Fermi mixture with an SU(2) × SU(6) symmetry [38]. For this
reason, our research in this paper is meaningful. In the future,
we would like to extend our study to the quantum many-body
physics of a mixture of bosonic and spin-polarized fermionic
(88Sr-87Sr) atoms in optical lattices.
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