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Generalization of homogeneous coordinate scaling in density-functional theory
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A generalization of homogeneous coordinate scaling for wave functions [φ(i)
αβmp(r) = αm/2φi(βpr), (α,β) ∈

R+,(m,p) ∈ R] and electron densities [nαβmp(r) = αmn(βpr)] is introduced. It is shown that, under such a
scaling, the Kohn-Sham (KS) noninteracting kinetic energy Ts[n] scales as Ts[nαβmp] = αmTs[n]/βp , which leads
to the integral, or generalized virial, expression Ts[n] = 1/(m − p)

∫
δTs[n]/δn(r)[mn(r) + pr · ∇n(r)]d3r. For

m = 3 and p = 2 the general expression yields the well-known relation Ts[n] = 1/2
∫

δTs[n]/δn(r)[3n(r) + r ·
∇n(r)]d3r . The general virial also reduces to the new integral expression Ts[n] = − ∫

δTs[n]/δn(r)r · ∇n(r)d3r,

as well as to the controversial one, Ts[n] = − ∫
δTs[n]/δn(r)n(r)d3r, due to the scaling of Ts[n] under nαmp(r) =

αmn(αpr) and its invariance for m = p. The validity of the controversial expression is further discussed and the
first-degree homogeneous character of Ts[n] under density scaling established. The scaling properties of the KS
potential and eigenvalues are also analyzed. Examples of numerical tests that confirmed all the integral expressions
for Ts[n] and its scaling properties, as well as the scaling of the KS potential and eigenvalues, are provided.
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I. INTRODUCTION

The investigation of the scaling properties of functionals is
very useful to understand their structure and to approximate
those explicitly unknown functionals of the density, such as the
kinetic energy functional of noninteracting systems (Ts[n]) and
the exchange-correlation functional (Exc[n]) in Kohn-Sham
(KS) density-functional theory (DFT) [1–23]. Both functionals
are approximated in the so-called orbital-free methods [24]
while only Exc[n] needs to be approximated in KS-DFT
[25,26].

Since the introduction by Sham [3] of the number of particle
conserving scaling nα(r) = α3n(αr), the scaling properties
of density functionals have been intensively studied [6,27].
Scalings of the density that do not conserve the number
of electrons have been also investigated. Notably, Liu and
Parr [17] started the discussion on the consequences of density
scaling nα(r) = αn(αr), and Perdew and co-workers studied
the scaling nα(r) = α2n(α1/3r).

Naturally, one wonders if all the possibilities for the scaling
of wave functions and densities have been exhausted. On
that account, in this work we introduce a generalization of
homogeneous scaling of the KS wave functions and electron
densities, and investigate the properties of the noninteracting
kinetic-energy functional under such a scaling. The gener-
alization contains completely new, as well as all previously
defined, homogeneous coordinate and density scaling. It also
introduces more degrees of freedom by scaling the coordinates
and the amplitude of the functions separately.

As explained below, the generalization of homogeneous
scaling proposed here not only leads to new integral relations
for Ts[n] but also to a well-established one. However, it
also yields the controversial result that Ts[n] scales linearly
under density scaling, which we prove true using completely
different routes from that of Liu and Parr [17], whose
demonstration has been proved incorrect [28].
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We continue by providing a background on KS-DFT in
Sec. II, with emphasis on the definition of Ts[n] and including
all the necessary information related to general scaling. In
Sec. III we discuss in detail the noninteracting kinetic-energy
functional for the scaled density, which leads to a redefinition
of Ts[n] addressed in Sec. IV. The study of the scaling
properties of Ts[n] and its functional derivative is carried
out in Sec. V, and in Sec. VI the integral or virial relations
for Ts[n] are found via parametric derivatives. Numerical
evidence of the validity of the integral relations are provided
in Sec. VII, followed by a discussion on the issue of linear
scaling of Ts[n] under density scaling in Sec. VIII. Finally,
concluding remarks are made in Sec. IX.

II. GENERAL ASPECTS

A. The Kohn-Sham problem

We say that {φ} is a KS set [26] for the density

n(r) =
Ns∑
i=1

ni |φi(r)|2 (1)

if it is a set of Ns orthonormal wave functions in the Hilbert
space that, given the occupation numbers ni (i = 1, . . . ,Ns),
minimizes the kinetic-energy functional

Ts[n] = min
{φ}⊥→n

−1

2

Ns∑
i=1

ni

∫
φ∗

i (r)∇2φi(r)d3r (2)

of a noninteracting system of density n(r). That is according
to Levy’s constrained search [29,30], which via Lagrange
multipliers translates to the unconstrained search

Ts[n] = min
{φ}

{
−1

2

Ns∑
i=1

ni

∫
φ∗

i (r)∇2φi(r)d3r

+
∫

v([n],r)

[
Ns∑
i=1

ni |φi(r)|2 − n(r)

]
d3r

−
Ns∑
i=1

niεi[n]

[∫
|φi(r)|2d3r − 1

]}
, (3)
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where v is the local Lagrange multiplier that ensures the wave
functions reproduce a given density (KS potential) and εi

are the Lagrange multipliers that keep the wave functions
normalized to 1 (KS eigenvalues). This is the equation that
links a given density to a set of KS wave functions, eigenvalues,
and potential.

Equating to zero the functional derivatives with respect to
the wave functions of the expression in curly brackets in Eq. (3)
yields the KS equations [26]

− 1
2∇2φi(r) + v([n],r)φi(r) = εi[n]φi(r). (4)

Notice that the Hermitian character of the operator in this
equation guarantees the orthogonality of the wave functions,
and therefore the orthogonalization is automatically enforced
by the constraint on the normalization.

After repartitioning the total energy of the interacting
system to include the noninteracting kinetic-energy functional
Ts[n] and the classical electron-electron repulsion or Hartree
functional EH [n], the KS potential is found to be [26]

v([n],r) = δEH [n]

δn(r)
+ δExc[n]

δn(r)
+ vext(r), (5)

with Exc[n] being the exchange-correlation energy-density
functional and vext(r) the external potential.

On the other hand, if the KS potential and number of
electrons Ne were given, then, assuming that we know the
explicit form of the noninteracting kinetic-energy functional
in terms of the density, one could find the ground-state density
by solving the Euler-Lagrange equation [26]

δ

δn(r)

{
Ts[n] +

∫
v([n],r)n(r) − μ

[ ∫
n(r) − Ne

]}
= 0, (6)

where μ is the Lagrange multiplier that fixes the integral of
the density to the number of electrons.

B. Scaling of wave functions and the electron density

A generalization of the homogeneous coordinate scaling in
DFT can be realized by defining a new set of scaled KS wave
functions according to

φ
(i)
αβmp(r) = αm/2φi(β

pr), (7)

where α and β are positive real numbers, and m and p are any
real numbers. This scaling represents a uniform contraction or
expansion of wave functions in space controlled by β and p, in
conjunction with a change of amplitude controlled by α and m.

The scaling in Eq. (7) defines a one-to-one mapping
between the scaled wave functions and the original ones,
clearly spanning the same Hilbert space and conserving the
orthogonality, but changing the normalization of the wave
functions to ∫ ∣∣φ(i)

αβmp(r)
∣∣2

d3r = αm

β3p
. (8)

By construction the corresponding electron density
[Eq. (1)] scales as

nαβmp(r) = αmn(βpr). (9)

In principle the number of electrons Ne, seen as the integral
of the density, is not conserved under general homogeneous

scaling; in fact it becomes Neαβmp = αmNe/β
3p. But the

apparent change in the number of electrons does not come
from a change in the occupation numbers but rather from the
new norm of the scaled KS wave functions. Indeed, the relation∑Ns

i=1 ni = Ne holds for any scaling.
The associate inverse homogeneous scaling is given by

n(r) = α−mnαβmp(β−pr), (10)

which can be written as

n(r) = α−m

∫
nαβmp(r′)δ(r′ − β−pr)d3r ′ (11)

and leads to the following expression for the functional
derivative of the density with respect to the scale density:

δn(r)

δnαβmp(r′)
= α−mδ(r′ − β−pr). (12)

In defining the general scaling given by Eq. (9) we consider
not only new scalings but also particular scalings previously
investigated by different authors. Notably, Eq. (9) contains
the particle conservation homogeneous scaling introduced by
Sham, nα(r) = α3n(αr) [2,3], the density scaling of Liu and
Parr, nα(r) = αn(r) [16,17,19], and the scaling of Perdew and
co-workers, nα(r) = α2n(α1/3r) [22].

C. Homogeneous scaling of functionals

Similar to the case of homogeneous coordinates scaling [1],
if a functional of the density scales as

F [nαβmp] = αk

βl
F [n], (13)

then it is a homogeneous functional of degree k in α and degree
l in β. For the functional derivative of such a homogeneous
functional we have

δF [nαβmp]

δnαβmp(r)
= αk

βl

∫
δF [n]

δn(r′)

∣∣∣∣
nαβmp(r′ )

δn(r′)
δnαβmp(r)

d3r ′, (14)

which becomes

δF [nαβmp]

δnαβmp(r)
= αk−m

βl−3p

δF [n]

δn(r′)

∣∣∣∣
r′=βpr

, (15)

by Eq. (12).

III. KINETIC-ENERGY FUNCTIONAL
FOR THE SCALED DENSITY

It is necessary to find the functional minimized by the scaled
wave functions to be able to study its scaling properties. A path
to such a functional is provided by the knowledge of the KS
equations the scaled wave functions are solutions of.

Notice that we could have worked with an alternative
functional that does not include explicitly the constraint on
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the norm of the wave functions, such as

min
{φ}

{
−1

2

Ns∑
i=1

ni

∫
φ∗

i (r)∇2φi(r)d3r

+
∫

v([n],r)

[
Ns∑
i=1

ni |φi(r)|2 − n(r)

]
d3r

−
Ns∑
i=1

niεi[n]
∫

|φi(r)|2d3r

}
, (16)

which is a functional, often used in papers and textbooks (see
Eq. 7.2.4 in Yang and Parr, for example [1]), that reaches its
minimum at the same KS set as Ts[n]. Instead, we strictly
follow the definition of Ts[n] given by Levy’s constrained
search, explicitly taking into account all the constraints.

In Sec. II A we established the link between the Lagrange
multiplier version of Levy’s constrained search and the KS
equations. Now we proceed to find the KS equations satisfied
by the scaled wave functions, and from those equations we
get the noninteracting kinetic-energy functional for the scaled
density.

A. KS equations for the scaled wave functions

The KS equations of interest can be found by introducing
the change of variable r = βpr′ and multiplying by αm/2 in
Eq. (4) to obtain(− 1

2∇2 + β2pv([n],βpr′)
)
αm/2φi(β

pr′)

= β2pεi[n]αm/2φi(β
pr′), (17)

which by Eq. (7) reduces to(− 1
2∇2 + v([nαβmp],r)

)
φ

(i)
αβmp(r) = εi[αβmp]φ(i)

αβmp(r), (18)

with

v([nαβmp],r) = β2pv([n],βpr) (19)

and

εi[αβmp] = β2pεi[n]. (20)

Consequently, if the original wave functions are the so-
lutions of the KS equations in Eq. (4) then the scaled wave
functions are the solutions of the KS equations in Eq. (18)
with eigenvalues and potential defined by Eqs. (19) and (20),
respectively.

B. Ts for the scaled density

It has been proven that the scaled wave functions are
normalized to αm/2/β3p/2 and that they are the solutions of
the KS equations defined by Eq. (18). That indicates that the
scaled wave functions must minimize the kinetic energy of a
noninteracting system of electron density equal to the scaled
density [Eq. (9)]; that is,

{φαβmp[nαβmp]}

= arg min
{φ}→nαβmp

−1

2

Ns∑
i=1

ni

∫
φ∗

i (r)∇2φi(r)d3r (21)

and

Ts[nαβmp] = min
{φ}→nαβmp

−1

2

Ns∑
i=1

ni

∫
φ∗

i (r)∇2φi(r)d3r, (22)

with the minimization search performed over sets of orthogo-
nal wave functions normalized to αm/2/β3p/2.

The free search version of Eq. (22) is

Ts[nαβmp]

= min
{φ}

{
−1

2

Ns∑
i=1

ni

∫
φ∗

i (r)∇2φi(r)d3r

+
∫

v([nαβmp],r)

(
Ns∑
i=1

ni |φi(r)|2 − nαβmp(r)

)
d3r

−
Ns∑
i=1

niεi[nαβmp]

(∫
|φi(r)|2d3r − αm

β3p

)}
, (23)

and equating to zero the functional derivative with respect to
the wave functions of the expression in curly brackets we get
back Eq. (18).

IV. GENERAL FORM OF Ts[n]

The evaluation of Ts[n] at the scaled density must lead to
the minimization expression in terms of Lagrange multipliers
in Eq. (23). But if we evaluate Eq. (3) at the scaled density we
do not get Eq. (23) as expected. The reason is that the value
for the constraint on the squared norm is kept fixed to 1 when
it should change to αm/β3p. Hence, the constraint on the norm
should be generalized. For that purpose we integrate Eq. (1),
assume that all the wave functions have the same norm, use
the fact that

∑
i ni = Ne, and extract the following expression

for the squared norm of the wave functions:∫
|φi(r)|2d3r =

∫
n(r)d3r

Ne

, (24)

which yields a norm of 1 and αm/2/β3p/2 for the unscaled and
scaled densities, respectively.

Taking into account the general normalization for the wave
functions introduced by Eq. (24), the free minimization in
terms of Lagrange multipliers becomes

Ts[n] = min
{φ}

{
−1

2

Ns∑
i=1

ni

∫
φ∗

i (r)∇2φi(r)d3r

+
∫

v([n],r)

(
Ns∑
i=1

ni |φi(r)|2 − n(r)

)
d3r

−
Ns∑
i=1

niεi[n]

(∫
|φi(r)|2d3r −

∫
n(r)d3r

Ne

)}
,

(25)

which, as it can be easily verified, yields Eq. (3) for the
unscaled density and Eq. (23) for the scaled density. Therefore,
as also shown in Sec. III B, the meaning of the symbol ⊥ in
Levy’s constraint search must be modified to read orthogonal
and normalized to (

∫
n/Ne)1/2.
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It also important to notice that the functional derivative of
Ts[n], defined by Eq. (25), with respect to the density is

δTs[n]

δn(r)
= −v(r) +

∑Ns

i=1 niεi[n]

Ne

, (26)

which by comparison with Eq. (6) defines the Lagrange
multiplier μ as

μ =
∑Ns

i=1 niεi[n]

Ne

. (27)

V. SCALING OF Ts[n] AND δTs[n]/δn

A. Scaling of Ts[n] via KS equations

The scaling of Ts[n] under general homogeneous scaling of
the coordinates can be investigated in different ways, probably
the most straightforward being a direct integration of the KS
equations [Eq. (18)] after multiplying it by niφ

(i)∗
αβmp, and adding

up the first Ns lowest energy states. Such a procedure yields

−1

2

Ns∑
i=1

∫
niφ

(i)∗
αβmp(r)∇2φ

(i)
αβmp(r)d3r

+
∫

v([nαβmp],r)nαβmp(r)d3r

=
Ns∑
i=1

niεi[αβmp]
∫ ∣∣φ(i)

αβmp(r)
∣∣2

d3r, (28)

where the first term on the left-hand side of this expression is
the noninteracting kinetic energy for the scaled density; hence,

Ts[nαβmp] = −1

2

Ns∑
i=1

∫
niφ

(i)∗
αβmp(r)∇2φ

(i)
αβmp(r)d3r (29)

=
Ns∑
i=1

niεi[nαβmp]
∫ ∣∣φ(i)

αβmp(r)
∣∣2

d3r

−
∫

v([nαβmp],r)nαβmp(r)d3r, (30)

which, by Eqs. (7)–(9), (19), and (20), reduces to

Ts[nαβmp]

=
Ns∑
i=1

niβ
2pεi[n]

λm

β3p
−

∫
β2pv([n],βpr)λmn(βpr)d3r

= λm

βp

Ns∑
i=1

niεi[n] − λm

βp

∫
v([n],βpr)n(βpr)β3pd3r.

(31)

After changing the integration variable (βpr → r) and simpli-
fying terms, Eq. (31) becomes

Ts[nαβmp] = λm

βp

(
Ns∑
i=1

niεi[n] −
∫

v([n],r)n(r)d3r

)
,

(32)

but we also know that

Ts[n] =
Ns∑
i=1

niεi[n] −
∫

v([n],r)n(r)d3r, (33)

and therefore

Ts[nαβmp] = λm

βp
Ts[n], (34)

proving that Ts[n] scales homogeneously with degree m in α

and p in β.

B. Scaling of Ts[n] via Lagrange multipliers

Another way of carrying out an investigation of the scaling
of Ts[n] is by using Levy’s constrained search directly
(see Appendixes A and B), but the investigation using
Lagrange multipliers we describe next, although longer, is
more tractable.

Let us proceed by introducing the change of variable r =
βpr′ and multiplying both sides of Eq. (25) by αm to get

αmTs[n] = βpmin
{φ}

{
−1

2

Ns∑
i=1

ni

∫
αm/2φ∗

i (βpr′)∇2
βpr′α

m/2φi(β
pr′)d3r ′

+
∫

β2pv([n],βpr′)

(
Ns∑
i=1

ni |αm/2φi(β
pr′)|2 − αmn(βpr′)

)
d3r ′

−
Ns∑
i=1

niβ
2pεi

(∫
|αm/2φi(β

pr′)|2d3r ′ − αm

β3p

∫
n(r′)d3r ′

Ne

)}
, (35)

which, by Eqs. (7) and (9) and taking into account that the scaled and unscaled wave functions span the same Hilbert space,
becomes

αm

βp
Ts[n] = min

{φ}

{
−1

2

Ns∑
i=1

ni

∫
φ∗

i (r)∇2φi(r)d3r +
∫

v([nαβmp],r)

(
Ns∑
i=1

ni |φi(r)|2 − nαβmp(r)

)
d3r

−
Ns∑
i=1

niεi[nαβmp]

(∫
|φi(r)|2d3r −

∫
nαβmp(r)d3r

Ne

)}
, (36)
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where v([nαβmp],r) and εi[nαβmp] are defined by Eqs. (19) and
(20), respectively.

The right-hand side of Eq. (36) is a search for a set of orthog-
onal wave functions {φ} normalized to (

∫
nαβmp(r)d3r/Ne)

1/2

that yields the scaled density nαβmp(r) and minimizes the
kinetic energy, that is, Ts[nαβmp], and once more we get
Eq. (34).

The same result should be obtained by evaluating Ts[n] at
the scaled density. In fact that is the case, as we prove next.
We start by noticing that for the noninteracting kinetic energy
Eq. (25) evaluated at the scaled density Eq. (9) we have

Ts[nαβmp]

= min
{φ}

{
−1

2

Ns∑
i=1

ni

∫
φ∗

i (r)∇2φi(r)d3r

+
∫

v([nαβmp],r)

(
Ns∑
i=1

ni |φi(r)|2 − nαβmp(r)

)
d3r

−
Ns∑
i=1

niεi[nαβmp]

(∫
|φi(r)|2d3r −

∫
nαβmp(r)d3r

Ne

)}
;

(37)

but the search could be done also over the scaled wave
functions that yield the scaled density because they belong
to the same Hilbert space as the unscaled wave functions

Ts[nαβmp]

= min
{φαβmp}

{
−1

2

Ns∑
i=1

ni

∫
φ

(i)∗
αβmp(r)∇2φ

(i)
αβmp(r)d3r

+
∫

v([nαβmp],r)

(
Ns∑
i=1

ni

∣∣φ(i)
αβmp(r)

∣∣2 − nαβmp(r)

)
d3r

−
Ns∑
i=1

niεi[nαβmp]

(∫ ∣∣φ(i)
αβmp(r)

∣∣2
d3r

−
∫

nαβmp(r)d3r

Ne

)}
. (38)

Replacing the scaled wave functions and density [Eqs. (7) and
(9)] into the expression above, one gets

Ts[nαβmp]

= min
{φ}

{
−1

2

Ns∑
i=1

ni

∫
αm/2φ∗

i (βpr)∇2αm/2φi(β
pr)d3r

+
∫

v([nαβmp],r)

(
Ns∑
i=1

ni |αm/2φi(β
pr)|2−αmn(βpr)

)
d3r

−
Ns∑
i=1

niεi[nαβmp]

( ∫
|αm/2φi(β

pr)|2d3r

− αm

β3p

∫
n(r)d3r

Ne

)}
, (39)

which after the change of variable βpr → r takes the form

Ts[nαβmp]

= αm

βp
min
{φ}

{
−1

2

Ns∑
i=1

ni

∫
φ∗

i (r)∇2φi(r)d3r

+
∫

v([nαβmp],r/βp)

β2p

(
Ns∑
i=1

ni |φi(r)|2 − n(r)

)
d3r

−
Ns∑
i=1

ni

εi[nαβmp]

β2p

(∫
|φi(r)|2d3r −

∫
n(r)d3r

Ne

)}
,

(40)

but the minimization here is performed by a search
over all orthogonal sets of wave functions normalized to
(
∫

n(r)d3r/Ne)1/2 that yields the unscaled density, which is
the definition of Ts[n] and therefore we obtain Eq. (34) once
again. We also obtain the scaling expressions for the potential
and eigenvalues given by Eqs. (19) and (20), respectively.

C. Scaling of Ts[n] via wave functions

Equation (29) establishes the fact that, if the wave functions
are solutions of the KS equations in Eq. (18), then, after all,
the kinetic energy for the scale density can be calculated using
only the scaled wave functions. Indeed, using Eq. (21) we can
write

Ts[nαβmp] = −1

2

Ns∑
i=1

ni

∫
φ

(i)∗
αβmp[nαβmp](r)∇2φ

(i)
αβmp

[nαβmp](r)d3r, (41)

because all the rest of the terms in either Eq. (23) or Eq. (25)
are zero, given that those scaled wave functions minimize the
kinetic energy and obey all the constraints.

Consequently, by replacing Eq. (7) into Eq. (29), one must
get the same scaling relation for Ts[nαβmp] as in Eq. (34),
which is readily proven true.

D. Scaling of δTs[n]/δn

According to Eqs. (15) and (34) the scaling of the functional
derivative of Ts[nαβmp] is given by

δTs[nαβmp]

δnαβmp(r)
= β2p δTs[n]

δn(r′)

∣∣∣∣
r′=βpr

, (42)

which only depends on the parameters that scale the coordi-
nates, in contrast to the scaling dependency of the kinetic-
energy functional on all the scaling parameters.

VI. PARAMETRIC DERIVATIVES OF Ts[nαβmp]

A. Derivative of Ts[nαβmp] with respect to α

Taking the derivative of Ts[nαβmp] [Eq. (34)] with respect
to α we get

Ts[n] = βp

mαm−1

∫
δTs[nαβmp]

δnαβmp(r)

δnαβmp(r)

δα
d3r; (43)
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using Eqs. (9) and (42), and changing the integration variable
to βpr, we have

Ts[n] =
∫

δTs[n]

δn(r)
n(r)d3r, (44)

which does not depend on any of the scaling parameters and
was first published by Liu and Parr [17] but obtained through
a faulty derivation [28]. For a detailed discussion of this issue
see Sec. VIII.

B. Derivative of Ts[nαβmp] with respect to β

We can also find the derivative of Ts[nαβmp] [Eq. (34)] with
respect to β, which leads to

Ts[n] = −pβp−1

αm

∫
δTs[nαβmp]

δnαβmp(r)

δnαβmp(r)

δβ
d3r, (45)

and by using Eqs. (9) and (42) again and changing the
integration variable we get

Ts[n] = −
∫

δTs[n]

δn(r)
r · ∇n(r)d3r, (46)

which, as Eq. (44), does not depend on any of the scaling
parameters.

C. The case β = α

But the most interesting case yet is when we couple α and
β (β = α) and take the derivative with respect to α. In this
case nαβmp ≡ nαmp = αmn(αpr), the parametric derivative of
Ts[nαmp] is

Ts[n] = αp−m+1

(m − p)

∫
δTs[nαmp]

δnαmp(r)

δnαmp(r)

δα
d3r, (47)

and using Eq. (42) once more we get the general virial relation

Ts[n] = 1

m − p

∫
δTs[n]

δn(r)
[mn(r) + pr · ∇n(r)]d3r, (48)

which only depends on the exponents.
The first thing to notice is that if m = p the noninteracting

kinetic-energy functional Ts[n] is left invariant and we get∫
δTs[n]

δn(r)
[n(r) + r · ∇n(r)]d3r = 0, (49)

which in combination with Eq. (48), and for any m and p,
yields also Eqs. (44) and (46). Therefore, both expressions can
be obtained as a consequence of the scaling of Ts[n] under
nαmp(r) = αmn(αpr) and its invariance for

nα(r) = αmn(αmr). (50)

Second, for m = 3 and p = 1 (fixed number of electrons)
we get the very well known virial expression [4–8,23]

Ts[n] = 1

2

∫
δTs[n]

δn(r)
[3n(r) + r · ∇n(r)]d3r, (51)

which can also be directly obtained by repeating a similar
analysis for αm = β3p.

The fact that Eq. (44) comes also from the same general
expression as Eq. (51) further supports the validity of the first.

Of course, all the virials found obey the scaling property
of Ts[nαβmp]. Indeed, a substitution of the scaled density into
each of the integral relations also leads to Eq. (34).

D. Consequences for the total energy and μ

Multiplying the KS equations [Eq. (4)] by niφ
∗
i (r), integrat-

ing, and adding up over the Ns lower eigenvalue states allows
us to write the total energy of the KS noninteracting system as

ε[n] = Ts[n] +
∫

v([n],r)n(r)d3r =
Ns∑
i=1

niεi . (52)

On the other hand, multiplying by the density n(r) the
minimization equation for the KS noninteracting problem in
terms of the density [Eq. (6)], integrating, and using Eq. (44),
we get

Ts[n] +
∫

v([n],r)n(r)d3r = μNe, (53)

which compared with Eq. (52) defines once more μ as in
Eq. (27), and the total noninteracting ground-state energy as

ε[n] = μNe. (54)

Equation (54) is not only a direct consequence of Eq. (44),
but it was also obtained by Lindgren and Salomonson as a
consequence of the extension of the search domains for wave
functions and densities [31,32].

VII. NUMERICAL TESTS

A. Kinetic-energy functional

Even when we do not know the explicit general form of
the kinetic-energy-density functional or its first functional
derivative, we can still test the kinetic-energy integral relations
numerically by noticing that, for the functional derivative of
the kinetic-energy functional at the ground state, one has from
Eq. (6) that

δTs[n]

δn(r)
= μ − v([n],r), (55)

which in conjunction with Eq. (27) can be replaced into
Eqs. (44), (46), and (51) to test their validity. Proceeding as
described one gets

Ts[n] =
Ns∑
i=1

niεi[n] −
∫

v([n],r)n(r)d3r (56)

from Eq. (44),

Ts[n] =
∫ (

v([n],r) −
∑Ns

i=1 niεi[n]

Ne

)
r · ∇n(r)d3r (57)

from Eq. (46), and

Ts[n] = −1

2

∫
v([n],r)[3n(r) + r · ∇n(r)]d3r (58)

from Eq. (51).
Using this method we have tested the different integral

relations for Ts[n] in a number of DFT calculations for
atoms, for both the Perdew and Wang (PW92) local density
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TABLE I. Noninteracting kinetic energy for He, Li, Na, and Ca
at the ground state calculated using the wave functions [Eq. (3)] and
the integral relations [Eqs. (56)–(58)]. All in Hartree.

He Li

Ts[n] PW92 PBE PW92 PBE

Eq. (3) 2.767389 2.855948 7.237015 7.401883
Eq. (56) 2.767389 2.855948 7.237015 7.401883
Eq. (57) 2.767389 2.855948 7.237015 7.401884
Eq. (58) 2.767389 2.855948 7.237015 7.401883

Na Ca
Eq. (3) 160.894848 161.835704 674.654934 676.671267
Eq. (56) 160.894849 161.835705 674.654933 676.671266
Eq. (57) 160.894853 161.835709 674.654953 676.671287
Eq. (58) 160.894848 161.835704 674.654934 676.671268

approximation (LDA) and the Perdew-Burke-Ernzerhof (PBE)
generalized gradient approximation (GGA) [33,34], with very
good results. Table I shows the values of Ts[n] calculated
using the different virial expressions for He, Li, Na, and Ca as
examples.

B. Scaling of the KS potential, eigenvalues, and total energy

Numerical tests for different atoms also confirmed the
scaling properties of the ground-state KS potential and
eigenvalues. As an example, Fig. 1 shows the left- and
right-hand sides of Eq. (19) for He, Li, Na, and Ca, in the
local density (PW92) [33] and generalized gradient (PBE) [34]
approximations. The left-hand side of Eq. (19) was calculated
by inverting the KS equations for the highest occupied scaled
S-wave function and its eigenvalue.

VIII. LINEAR SCALING OF Ts[αn]

We have provided analytical demonstrations and numer-
ical evidence of the homogeneous scaling properties of
the noninteracting kinetic-energy functional under general
homogeneous coordinate scaling, including the case of density
scaling which leads to Eq. (44). However, that relation has been
controversial since Liu and Parr’s [17] attempt to prove it was
first supposedly shown incorrect by Chan and Handy [19].

One of Chan and Hardy’s [19], as well as Gál’s [28],
arguments is that if Ts[αn] = αTs[n] then Ts[n] = TvW [n],
where TvW [n] is the von Weizäcker [35] kinetic-energy
functional which is exact for one-state, up to two electrons,
systems. The line of reasoning is the following. Assume that
we have a density which integrates to Ne > 2, using α = 1/Ne;
from Eq. (34) (m = 1,p = 0) we get

Ts[n/Ne] = Ts[n]/Ne. (59)

But
∫

n/Ne = 1, so we have a one-electron system, mean-
ing that Ts[n/Ne] = TvW [n/Ne] = TvW [n]/Ne, and therefore
Ts[n] = TvW [n]. But the problem with this argument is that
even when the 1/Ne-scaled density integrates to 1, it is still the
sum over more than one wave function, in contrast with the
one- or two-electron density which only contains one state; i.e.,
the scaled density cannot have a shape that corresponds with
that of a one- or two-electron density. The number of fermions

determines the shape of the density while its normalization
is essentially arbitrary (i.e., as a probability density it could
be normalized to 1 instead of to the number of particles).
Therefore, the kinetic energy of the scaled density cannot be
the von Weizäcker functional. But let us prove that analytically
once again.

Multiplying Eq. (3) by α we can write

αTs[n] = min
{φ}

{
−1

2

Ns∑
i=1

ni

∫
α1/2φ∗

i (r)∇2α1/2φi(r)d3r

+
∫

v([n],r)

(
Ns∑
i=1

ni |α1/2φi(r)|2 − αn(r)

)
d3r

−
Ns∑
i=1

niεi

(∫
|α1/2φi(r)|2d3r − α

)}
. (60)

Introducing the scaled wave functions and density as φ(i)
α (r) =

α1/2φi(r) and nα(r) = αn(r), respectively, Eq. (60) becomes

αTs[n] = min
{φα}

{
−1

2

Ns∑
i=1

ni

∫
φ(i)∗

α (r)∇2φ(i)
α (r)d3r

+
∫

v([n],r)

(
Ns∑
i=1

ni

∣∣φ(i)
α (r)

∣∣2 − nα(r)

)
d3r

−
Ns∑
i=1

niεi

(∫ ∣∣φ(i)
α (r)

∣∣2
d3r − α

)}
, (61)

and using the fact that the original and scaled wave functions
span the same space we can write

αTs[n] = min
{φ}

{
−1

2

Ns∑
i=1

ni

∫
φ∗

i (r)∇2φi(r)d3r

+
∫

v([n],r)

(
Ns∑
i=1

ni |φi(r)|2 − nα(r)

)
d3r

−
Ns∑
i=1

niεi

(∫
|φi(r)|2d3r − α

)}
. (62)

The right-hand side of this equation delivers the minimum
value of the noninteracting kinetic energy, constrained to sets
of orthogonal wave functions {φ} normalized to α1/2 that yield
the scaled density nα . That is precisely Ts[nα]; therefore,
αTs[n] = Ts[nα] and consequently, in general, Ts[n/Ne] 	=
TvW [n/Ne]. Notice that only the norm of the wave functions
changes; the occupation numbers do not change at all. Besides,
the KS potential is also left intact, showing that the physics
has not changed.

Chan and Handy [17] also performed numerical tests to
study the scaling of Ts[n] under density scaling. But those
tests changed the number of states, which, in light of what has
been shown in this paper and particularly in this section, is
erroneous.

Another numerical study of the scaling of Ts[n] under den-
sity scaling was undertaken by Borgoo, Teale, and Tozer [36],
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FIG. 1. (Color online) Scaling of the Kohn-Sham potential of (a) He, (b) Li, (c) Na, and (d) Ca calculated using PBE-GGA and PW92-LDA
for the exchange-correlation functional. Left- (dots) and right-hand sides (line) of Eq. (19) with βp ≡ λ.

who essentially investigated the behavior of

k =
∫

[μ − v([n],r)]n(r)d3r

Ts[n]
(63)

for exact densities assuming that μ was the chemical potential.
However, that is a mistake, because as we have shown in
Secs. VI D and IV, the Lagrange multiplier μ is the average
noninteracting total energy per electron [Eqs. (27) and (54)].
They also made the mistake of allowing the number of states
to change during the calculations for closed-subshell atoms.

Nonetheless, Gál [28] proved that the demonstration of Liu
and Parr was incorrect by using the fact that wave functions
and densities do not form a one-to-one map in general, which
renders inappropriate the applicability of the chain rule for
functional derivation.

It may be possible to correct the errors in Liu and Parr’s
demonstration in light of new developments, which account
for the necessary extensions of the domains of wave functions
and densities, that allow to take unconstrained functional
derivatives when using Lagrange multipliers and the chain rule
for functional differentiation [31,32,37]. But that goes beyond

this work, which avoids the use of the chain rule for functional
differentiation, and proves, without using the chain rule for
functional derivatives at all, that Ts[n] does scale linearly under
density scaling.

IX. REMARKS

We have introduced a generalization of homogeneous
coordinate scaling [Eqs. (7) and (9)] and demonstrated that,
although one can easily find its corresponding noninteracting
kinetic-energy functional Ts[nαβmp] via variable substitution
in the Ts[n] functional and KS equations, a modification of the
constrained search is in order to get the same expression for
Ts[nαβmp] by direct evaluation of Ts[n] at the scaled density.
The modification defines the norm of the wave functions
directly from the density for a given number of electrons
[Eq. (24)]. It is a natural generalization of Levy’s constrained
search (Sec. IV) that brings consistency between results
obtained using variable substitution in Ts[n] and KS equations
and those obtained from the evaluation of Ts[n] at the scaled
density.
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Consequently, it is shown that, using variable substitution
in the KS equations, variable substitution into Ts[n], or
the evaluation of Ts[n] at the scaled density, Ts[n] scales
homogeneously [Eq. (34)] under the generalized scaling
[Eqs. (7) and (9)].

Also, a general integral relation or virial for the kinetic
energy of the KS noninteracting kinetic energy [Eq. (48)]
was found via parametric derivatives. The general virial for
Ts[n] contains as a particular case a well-known and widely
accepted integral expression [Eq. (51)] and reduces to two
expressions [Eqs. (44) and (46)] due to the invariance of Ts[n]
under a specific scaling [Eq. (50)]. In addition, numerical
calculations of all the virial expressions for Ts[n] for different
atoms confirmed their validity, reasserting at the same time the
homogeneous scaling of Ts[n].

Furthermore, the linear homogeneous scaling of Ts[n]
under density scaling was discussed in more detail, including
the reasons why analytical work and numerical tests performed
by other authors were at fault.
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APPENDIX A: THIRD PROOF OF Ts[nαβmp] = αmTs[n]/β p

Multiply Eq. (2) by αm and introduce the change of variable
r = βpr′ in its right-hand side to get

αmTs[n] = βp min
{φ}⊥→n

−1

2

Ns∑
i=1

ni

×
∫

αm/2φ∗
i (βpr)∇2αm/2φi(β

pr)d3r, (A1)

which by Eq. (7) reduces to

αmTs[n] = βp min
{φ}⊥→n

−1

2

Ns∑
i=1

ni

∫
φ

(i)∗
αβmp(r)∇2φ

(i)
αβmp(r)d3r.

(A2)

Notice that this is a minimization of the average of the
kinetic energy for the scaled wave functions over all the
orthonormal sets of unscaled wave functions that yield
the unscaled density. That is the same as performing the
search over sets of orthogonal wave functions normalized to
αm/2/β3p/2 that yield the scaled density and evaluating the
kinetic energy at those wave functions. Therefore, we can
write

αm

βp
Ts[n] = min

{φ}⊥→nαβmp

−1

2

Ns∑
i=1

ni

∫
φi(r)∇2φi(r)d3r, (A3)

which proves again Eq. (34).

APPENDIX B: FOURTH PROOF OF Ts[nαβmp] = αmTs[n]/β p

Another way to analyze the scaling of Ts[n] is by returning
to Eq. (22) and realizing that it represents a search that selects
wave functions scaled as in Eq. (7) to calculate the kinetic
energy. That is the same as selecting the wave functions
that yield the unscaled density and scaling them afterward
to calculate the kinetic energy. Therefore,

Ts[nαβmp] = min
{φ}⊥→n

−1

2

Ns∑
i=1

ni

∫
φ

(i)∗
αβmp(r)∇2φ

(i)
αβmp(r)d3r,

(B1)

which by Eq. (7) becomes

Ts[nαβmp] = αm

βp
min

{φ}⊥→n
−1

2

Ns∑
i=1

ni

×
∫

φ∗
i (βpr)∇2

βprφ
(i)(βpr)β3pd3r, (B2)

and by changing the integration variable (βpr → r) yields

Ts[nαβmp] = αm

βp
min

{φ}⊥→n
−1

2

Ns∑
i=1

ni

∫
φ∗

i (r)∇2φ(i)(r)d3r

= αm

βp
Ts[n]. (B3)

[1] R. G. Parr and Y. Weitao, Density-Functional Theory of Atoms
and Molecules (Oxford University Press, New York, 1994).

[2] R. M. Dreizler and E. K. U. Gross, Density Functional Theory:
An Approach to the Quantum Many-Body Problem (Springer-
Verlag, Berlin, 1990).

[3] L. J. Sham, Phys. Rev. A 1, 969 (1970).
[4] A. K. Rajagopal, Adv. Chem. Phys. 41, 59 (1980).
[5] S. K. Ghosh and R. G. Parr, J. Chem. Phys. 82, 3307 (1985).
[6] M. Levy and J. P. Perdew, Phys. Rev. A 32, 2010 (1985).
[7] C. Herring, Phys. Rev. A 34, 2614 (1986).
[8] C. Herring and M. Chopra, Phys. Rev. A 37, 31 (1988).
[9] M. Levy, Phys. Rev. A 43, 4637 (1991).

[10] A. Görling and M. Levy, Phys. Rev. A 45, 1509 (1992).
[11] R. G. Parr, S. Liu, A. A. Kugler, and A. Nagy, Phys. Rev. A 52,

969 (1995).
[12] S. Liu and R. G. Parr, Phys. Rev. A 53, 2211 (1996).

[13] S. Liu, Phys. Rev. A 54, 1328 (1996).
[14] S. Liu, Phys. Rev. A 54, 4863 (1996).
[15] S. Liu and R. G. Parr, Phys. Rev. A 55, 1792 (1997).
[16] R. G. Parr and L. Shubin, Chem. Phys. Lett. 276, 164 (1997).
[17] L. Shubin and R. G. Parr, Chem. Phys. Lett. 278, 4 (1997).
[18] R. G. Parr and L. Shubin, Chem. Phys. Lett. 280, 159 (1997).
[19] Garnet Kin-Lic Chan and N. C. Handy, Phys. Rev. A 59, 2670

(1999).
[20] A. Nagy, J. Chem. Phys. 123, 044105 (2005).
[21] S. Liu, R. C. Morrison, and R. G. Parr, J. Chem. Phys. 125,

174109 (2006).
[22] J. P. Perdew, L. A. Constantin, E. Sagvolden, and K. Burke,

Phys. Rev. Lett. 97, 223002 (2006).
[23] L. Calderı́n and M. J. Stott, Phys. Rev. A 77, 022504 (2008).
[24] Y. A. Wang and E. A. Carter, Theoretical Methods in Condensed

Phase Chemistry, Chap. 5 (Kluwer Academic, Dorcrecht, 2002).

032510-9

http://dx.doi.org/10.1103/PhysRevA.1.969
http://dx.doi.org/10.1002/9780470142608.ch2
http://dx.doi.org/10.1063/1.448229
http://dx.doi.org/10.1103/PhysRevA.32.2010
http://dx.doi.org/10.1103/PhysRevA.34.2614
http://dx.doi.org/10.1103/PhysRevA.37.31
http://dx.doi.org/10.1103/PhysRevA.43.4637
http://dx.doi.org/10.1103/PhysRevA.45.1509
http://dx.doi.org/10.1103/PhysRevA.52.969
http://dx.doi.org/10.1103/PhysRevA.52.969
http://dx.doi.org/10.1103/PhysRevA.53.2211
http://dx.doi.org/10.1103/PhysRevA.54.1328
http://dx.doi.org/10.1103/PhysRevA.54.4863
http://dx.doi.org/10.1103/PhysRevA.55.1792
http://dx.doi.org/10.1016/S0009-2614(97)01115-9
http://dx.doi.org/10.1103/PhysRevA.59.2670
http://dx.doi.org/10.1103/PhysRevA.59.2670
http://dx.doi.org/10.1063/1.1979473
http://dx.doi.org/10.1063/1.2378769
http://dx.doi.org/10.1063/1.2378769
http://dx.doi.org/10.1103/PhysRevLett.97.223002
http://dx.doi.org/10.1103/PhysRevA.77.022504
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