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Reexamination of nuclear quadrupole moments in 39−41K isotopes
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Nuclear quadrupole moments (Q’s) in three isotopes of the potassium atom (K) with mass numbers 39, 40, and
41 are evaluated more precisely in this work. The Q value of 39K is determined to be 0.0614(6) b by combining
the available experimental result of the electric quadrupole hyperfine structure constant (B) with our calculated
B/Q result of its 4P3/2 state. Furthermore, combining this Q value with the measured ratios Q(40K)/Q(39K)
and Q(41K)/Q(39K), we obtain Q(40K)= −0.0764(8) b and Q(41K)= 0.0747(7) b, respectively. These results
disagree with the sub-1% accuracy standard values recently quoted by Pyykkö [Mol. Phys. 106, 1965 (2008)].
The calculations were carried out by employing the relativistic coupled-cluster theory at the single, double, and
involving important valence triple approximation. The accuracies of the calculated B/Q results can be viewed
on the basis of comparison between our calculated magnetic dipole hyperfine structure constants (A’s) with their
corresponding measurements for many low-lying states. Both A and B results in a few more excited states are
presented. Also, we find that the latest reported experimental hyperfine structure constant results for the 4P states
in 39K are inconsistent with our calculations.
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I. INTRODUCTION

The potassium (K) atom has three naturally abundant
isotopes with atomic mass numbers 39, 40, and 41. Using
the modern femtosecond laser frequency combs, polarization
quantum-beat and coherent-control spectroscopy techniques,
high-precision measurements of hyperfine structure constants
in 4P and 3D states have been carried out [1–3]. Also, a
number of measurements of these quantities were carried out
in the ground and other states long ago using the atomic
beam magnetic resonance and level crossing techniques (e.g.,
see the review article by Arimondo et al. [4]). Theoretical
studies of these quantities are of immense interest to atomic
physicists to test the accuracies of the wave functions in
the nuclear region [5–7]. However, theoretical evaluation
of these quantities requires atomic calculations and nuclear
moments [6–9]. Nuclear magnetic moments (μ’s) of the above
K isotopes are known very precisely, and the reported results
from various studies match reasonably well with each other
[10]. On the other hand, the reported nuclear quadrupole
moments (Q’s) from various works on these isotopes differ
significantly. For example, the Q value of 39K is reported as
0.049(4) b [4], 0.07(2) b [11], 0.0601(15) b [12], and within
1% error as 0.0585 b [13]. The latest result, 0.0585(6) b, is now
considered the standard Q value for 39K [10,14,15]. Accurate
knowledge of the Q values of these isotopes is useful in many
applications. This information is interesting in order to test
the potential of nuclear models [16,17], to acquire information
about local symmetry [18], to discover asymmetry parameters
in nuclei [19,20], to study the Mossbauer spectroscopy for the
structural determination of the element containing solid state
compounds [21], etc.

In this paper, we analyze the electric quadrupole hyperfine
structure constants for many states in K and report precise
Q values of its above-mentioned isotopes. As discussed
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later, we find the new values to be larger than the values
considered standard in the literature. Atomic wave functions
are calculated using the relativistic coupled-cluster (RCC)
method in the Fock-space representation, and matrix elements
of the hyperfine interaction Hamiltonians are estimated using
these wave functions in the considered atom.

The rest of the paper is organized as follows: In the next
section, we present briefly the theory of hyperfine structure
in an atomic system and the single-particle matrix elements
of the interaction Hamiltonians, which are used to evaluate
the hyperfine structure constants. In Sec. III, we explain
the RCC method briefly for the calculation of atomic wave
functions. Then we present the results and a discussion before
summarizing the work. Unless stated otherwise, we use atomic
units (a.u.) throughout this paper.

II. THEORY OF HYPERFINE STRUCTURE

The hyperfine structures of energy levels in an atom arise
due to the interaction between electron angular momenta with
nuclear spin. Details of this theory are given by Schwartz in
a classic paper [22]. Mathematically, the hyperfine interaction
Hamiltonian is given in a general form as noncentral inter-
action between electrons and the nucleus in terms of tensor
operators as

Hhfs =
∑

k

T (k)
e · T (k)

n , (2.1)

where T (k)
e and T (k)

n are the spherical tensor operators of
rank k in the space of electronic and nuclear coordinates,
respectively. In first-order perturbation theory, the hyperfine
interaction energy WF of the hyperfine state |F ; IJ 〉 with total
angular momentum F = I + J , with I and J being the nuclear
spin and electronic angular momentum of the associated fine
structure state |J,MJ 〉, respectively, taking up to k = 2 is given
by

WF = 1

2
AR + B

3
2R(R + 1) − 2I (I + 1)J (J + 1)

2I (2I − 1)2J (2J − 1)
, (2.2)
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with R = F (F + 1) − I (I + 1) − J (J + 1), and A and B

are known as the magnetic dipole and electric quadrupole
hyperfine structure constant for k = 1 and k = 2, respectively.
The advantage of expressing the change in energy in this
form is that it separates out the electronic and nuclear factors
for which the calculations can be carried out with a simple
approach. Here A and B are given by [22,23]

A = μNgI

〈J |∣∣T (1)
e

∣∣|J 〉√
J (J + 1)(2J + 1)

(2.3)

and

B = Q

{
8J (2J − 1)

(2J + 1)(2J + 2)(2J + 3)

}
〈J |∣∣T (2)

e

∣∣|J 〉. (2.4)

In the above expressions, μN and gI = μ/I are the nuclear
magneton and gyromagnetic ratio, respectively. Since our
intention is to verify the accuracies of Q values, we estimate
B/Q results in this work.

The reduced matrix elements of the electronic spherical
tensor operators, T (k)

e = ∑
t (k)
e , in terms of single orbitals are

given by [22,23]

〈κf |∣∣t (1)
e

∣∣|κi〉 = −(κf + κi)〈−κf ||C(1)||κi〉

×
∫ ∞

0
dr

Pf Qi + Qf Pi

r2
(2.5)

and

〈κf |∣∣t (2)
e

∣∣|κi〉 = −〈κf ||C(2)||κi〉
∫ ∞

0
dr

Pf Qi + Qf Pi

r3
, (2.6)

where κi and Pi (Qi) are the relativistic angular momentum
quantum number and large (small) component of the Dirac
spinor for the corresponding orbital i, respectively. The
reduced matrix elements of Racah tensors (C(k)) are given
by [24]

〈κf ||C(k)||κi〉 = (−1)jf +1/2
√

(2jf + 1)(2ji + 1)

×
{

jf k ji

1/2 0 1/2

}
π (�f ,k,�i) (2.7)

with the angular momentum selection rule π (�f ,k,�i) = 1
when �f + k + �i = even for the orbital angular momenta �f

and �i ; otherwise it is zero.

III. METHODS FOR CALCULATIONS

A. Single-particle orbital generation

Accurate generation of atomic orbitals in the nuclear
region is very important for the present study. We consider
here Gaussian-type orbitals (GTO’s), which provide a natural
description of relativistic wave functions within the nucleus
[25–27] as a basis to construct the mean-field orbitals in
the Dirac (Hartree)-Fock (DF) approach. Kinetic balanced
conditions between the large and small components of the
Dirac spinor are imposed to ensure correct nonrelativistic
behavior of the orbitals [27,28]. GTO’s to construct an orbital
at a particular location ri are defined as

FL(S)(ri) =
∑

k

N L(S)
k r�+1

i e−ηkr
2
i , (3.1)

TABLE I. ζ and ν parameters used for different � symmetries to
construct GTO’s.

s p d f g

ζ 0.0002 0.0004 0.0003 0.0005 0.0004
ν 1.917 1.79 1.77 1.76 1.75

where L(S) represents the large (small) component, k denotes
the number of GTO’s, N corresponds to the normalization
factor for each GTO, and ηk is an arbitrary parameter which has
to be chosen suitably for orbitals from different � symmetries.
To get more flexibility in optimization of our basis sets, we use
the even tempering condition by defining two more parameters
ζ and ν as

ηk = ζνk−1. (3.2)

The radial grid points ri are defined as

ri = r0[eh(i−1) − 1], (3.3)

where r0 is the starting radial function taken inside the nucleus
to be 2 × 10−6 at which the wave functions become finite, and
h is a step size which is defined by taking the maximum radial
function rmax as 150.0 a.u. and total grid points 1000.

We have considered 40 GTO’s for each � symmetry orbital;
the considered ζ and ν are given in Table I for different �

values. Due to limitations of computational resources and
negligible contributions from the high-lying virtual orbitals,
we have taken up to 24 orbitals from s, p, d symmetries and
17 orbitals from f , g symmetries to construct active space for
RCC calculations.

In addition, the orbitals are generated by accounting the
finite size of the nucleus assuming a two-parameter Fermi
nuclear charge distribution given by

ρ(ri) = ρ0

1 + e(ri−c)/a
, (3.4)

where ρ0 is the density for the point nuclei and c and a

are the half-charge radius and skin thickness of the nucleus,
respectively. These parameters are chosen as

a = 2.3/4(ln3) (3.5)

and

c =
√

5

3
r2

rms − 7

3
a2π2, (3.6)

where rrms is the root mean square radius of the atomic nucleus
which is taken as 3.61 fm [29] for the considered atom.

B. Calculation of atomic wave functions

To calculate the matrix elements of the hyperfine interaction
Hamiltonian, we use the RCC method, where we define atomic
wave functions for the considered states with valence orbital
denoted by v as [30,31]

|	v〉 = eT {1 + Sv}|
v〉, (3.7)

where the DF wave function |
v〉 is constructed as |
v〉 =
a†

v|
0〉 with |
0〉 as the DF wave function for the closed-
shell configuration [3p6] in the considered K atom. In the
above expression, T and Sv are the excitation operators that
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account for core and core-valence correlations to all orders,
respectively. Since K is a small atom, correlation effects
among electrons are expected to be less. Therefore, the role
of the higher-order configurations in determining atomic wave
function could be negligible. On the other hand, consideration
of these configurations is computationally very expensive.
Owing to this fact we account for only all possible single
and double configuration excitations to all orders (known as
the CCSD method) by expressing the above operators in the
Fock space representation as

T = T1 + T2 =
∑
a,p

a†
paat

p
a + 1

4

∑
ab,pq

a†
pa†

qabaat
pq

ab , (3.8)

Sv = S1v + S2v =
∑
a,p

a†
pavs

p
v + 1

2

∑
ab,pq

a†
pa†

qabavs
pq

vb , (3.9)

where the (a,b,c, . . .), (p,q,r, . . .), and (v) subscripts of the
second quantized operators represent core (hole), particle
(virtual), and valance orbitals, respectively. However, expand-
ing Eq. (3.7) using these CCSD operators to all nonlinear
terms give rise to contributions from higher excitations. We
determine the above t and sv coefficients which correspond to
the excitation amplitudes using the following equations:

〈
L|{ĤNeT }|
0〉 = 0 (3.10)

and 〈

L

v

∣∣{ĤNeT }Sv|
v〉 = −〈

L

v

∣∣{ĤNeT }|
v〉
+ 〈


L
v

∣∣Sv|
v〉�Ev, (3.11)

where the superscript L(=1,2) represents the single and double
excited configurations from the corresponding DF states,
the wide-hat symbol denotes the linked terms, �Ev is the
attachment energy of the valence electron v, and HN denotes
the normal ordering atomic Dirac-Coulomb Hamiltonian H ,
which is taken as

H =
∑

i

[cαi · pi + (βi − 1)c2] +
∑
i�j

1

rij

, (3.12)

where α and β are the usual Dirac matrices and c is the velocity
of light. �Ev is evaluated by

�Ev = 〈
v|{ĤNeT }{1 + Sv}|
v〉. (3.13)

To improve the quality of energy and calculation of wave
functions due to the dominant triple excitations containing
the valence orbital, we define a perturbation operator S3v by
contracting HN with T2 and S2v operators as

S3v

(
s
pqr

vbc

) = ĤNT2 + ĤNS2v

εp + εq + εr − εb − εc − εv

, (3.14)

where s
pqr

vbc corresponds to excitation amplitudes and εi is the
DF energy of the electron in the ith orbital. This operator
is considered a part of the Sv operator in Eq. (3.13) to get
an additional contribution to �Ev . Since �Ev is involved in
Eq. (3.11), we solve both of the equations simultaneously in an
iterative procedure. This approach is generally referred to as
the CCSD(T) method [32]. The diagrammatic representation
of these excitations is shown in Fig. 1.

FIG. 1. Typical Goldstone diagrams representing leading-order
triple excitations over the CCSD method. Double arrows in the
diagrams represent valence electron v, and the lines with upward
(downward) arrows represent particle (hole) orbitals.

The expectation values due to the hyperfine interaction
operators have been evaluated using our RCC method by〈

T (k)
e

〉 = 〈	v|T (k)
e |	v〉

〈	v|	v〉

= 〈
v|{1 + S†
v}T

(k)
e {1 + Sv}|
v〉

{1 + S
†
v}N0{1 + Sv}

= 〈
v|{1 + S
†
1v + S

†
2v}T

(k)
e {1 + S1v + S2v}|
v〉

{1 + S
†
1v + S

†
2v}N0{1 + S1v + S2v}

,

(3.15)

where T
(k)
e = (eT †

T (k)
e eT ) and N0 = eT †

eT . Generally, both

T
(k)
e and N0 in our RCC approach are nonterminating series.

These terms are terminated keeping terms minimum up to
fourth order in perturbation. Description of this procedure has
been given in previous works [33–35]. Contributions from
the normalization of the wave functions (xnorm) are estimated
explicitly in the following way

xnorm = 〈	v|T (k)
e |	v〉

{
1

1 + Nv

− 1

}
, (3.16)

where Nv = {1 + S
†
1v + S

†
2v}N0{1 + S1v + S2v}.

IV. RESULTS AND DISCUSSIONS

Our aim is to obtain B/Q values more accurately in
different states of the K atom so that they can be combined
with the available precise experimental results for B to estimate
Q. In order to verify the accuracies of the B/Q results from
our calculations, it would be felicitous to test the accuracies
of the wave functions in the nuclear region. Owing to the
fact that our calculation procedure deals with many numerical
computations at different stages, along with the fact that it
correlates with higher excitations configurations indirectly, it
would be very difficult to estimate uncertainties from the used
numerical methods and approximations taken at the level of
excitations. With the intention of verifying accuracies of the
wave functions in the nuclear region, we have calculated A for
many states in K. Assuming that the anomalous effects due to
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TABLE II. Comparison of calculated and available experimental A results in 39−41K (in MHz). Theoretical A’s in different isotopes are
evaluated using the calculated CCSD(T) results of A/gI in 39K and their respective experimental gI values. Uncertainties estimated from the
calculations are given in parentheses with our results. Experimental results which are not in agreement with our calculated results are given in
bold fonts.

This work Experiment

State 39K 40K 41K 39K 40K 41K

4S1/2 229.6(2.0) −285.5(2.5) 126.0(1.1) 230.859 860 1(3) [4] −285.7308(24) [4] 127.006 935 2(6) [4]
4P1/2 27.4(5) −34.04(62) 15.02(27) 27.775(42) [2] −34.523(25) [2] 15.245(42) [2]

28.85(30) [4] −34.49(11) [36] 15.19(21) [36]
27.80(15) [36] 15.1(8) [37]
28.848(5) [3]
27.5(4) [37]
28.859(15) [38]

4P3/2 5.9(2) −7.35(37) 3.25(16) 6.093(25) [2] −7.585(10) [2] 3.363(25) [2]
6.06(8) [4] −7.48(6) [36] 3.40(8) [39]
6.00(10) [40] −7.59(6) [41] 3.325(15) [42]
6.077(23) [3]
6.13 [39]

3D3/2 1.0(2) −1.25(25) 0.55(11) 0.96(4) [1] 1.07(2) [1] 0.55(3) [1]
3D5/2 −0.57(5) 0.711(62) −0.314(27) 0.62(4) [1] 0.71(4) [1] 0.40(2) [1]
4D3/2 0.686(4) −0.853(5) 0.377(2)
4D5/2 −0.332(2) 0.413(2) −0.182(1)
5S1/2 55.0(1.0) −68.4(1.2) 30.18(55) 55.50(60) [4]
5P1/2 8.8(5) −10.98(62) 4.84(27) 9.02(17) [4]
5P3/2 1.9(2) −2.37(25) 1.04(11) 1.969(13) [4] −2.45(2) [4] 1.08(2) [4]

1.95(5) [40]
5D3/2 0.39(5) −0.489(62) 0.22(27) 0.44(10) [4]
5D5/2 −0.171(7) 0.213(9) −0.094(4) ±0.24(7) [4]
6S1/2 21.1(6) −26.24(75) 11.58(33) 21.81(18) [4] 12.03(40) [4]
6P1/2 3.9(4) −4.87(50) 2.15(22) 4.05(7) [4]
6P3/2 0.9(2) −1.17(25) 0.51(11) 0.886(8) [4]
6D3/2 0.24(5) −0.297(62) 0.131(27) 0.25(3) [43]

±0.2(2) [4]
6D5/2 −0.112(5) 0.139(6) −0.061(3) −0.12(4) [43]

±0.10(10) [4]
7S1/2 10.3(5) −12.83(62) 5.66(27) 10.79(5) [4]
7P1/2 2.1(3) −2.61(37) 1.15(16) ±2.18(5) [4]
7P3/2 0.50(3) −0.62(37) 0.28(16)
7D3/2 0.15(1) −0.19(12) 0.083(5)
7D5/2 −0.068(5) 0.085(6) −0.037(3)
8S1/2 5.8(2) −7.27(25) 3.21(11) 5.99(8) [4]
8P1/2 1.3(1) −1.56(12) 0.69(55)
8P3/2 0.301(5) −0.374(6) 0.165(3)
8D3/2 0.101(2) −0.126(2) 0.055(11)
8D5/2 −0.040(1) 0.050(1) −0.022(1)
9S1/2 3.4(3) −4.25(37) 1.88(16)
9P1/2 1.0(1) −1.19(12) 0.53(55)
9P3/2 0.230(4) −0.286(5) 0.126(2)
9D3/2 0.334(4) −0.415(5) 0.183(2)
9D5/2 −0.148(2) 0.184(2) −0.081(1)
10S1/2 2.2(3) −2.68(37) 1.18(16) 2.41(5) [4]

different nuclear sizes in all the considered isotopes are very
small, we evaluate A/gI in 39K and determine A values for
the corresponding isotopes using their respective gI values.
We have used experimental values of gI (39K) = 0.260 977 2,
gI (40K) = −0.324 525, and gI (41K) = 0.143 246 7 [10] to
estimate these quantities, ignoring their uncertainties as they
will not muddle the results within the reported uncertainties.

Both the calculated and experimental results are compared
in Table II. We estimate uncertainties in our calculations by
considering incompleteness of basis functions, contributions
from the inactive orbitals in the RCC method, and higher-
order excitation levels and from the neglected terms in the
nontruncative series of Eq. (3.15). The upper limits to these
uncertainties are given in parentheses of Table II. There
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TABLE III. Comparison between different theoretical results of A in 39K (in MHz).

Others [44] This work

State DF SD SDpT DF CCSD CCSD(T)

4S1/2 146.91 237.40 228.57 146.794 229.573 229.556
4P1/2 16.616 28.689 27.662 16.616 27.247 27.371
4P3/2 3.233 6.213 5.989 3.234 5.886 5.913
3D3/2 0.447 0.983 1.111 0.447 1.006 1.003
3D5/2 0.192 −0.535 −0.639 0.192 −0.574 −0.572
4D3/2 0.281 0.678 0.281 0.690 0.686
4D5/2 0.120 −0.307 0.120 −0.334 −0.332
5S1/2 38.877 56.102 54.817 38.847 55.070 54.981
5P1/2 5.735 9.202 8.949 5.735 8.755 8.827
5P3/2 1.117 1.988 1.932 1.117 1.887 1.903
5D3/2 0.168 0.409 0.168 0.396 0.393
5D5/2 0.072 −0.167 0.072 −0.173 −0.171
6S1/2 15.759 22.025 21.609 15.105 21.167 21.10
6P1/2 2.629 4.066 4.014 2.629 3.874 3.918
6P3/2 0.512 0.874 0.866 0.512 0.928 0.937
6D3/2 0.105 0.253 0.104 0.241 0.239
6D5/2 0.0448 −0.0975 0.045 −0.113 −0.112
7S1/2 7.900 10.876 10.690 7.894 10.363 10.317
7P1/2 1.417 2.191 2.140 1.417 2.066 2.095
7P3/2 0.276 0.473 0.462 0.276 0.495 0.502
7D3/2 0.0685 0.1644 0.067 0.154 0.152
7D5/2 0.0293 −0.0611 0.028 −0.069 −0.068
8S1/2 4.511 6.156 6.057 4.536 5.880 5.847
8P1/2 0.855 1.236 1.257
8P3/2 0.166 0.296 0.301
8D3/2 0.048 0.102 0.101
8D5/2 0.019 −0.040 −0.040
9S1/2 2.814 3.818 3.759 2.685 3.444 3.420
9P1/2 0.695 0.945 0.958
9P3/2 0.136 0.227 0.230
9D3/2 0.189 0.338 0.334
9D5/2 0.083 −0.151 −0.148
10S1/2 1.871 2.529 2.491 1.878 2.171 2.154

are also a number of experimental results of these quantities
reported in low-lying states. Some of these results are not in
agreement within their reported uncertainties. Our estimated
results for the 4P1/2 state are also not in agreement with the
reported results in Refs. [3,4,38], among which the results
reported in Ref. [3] are the latest.

We also compare our A results for 39K obtained using the
DF, CCSD, and CCSD(T) methods with other recent calcula-
tions [44] in Table III. In Ref. [44], Safronova and Safronova
also used the linearized RCC method with single and double
approximation (the SD method), including important triple
effects for some of the states (the SDpT method). They find
large differences between their SD and SDpT results in contrast
to our finding of small differences between our CCSD and
CCSD(T) results. However, both of the calculations reveal
that the signs of the A values of the 3D5/2, 5D5/2, 6D5/2, and
7P1/2 states are negative, which were not resolved correctly in
the measurements. Moreover, both of the theoretical results for
the 4P1/2 state are in good agreement. All of these calculations
indicate that correlation effects in the considered atom are

substantial, for which an all-order perturbative method like
ours is suitable to determine wave functions accurately. To our
knowledge, A values are not known experimentally for some of
the states in 39K that are reported in this work; close agreement
between the results from both of the calculations for these
states will be very useful in conducting new measurements
in the right direction. Also, we have given A values for a
few excited states where neither measurements nor theoretical
calculations are available.

Following A results, we now present our calculated B/Q

results using the DF, CCSD, and CCSD(T) methods in Table IV
for the states where precise experimental B results for 39K and
41K are available. We also estimate the uncertainties associated
with the results obtained using the CCSD(T) method and
present them in parentheses in the same table. The uncertainties
are estimated using the procedure we followed for A. To justify
that trends of correlation effects for both the properties behave
in a similar manner, we present contributions from various
RCC terms to both A and B/Q results in Table V for a few
important states. It is found that in states where the angular
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TABLE IV. Calculated B/Q values (in MHz/b) from our DF, CCSD, and CCSD(T) methods and accurately known experimental B results
(in MHz) in 39K and 41K. The most precise B results and Q values estimated by combining with the calculated B/Q values in both the isotopes
are given in bold fonts. The underlined results are more precise, but they are inconsistent with other studies.

Theory Experiment Experiment

State DF CCSD CCSD(T) B(39K) Q(39K) B(41K) Q(41K)

4P3/2 23.000 44.392 44.6(5) 2.786(71) [2] 0.0625(17) 3.351(71) [2]
2.72(12) [38] 3.34(24) [39]
2.83(13) [45] 3.320(23) [42] 0.0744(10)
2.875(55) [3] 0.0645(14)
2.9(2) [40]

5P3/2 7.866 13.833 13.9(4) 0.870(22) [4] 0.0626(22) 1.06(4) [39] 0.0763(36)
0.92(10) [40]

6P3/2 3.340 6.285 6.4(5) 0.370(15) [4] 0.0578(51)

momentum is larger than half, the contributions from the
correlation effects are always of a similar scale in magnitude
and the contributions coming from OS2v + c.c. are larger than
OS1v + c.c. This implies that the core-polarization effects are
large enough to estimate B/Q results in the considered atom
which are accounted for, up to all orders through OS2v + c.c.
RCC terms in our calculations. There are no other calculated
results for B/Q available, to our knowledge, in any of the
considered isotopes of K to compare with our results.

There are also several experimental results available for B

in 39K as well as 41K which are given in Table IV [2–4,38–40,
42,45]. The most precise values are quoted in bold fonts for
the respective states except the one reported latest in Ref. [3],
which is underlined in the same table (we come back to this
result later). By combining these results with our calculated
B/Q values, we estimate Q’s values in the above two isotopes.
We obtain three different values of Q in 39K and two values
in 41K. All of these estimated values agree with each other
in their respective uncertainties, but the most precise results
which are obtained from the 4P3/2 state are 0.0625(17) b and
0.0744(10) b for 39K and 41K, respectively. These results are

also given in bold fonts in the above table. Here we have used
the following expression to evaluate the net uncertainties of
the Q values:

δC = C

√(
δA

A

)2

+
(

δB

B

)2

, (4.1)

where we assume C is the extracted value from A/B and δA,
δB, and δC are their respective uncertainties.

Among both of the new Q values in 39K and 41K, the
relative uncertainty in Q of 41K is small. Moreover, there are
also experimental results for the ratios of Q values between
39K, 40K, and 41K available as [46,48,49]

Q(40K)

Q(39K)
= −1.244 ± 0.002 (4.2)

and

Q(41K)

Q(39K)
= 1.2173 ± 0.0001. (4.3)

TABLE V. Contributions from different RCC terms to A (in MHz) and B/Q (in MHz/b), where c.c. stands for complex conjugation.

O OS1v + c.c. OS2v + c.c. Others xnorm

State A B/Q A B/Q A B/Q A B/Q A B/Q

4S1/2 146.576 46.148 33.0457 6.707 −2.920
4P1/2 16.341 5.500 4.820 0.900 −0.190
4P3/2 3.186 22.662 1.062 7.562 1.430 13.386 0.275 1.280 −0.040 −0.305
3D3/2 0.464 1.168 0.430 1.080 −0.059 2.947 0.185 0.089 −0.017 −0.090
3D5/2 0.199 1.666 0.183 1.527 −0.766 4.223 −0.178 0.127 0.010 −0.128
5S1/2 38.770 7.898 8.200 0.725 −0.612
5P1/2 5.683 1.535 1.571 0.100 −0.062
5P3/2 1.089 7.752 0.296 2.114 0.463 3.967 0.068 0.206 −0.013 −0.096
6S1/2 15.043 2.882 3.150 0.246 −0.217
6P1/2 2.615 0.633 0.630 0.067 −0.027
6P3/2 0.510 3.631 0.122 0.872 0.276 1.825 0.037 0.070 −0.006 −0.043
7S1/2 7.902 1.148 1.309 0.062 −0.104
8S1/2 4.540 0.592 0.746 0.026 −0.057
9S1/2 2.687 0.316 0.438 0.011 −0.032
10S1/2 1.880 0.013 0.291 −0.014 −0.015
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TABLE VI. Reported values of nuclear quadrupole moments Q

in b for 39K, 40K, and 41K from various studies.

Isotope This work Others

39K 0.0614(6) 0.0585a [13]
0.0601(15) [12]
0.049(4) [46]

40K −0.0764(8) −0.073a [13]
−0.0749(19) [12]

41K 0.0747(7) 0.0711a [13]
0.0733(18) [12]

aAccuracy is expected to be better than 1%.

Using the measured Q(41K)
Q(39K) and Q value of 41K, we get a

new Q value for 39K as 0.0612(8) b. Considering both of the
values of Q in 39K, we restrict the lower and upper limits of
Q( 39K) to 0.0608 b and 0.0620 b, respectively. Therefore, we
recommend the Q value of 39K as 0.0614(6) b. Now with this
most precise Q value and the above ratios of Q values between
different isotopes, we get precise Q values for 40K and 41K
as −0.0764(8) b and 0.0747(7) b, respectively. There are also
other reported Q values, which we have compared with ours
in Table VI. As seen from the table, there are three other works
that report these results [12,13,46]. Apart from Ref. [46], the
calculations carried out in these works are rigorous, and results
reported in Ref. [13] are the latest. The Q values reported
in Ref. [12] match our estimated values with some overlaps

within the predicted uncertainties; however, results reported
in Ref. [13] disagree with ours. In both of these theoretical
works, they have determined electric field gradients at the
nucleus to extract the nuclear quadrupole moments, and the
results are model independent. But both of the calculations
are less rigorous than the present calculations. In Ref. [12],
Sundholm and Olsen have used a nonrelativistic large-scale
finite-element multiconfiguration Hartree-Fock configuration
interaction (MCHF) method. The core contributions were
estimated from the core-valence correlation calculations,
and the relativistic corrections are accounted for separately
from the DF calculation. In contrast to this work, we have con-
sidered the core correlation and core-valence correlations to all
orders, and relativistic effects are included to all orders through
the RCC method. In fact, their truncative CI method is known
to have size-consistent problem [50] against our RCC method.
On the other hand, the level of approximations employed to
carry out calculations in Ref. [13] by Kellö and Sadlej are
comparable to the present work. In their work, calculations
are performed with a scalar relativistic Hamiltonian using the
Douglas-Kroll approach, and the CCSD(T) method is used
to account for the correlation effects. Since this approach is
better than the above-mentioned MHCF method, the results
reported in Ref. [13] were considered to be more accurate
and estimated to be within 1% accuracy. However, we find
the reported values in Ref. [13] to be smaller in magnitude as
compared to our estimations.

Now coming back to the results reported in Ref. [3], it was
already found earlier that the reported A result of the 4P1/2

TABLE VII. Comparison of estimated and experimental B results in 39−41K (in MHz).

This work Experiments

State (B/Q)(theor) 39K 40K 41K 39K 40K 41K

4P3/2 44.6(5) 2.738(41) −3.41(5) 3.332(49) 2.786(71) [2] −3.445(90) [2] 3.351(71) [2]
2.9(2) [40] −3.23(50) [36] 3.34(24) [39]
2.72(12) [39] −3.5(5) [41] 3.320(23) [42]
2.83(13) [4]

3D3/2 5.2(5) 0.319(31) −0.40(4) 0.388(38) 0.37(8) [1] 0.4(1) [1] 0.51(8) [1]
3D5/2 7.4(4) 0.454(25) −0.565(31) 0.553(30) <0.3 [1] 0.8(8) [1] <0.2 [1]
4D3/2 2.35(4) 0.144(3) −0.180(4) 0.176(3)
4D5/2 3.35(4) 0.206(3) −0.256(4) 0.250(4)
5P3/2 13.9(4) 0.853(26) −1.06(3) 1.038(31) 0.870(22) [39,40] −1.16(22) [41] 1.06(4) [39]

0.92(10) [40]
5D3/2 1.16(8) 0.071(5) −0.088(6) 0.087(6)
5D5/2 1.65(10) 0.101(6) −0.126(8) 0.123(8)
6P3/2 6.4(5) 0.393(31) −0.489(39) 0.478(38) 0.370(15) [47]
6D3/2 0.72(5) 0.044(3) −0.055(4) 0.054(4) 0.05(2) [43]
6D5/2 1.02(6) 0.063(4) −0.078(5) 0.076(5)
7P3/2 3.4(3) 0.209(19) −0.260(23) 0.254(23)
7D3/2 0.44(3) 0.027(2) −0.034(2) 0.033(2)
7D5/2 0.62(4) 0.038(2) −0.047(3) 0.046(3)
8P3/2 2.0(2) 0.123(12) −0.153(15) 0.149(15)
8D3/2 0.29(2) 0.018(1) −0.022(2) 0.022(2)
8D5/2 0.36(2) 0.022(1) −0.028(2) 0.027(2)
9P3/2 1.5(2) 0.092(12) −0.115(15) 0.112(15)
9D3/2 0.92(6) 0.056(4) −0.070(5) 0.069(5)
9D5/2 1.35(8) 0.083(5) −0.103(6) 0.101(6)
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in that work does not agree with the present study. Again, if
we use the extracted value 0.0645(14) b for Q of 39K and
substitute it in Eqs. (4.2) and (4.3) to determine Q of 40K and
41K, the results seem to be completely in disagreement with
all other studies. Indeed, when these values are substituted
to obtain further B values, we are not able to compare
the results with any experimental results. Therefore, more
experimental measurements of B’s are necessary to resolve
this inconsistency.

In view of the above inconsistency, it will also be interesting
to see further theoretical studies of B/Q results to draw
comparison with the present work. Moreover, we combine
our calculated B/Q results with the newly obtained Q values
to determine theoretical results for B in many states of the
considered isotopes of K. These results are given in Table VII.
We have also neglected here the anomalous effects in calcu-
lated B/Q values for different isotopes due to their negligible
roles. If better precise measurements of B are available, then
combining those results with our calculated B/Q values will
definitely give rise to more accurate Q values in these isotopes.
Also, accurate theoretical calculations of B/Q results in these
isotopes can also give rise to more precise Q values in K. In
fact, as can be noticed in Table VII, our estimated B results
for different states in K isotopes agree very well in most of
the states except for the 3D states. Due to all of the above
findings, we suggest further measurements of B in these states
to ascertain our results. Theoretical results for B are also
given in many excited states, which can be verified by future
measurements.

V. CONCLUSION

We have employed the relativistic coupled-cluster method
to calculate matrix elements of the hyperfine interaction
Hamiltonians in the potassium atom. By performing calcu-
lations of the magnetic dipole hyperfine structure constants
in this atom, we have tested the accuracies of the wave
functions in the nuclear region. These wave functions were
further used for the electric quadrupole hyperfine interaction
studies. By combining our calculations with the corresponding
measurements, we obtained the nuclear quadrupole moments
as 0.0614(6) b, −0.0764(8) b, and 0.0747(7) b for 39K,
40K, and 41K, respectively. These results agree with one of
the previous works but do not agree with others, including
the latest reported results. After obtaining nuclear quadrupole
moments, we substituted them to obtain electric quadrupole
hyperfine structure constants in many states and found very
good agreement with many of the experimental results except
for the 3D states. Also, we find that some of the reported
experimental results are in disagreement with each other
and with the present work. Results in a few highly excited
states are given which were not reported earlier. We suggest
further studies of the considered properties to ascertain our
findings.

ACKNOWLEDGMENT

Computations were carried out using the 3TFLOP HPC
cluster of Physical Research Laboratory, Ahmedabad.

[1] A. Sieradzan, R. Stoleru, W. Yei, and M. D. Havey, Phys. Rev.
A 55, 3475 (1997).

[2] S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche,
Phys. Rev. A 74, 032503 (2006).

[3] D. Das and V. Natarajan, J. Phys. B 40, 035001 (2008).
[4] E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys. 49,

31 (1977).
[5] H. S. Nataraj, B. K. Sahoo, B. P. Das, and D. Mukherjee, Phys.

Rev. Lett. 106, 200403 (2011).
[6] B. K. Sahoo, G. Gopakumar, R. K. Chaudhuri, B. P. Das,

H. Merlitz, U. S. Mahapatra, and D. Mukherjee, Phys. Rev.
A 68, 040501(R) (2003).

[7] B. K. Sahoo, R. K. Chaudhuri, B. P. Das, H. Merlitz, and
D. Mukherjee, Phys. Rev. A 72, 032507 (2005).

[8] B. K. Sahoo, Phys. Rev. A 73, 062501 (2006).
[9] B. K. Sahoo, Phys. Rev. A 80, 012515 (2009).

[10] N. J. Stone, Table of Nuclear Magnetic Dipole and Electric
Quadruopole Moments, IAEA Nuclear Data Section, Vienna
International Centre, Vienna, Austria, April 2011 [http://www-
nds.iaea.org/publications/indc/indc-nds-0594.pdf].

[11] G. W. Series, Phys. Rev. 105, 1128 (1957).
[12] D. Sundholm and J. Oslen, J. Chem. Phys. 98, 7152 (1993).
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