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The Husimi distribution is proposed for a phase-space analysis of quantum phase transitions in the two-
dimensional U(3) vibron model for N -size molecules. We show that the inverse participation ratio and Wehrl’s
entropy of the Husimi distribution give sharp signatures of the quantum (shape) phase transition from linear
to bent. Numerical results are complemented with a variational approach using parity-symmetry-adapted U(3)
coherent states, which reach the minimum Wehrl entropy N(3+2N)

(N+1)(N+2) , in the rigidly linear phase, according to
a generalized Wehrl-Lieb conjecture. We also propose a characterization of the vibron-model quantum phase
transition by means of the zeros of the Husimi distribution.
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I. INTRODUCTION

Quantum phase pransitions (QPT’s) have become an im-
portant subject in quantum many-body problems [1]. Unlike
classical phase transitions, QPT’s take place at a temperature of
absolute zero. Generally speaking, one finds different quantum
phases connected to specific geometric configurations of the
ground state and related to distinct dynamic symmetries of
the Hamiltonian. The QPT occurs as a function of a control
parameter ξ that appears in the Hamiltonian H . For us it will
appear in the form of a convex combination H (ξ ) = (1 − ξ )
H1 + ξH2. At ξ = 0 the system is in phase I, characterized by
the dynamical symmetry G1 of H1, and at ξ = 1 the system
is in phase II, characterized by the dynamical symmetry G2

of H2. At some critical point ξc ∈ (0,1) there is an abrupt
change in the symmetry and structure of the ground state wave
function. This is the case of the so-called “vibron models” (see,
e.g., Refs. [2–5]), interacting boson models which exhibit a
second-order shape phase transition from linear to bent. These
models have been used to study the rovibrational properties
in diatomic and polyatomic molecules and have turned out to
be very useful in studying symmetry properties of quantum
systems. Another interesting model exhibiting a QPT is the
case of an ensemble of atoms interacting with a single bosonic
field mode described by the Dicke Hamiltonian [6], which
shares some features with the present vibron model.

In quantum mechanics we have at our disposal several
distributions to characterize phase-space properties [7]. On
the one hand, we have the Wigner function, widely used
in quantum optics. On the other hand, we have the Husimi
distribution, which is given by the overlap between a minimal
uncertainty (coherent) state and the wave function. This dis-
tribution sometimes proves more convenient because, unlike
Wigner distribution, it is non-negative. Husimi distribution
has been found useful for a phase-space visualization of a
metal-insulator transition [8], to analyze quantum chaos in
atomic physics [9], or to analyze models in condensed matter

physics [10]. In addition, we would like to point out that the
zeros of the Husimi distribution have essential information;
in particular, the quantum state can be described by its
distribution of zeros [11]. They are the least probable points in
phase space, and they have also been considered as a quantum
indicator of classical and quantum chaos [12,13].

The Husimi distribution has a great amount of information,
and it can be useful to consider informational measures such as
the so-called inverse participation ratio and Wehrl entropy [14].
An analysis of the Dicke-model QPT by means of information
measures has been done in position and momentum spaces,
separately [15–19] and through the Husimi distribution, its
marginals, and its participation ratio and Wehrl entropy [20].
Morever, QPT has been characterized by means of the zeros
of the Husimi distribution in the Dicke model [20]. Here we
shall offer an informational description of the vibron-model
QPT in phase space in terms of the inverse participation ratio
(and higher moments) and the Wehrl entropy of the Husimi
distribution. Additionally we shall investigate the visualization
of the vibron-model QPT through the zeros of the Husimi
distribution.

This article is organized as follows. In Sec. II we briefly
remind the reader of the vibron-model Hamiltonian, introduce
coherent states and the Husimi distribution of the ground
state, and present the inverse participation ratio and the Wehrl
enropy for the Husimi distribution in a numerical framework.
In Sec. III we study a variational approximation to the
ground state wave function in terms of symmetry-adapted
coherent states and analyze the information measures for
this approximation in the thermodynamic limit. Zeros of the
Husimi (Ansatz) distribution are also computed in order to
characterize the QPT.

II. VIBRON MODEL AND HUSIMI DISTRIBUTION

Two-dimensional (2D) vibron models describe a system
containing a dipole degree of freedom constrained to planar
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motion. Elementary excitations are (creation and annihilation)
2D vector τ bosons {τ †

x ,τ
†
y ,τx,τy} and a scalar σ boson {σ †,σ }.

It is convenient to introduce circular bosons: τ± = ∓(τx ∓
iτy)/

√
2. The nine generators of the U(3) algebra are bilinear

products of creation and annihilation operators; in particular,

n̂ = τ
†
+τ+ + τ

†
−τ−, n̂s = σ †σ, l̂ = τ

†
+τ+ − τ

†
−τ−,

(1)
D̂+ =

√
2(τ †

+σ − σ †τ−), D̂− =
√

2(−τ
†
−σ + σ †τ+),

denote the number operator of vector n̂ and scalar n̂s bosons,
2D angular momentum l̂ and dipole D̂± operators, respectively
(see Ref. [5] for the remaining four operators Q̂±,R̂±, which
will not be used here). Assuming the total number of bosons
N̂ = n̂ + n̂σ and the 2D angular momentum l̂ to be conserved,
there are only two dynamical symmetry limits, G1 = U(2)
and G2 = SO(3), associated with two algebraic chains starting
from U(3) and ending in SO(2): the so-called cylindrical and
displaced oscillator chains. A general Hamiltonian of the U(3)
vibron model with only one- and two-body interactions can be
expressed in terms of linear and quadratic Casimir operators
of all of the subalgebras contained in the dynamical symmetry
algebra chains. To capture the essentials of the phase transition
from the G1 phase (linear) to the G2 phase (bent), it is enough
to consider a convex combination of the linear C1(U(2)) = n̂

and quadratic C2(SO(3)) = Ŵ 2 = (D̂+D̂− + D̂−D̂+)/2 + l̂2

Casimir operators of the corresponding dynamical symmetries.
In particular, we shall consider the essential Hamiltonian [5]

Ĥ = (1 − ξ )n̂ + ξ
N (N + 1) − Ŵ 2

N − 1
, (2)

where the (constant) quantum number N is the total number
of bound states that labels the totally symmetric (N + 1)
(N + 2)/2-dimensional representation [N ] of U(3). It is
known (see Ref. [5] and Sec. III later on) that this model
exhibits a (shape) QPT at ξc = 0.2, and we shall see that
Wehrl entropies provide sharp indicators of this QPT.

The Hilbert space is spanned by the orthonormal basis
vectors

|N ; n,l〉 = (σ †)N−n(τ †
+)

n+l
2 (τ †

−)
n−l

2√
(N − n)!

(
n+l

2

)
!
(

n−l
2

)
!
|0〉, (3)

where the bending quantum number n = N,N − 1,

N − 2, . . . ,0 and the angular momentum l = ±n, ±
(n − 2), . . . , ± 1 or 0 (n = odd or even) are the eigenvalues of
n̂ and l̂, respectively. The matrix elements of Ŵ 2 can be easily
derived (see, e.g., Ref. [5]):

〈N ; n′,l|Ŵ 2|N ; n,l〉
= [(N − n)(n + 2) + (N − n + 1)n + l2]δn′,n

− [(N − n + 2)(N − n + 1)(n + l)(n − l)]
1
2 δn′,n−2

− [(N − n)(N − n − 1)(n + l + 2)(n − l + 2)]
1
2 δn′,n+2.

From these matrix elements, it is easy to see that time evolution
preserves the parity eiπn of a given state |N ; n,l〉. That is, the
parity operator �̂ = eiπn̂ commutes with Ĥ and both operators
can then be jointly diagonalized. We shall take this fact into
account when proposing parity-symmetry-adapted Ansätze in
Sec. III.

A. SU(3) coherent states and Husimi distribution

Let us use the notation (a0,a1,a2) ≡ (σ,τ+,τ−) for our three
oscillator operators. SU(3) projective coherent states (CS’s) are
defined as (for a given N )

|z1,z2〉 ≡ (a†
0 + z1a

†
1 + z2a

†
2)N |0〉

N !(1 + |z1|2 + |z2|2)N/2

=
N∑

n=0

n∑
m=0

ϕ(N)
n,m(z1,z2)|N ; n,l = n − 2m〉, (4)

with z1,z2 ∈ C and

ϕ(N)
n,m(z1,z2) ≡ {N !/[(N − n)!(n − m)!m!]}1/2

(1 + |z1|2 + |z2|2)N/2
zn−m

1 zm
2 . (5)

They can be seen as a generalization of SU(2) spin-j coherent
states:

|z〉 = (1 + |z|2)−j

j∑
m=−j

(
2j

j + m

)1/2

zj+m|j,m〉, (6)

in terms of angular momentum or Dicke states |j,m〉.
Although SU(3) projective CS’s are not an orthonormal set

since

〈z1,z2|z′
1,z

′
2〉 = (1 + z̄1z

′
1 + z̄2z

′
2)N

(1 + |z1|2 + |z2|2)N/2(1 + |z′
1|2 + |z′

2|2)N/2
,

(7)

they form an overcomplete set of the corresponding Hilbert
space and fulfill the closure relation or resolution of the identity
(see, e.g., Ref. [21]):

1 =
∫
R4

|z1,z2〉〈z1,z2|dμ(z1,z2), (8)

with

dμ(z1,z2) = (N + 1)(N + 2)

π2

d2z1d
2z2

(1 + |z1|2 + |z2|2)3
(9)

the measure of the complex projective (quotient) space
CP 2 = U(3)/U(1)3 and d2z1,2 ≡ d Re(z1,2)d Im(z1,2) the
usual Lebesgue measure on R2 or C. In general, the exact
ground state vector ψ will be given as an expansion,

∣∣ψ (N)
ξ

〉 =
N∑

n=0

n∑
m=0

c(N)
nm (ξ )|N ; n,l = n − 2m〉, (10)

where the coefficients c(N)
nm (ξ ) are calculated by numerical

diagonalization of (2). One can realize that the ground state
|ψ (N)

ξ 〉 has even parity since, for instance, c(N)
nm (ξ ) = 0 for n

odd.
The Husimi distribution 


(N)
ξ (z1,z2) of ψ

(N)
ξ is, by defini-

tion, given by the squared modulus of the overlap between
|ψ (N)

ξ 〉 and an arbitrary coherent state |z1,z2〉, that is,



(N)
ξ (z1,z2) = ∣∣〈z1,z2

∣∣ψ (N)
ξ

〉∣∣2

=
N∑

n,n′=0

n∑
m,m′=0

c(N)
nm (ξ )c̄(N)

n′m′(ξ )

×ϕ(N)
n,m(z1,z2)ϕ(N)

n′,m′ (z̄1,z̄2) (11)
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and normalized according to∫
R4



(N)
ξ (z1,z2)dμ(z1,z2) = 1. (12)

This can be seen as an alternative (coherent state) representa-
tion to the usual position q and momentum p representations
traditionally given by ψ(q) = 〈q|ψ〉 and ψ̃(p) = 〈p|ψ〉,
respectively (see Ref. [22] for the expression of |ψ (N)

ξ 〉 in
position representation in terms of Hermite polynomials).

B. Moments and Rényi-Wehrl entropy
of the Husimi distribution

Important quantities to visualize the QPT in the vibron
model across the critical point ξc will be the νth moments of
the Husimi distribution (11):

MN,ν(ξ ) =
∫
R4

[



(N)
ξ (z1,z2)

]ν
dμ(z1,z2). (13)

Note that MN,1 = 1 since 

(N)
ξ is normalized [Eq. (12)].

Among all moments we shall single out the so-called “inverse
participation ratio” (IPR) PN (ξ ) = MN,2(ξ ), which somehow
measures the (de)localization of 


(N)
ξ across the phase transi-

tion. The “classical” (vs quantum von Neumann) Rényi-Wehrl
entropy is then defined as

WN,ν(ξ ) = 1

1 − ν
ln[MN,ν(ξ )] (14)

for ν 	= 1. For ν = 1 we have the usual Wehrl entropy

WN (ξ ) = −
∫
R4



(N)
ξ (z1,z2) ln

[



(N)
ξ (z1,z2)

]
dμ(z1,z2). (15)

C. Numerical results

We have solved the vibron model numerically, calculating
the coefficients c(N)

nm (ξ ) in Eq. (10) by numerical diagonaliza-
tion of Eq. (2).

Let us denote by x1,2 = Re(z1,2) “position” coordinates
and by p1,2 = Im(z1,2) “momentum” coordinates. In Fig. 1
we represent the Husimi distribution in position (p1,2 =
0) and momentum (x1,2 = 0) cross sections. We observe
that 


(N)
ξ (ip1,ip2) splits into two packets for ξ � ξc = 0.2,

whereas 

(N)
ξ (x1,x2) acquires a modulation above the critical

point ξc. We shall see below how this delocalization of the
ground state is captured by moments and Wehrl entropy of the
Husimi distribution. We have calculated the second moment
MN,2 (also called the inverse participation ratio PN ) and the
Wherl entropy WN as a function of ξ . The computed results
are given in Fig. 2 (together with the variational results of
Sec. III), where we present PN (ξ ) and WN (ξ ) for N = 4,8,16.
Notice that the inverse participation ratio (top panel) is greater
in the linear phase ξ < 0.2 than in the bent phase ξ > 0.2,
thus capturing the delocalization of the Husimi distribution of
the ground state across the critical point ξc = 0.2 as depicted
in Fig. 1. Note also that PN decreases with N , reaching the
limiting values of Eq. (27) for ν = 2. The Wherl entropy
(bottom panel) shows an entropy excess of 0.69 
 ln(2) [see
Eq. (28) later on in the paper], thus capturing the splitting of
the Husimi distribution into two nonoverlapping packets in the
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FIG. 1. (Color online) Exact Husimi distribution 

(N)
ξ (z1,z2) as

a function of z1,2 = x1,2 + ip1,2 in momentum space (z1,2 imaginary;
left panel) and position space (z1,2 real; right panel) for different
values of ξ (from top to bottom: ξ = 0, ξ = 0.3, and ξ = 0.98)
for N = 8. All quantities in this and subsequent figures are in
dimensionless units.

second (bent) phase. The change of PN (ξ ) and WN (ξ ) across
ξc is more sudden as N increases. Figure 2 also shows a good
agreement between the numerical results and a variational
approximation given in terms of parity-symmetry-adapted
coherent states introduced in Ref. [22] and discussed in the next
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FIG. 2. (Color online) Exact-numerical (solid) against
variational-cat (dotted) inverse participation ratio PN (ξ ) and
Wehrl’s entropy WN (ξ ) for N = 4,8 and N = 16 (PN decreases and
WN increases with N ) as a function of ξ .
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section, where we shall provide analytical explicit expressions
for moments and Wehrl’s entropy as a function of N,ν and ξ ,
and we shall discuss the thermodynamic limit N → ∞.

III. VARIATIONAL APPROXIMATION
AND THE THERMODYNAMIC LIMIT

Now we present analytical expressions for the Husimi dis-
tribution, moments, and entropies using trial states expressed
in terms of parity-symmetry-adapted CS’s (Schrödinger cat-
like or “cat” states for short) introduced by us in this context
in Ref. [22], which turn out to be a good approximation to the
exact (numerical) solution of the ground state of the vibron
model. In particular, it has been proven in Ref. [22] that this
parity-symmetry-adapted CS captures the correct behavior
for ground-state properties sensitive to the parity symmetry
of the Hamiltonian-like vibration-rotation entanglement and
delocalization measures.

A. Parity-symmetry-adapted CS’s
and their Husimi distribution

There are strong evidences that the exact ground state (10)
can be itself nicely approximated by a SU(3) CS of the type (4),
when properly adapted to the parity symmetry (see Ref. [22]
for more details). In fact, using the notation (4), the particular
(two-parameter) choice of boson condensate denoted by

|N ; r,θ〉 ≡
∣∣∣∣z1 = − r√

2
e−iθ ,z2 = r√

2
eiθ

〉
(16)

(with r,θ , variational parameters representing polar coordi-
nates) has been considered in Ref. [5] as a variational trial state
to reproduce the ground state energy in the thermodynamic
limit N → ∞. Note that here z1 and z2 are not arbitrary
complex numbers, but constrained to z1 = −z̄2. As a comment,
intrinsic excitations can also be constructed in this way, thus
defining multispecies CS’s (see, e.g., Refs. [23,24]).

The variational parameter r is fixed by minimizing the
ground state energy functional “per particle” (see Ref. [5]
for more details):

Eξ (r) = 〈Ĥ 〉
N

= (1 − ξ )
〈n̂〉
N

+ ξ
N (N + 1) − 〈Ŵ 2〉

N (N − 1)

= (1 − ξ )
r2

1 + r2
+ ξ

(
1 − r2

1 + r2

)2

, (17)

where we have used 〈·〉 as a shorthand for expectation values
in |N ; r,θ〉. Note that Eξ does not depend on θ because of the
intrinsic rotational symmetry, so we shall restrict ourselves to
θ = 0 and simply write |N ; r〉 ≡ |N ; r,θ = 0〉 from now on.
From ∂Eξ (r)/∂r = 0 one gets the equilibrium radius re and the
ground state energy Eξ as a function of the control parameter
ξ (see Ref. [5] for more details):

re(ξ ) =
{

0, ξ � ξc = 1/5√
5ξ−1
3ξ+1 , ξ > ξc = 1/5

(18)

Eξ (re(ξ )) =
{

ξ, ξ � ξc = 1/5
−9ξ 2+10ξ−1

16ξ
, ξ > ξc = 1/5.

Then one finds that d2Eξ (re(ξ ))/dξ 2 is discontinuous at
ξc = 1/5, and the phase transition is said to be of second
order.

Although the CS |N ; re(ξ )〉 properly describes the mean
energy in the thermodynamic limit N → ∞ (see Ref. [5]
for more details), it has been recently noticed by us in
Ref. [22] that it does not capture the correct behavior for
other ground state properties sensitive to the parity symmetry
�̂ of the Hamiltonian like, for instance, vibration-rotation
entanglement. Here we shall see that the Husimi distribution
�

(N)
ξ (z1,z2) ≡ |〈z1,z2|φ(N)

ξ 〉 of |φ(N)
ξ 〉 = |N ; re(ξ )〉 does not

capture the delocalization of the ground state across the phase
transition displayed in Fig. 1 and quantified by the Wehrl
entropy in Fig. 2, since it does not have a definite parity like
the exact ground state [Eq. (10)] does. Indeed, the explicit
expression of the Husimi distribution of |φ(N)

ξ 〉 = |N ; re(ξ )〉
can be calculated, as a function of (z1,z2), through the CS
overlap [Eq. (7)] as

�
(N)
ξ (z1,z2) = ∣∣〈z1,z2

∣∣φ(N)
ξ

〉∣∣2 = |〈z1,z2|z′
1,z

′
2〉|2

=
∣∣1 − z̄1

re(ξ )√
2

+ z̄2
re(ξ )√

2

∣∣2N

(1 + |z1|2 + |z2|2)N
[
1 + r2

e (ξ )
]N

, (19)

where we have substituted z′
1 = −re(ξ )/

√
2,z′

2 = re(ξ )/
√

2,
as in Eq. (16) for θ = 0 and r = re(ξ ). This distribu-
tion �

(N)
ξ (z1,z2) has a single maximum at (z(0)

1 ,z
(0)
2 ) =

(−re(ξ )/
√

2,re(ξ )/
√

2) and therefore does not display the
two-packet structure of the exact distribution 


(N)
ξ (z1,z2)

above ξc as depicted in Fig. 1. We shall also see later on
in Sec. III B that �

(N)
ξ (z1,z2) has constant Wehrl entropy,

WN (ξ ) = N (3 + 2N )/[(N + 1)(N + 2)], and therefore it does
not capture the QPT at ξ = 0.2, where the exact Wehrl entropy
undergoes a sudden increase, as displayed in Fig. 2.

The problem is that the variational CS |φ(N)
ξ 〉 = |N ; re(ξ )〉

does not have a definite parity, unlike the exact ground
state |ψ (N)

ξ 〉, which has even parity. A far better varia-
tional description of the ground state is given in terms
of the even-parity projected CS (see Ref. [22] for more
details):

|N ; r,+〉 ≡ (1 + �̂)|N ; r〉
N+(r)

= |N ; r〉 + |N ; −r〉
N+(r)

, (20)

where N+(r) = √
2(1 + 〈N ; −r|N ; r〉)1/2 is a normalization

constant, with [remember the CS overlap (7)]

〈N ; −r|N ; r〉 = [(1 − r2)/(1 + r2)]N. (21)

Since 〈N ; −r|N ; r〉 → 0 when N → ∞, the even-parity
state (20) is a superposition of two weakly overlapping (dis-
tinguishable) quasiclassical (coherent) wave packets, which
justifies the term “Schrödinger catlike” for these states.
Parity-symmetry-adapted CS’s (of other kind) have also been
proposed in Refs. [25,26], and used by us in Refs. [17,19,20],
to study the Dicke model QPT. In particular, in Ref. [20] we
analyze the Husimi distribution (exact and variational) of the
ground state in the Dicke model, which shares some features
with the present vibron model.

The variational parameter r in Eq. (20) is again computed by
minimizing the ground state energy functional “per particle”

032508-4
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FIG. 3. Equilibrium radius r (N)
e (ξ ) for N = 8,60,∞, where we

are identifying r (∞)
e (ξ ) = re(ξ ).

E (N)
ξ,+(r) = 〈Ĥ 〉+/N as in Eq. (17), but now for the symmetric

configuration [Eq. (20)], given in terms of the new mean
values:

〈n̂〉+
N

= r2[(1 + r2)N−1 − (1 − r2)N−1]

(1 + r2)N + (1 − r2)N
,

(22)
〈Ŵ 2〉+

N
= 2

(1 + r2)N + (1 − r2)N−2(1 + 2Nr2 + r4)

(1 + r2)N + (1 − r2)N
.

Unlike Eξ (r), the new energy functional E (N)
ξ,+(r) depends on

N . From ∂E (N)
ξ,+(r)/∂r = 0 we can obtain the new equilibrium

radius r (N)
e (ξ ). We do not have an explicit analytic expression

of r (N)
e (ξ ) [as we did for re(ξ ) in Eq. (18)] for arbitrary N and ξ ,

but one can always compute it numerically. Figure 3 compares
re(ξ ) in Eq. (18) with r (N)

e (ξ ) for N = 8 and N = 60. We can
infer that, in the thermodynamic limit, r (∞)

e (ξ ) = re(ξ ). This
is a curious fact.

The Husimi distribution of the (even) cat state |φ(N)
ξ,+〉 ≡

|N ; r (N)
e (ξ ),+〉 in Eq. (20) is then

�
(N)
ξ,+(z1,z2) = ∣∣〈z1,z2

∣∣φ(N)
ξ,+

〉∣∣2

= |〈z1,z2|N ; r〉 + 〈z1,z2|N ; −r〉|2
N 2+(r)

, (23)

with

〈z1,z2|N ; ±r〉 =
(
1 ∓ r√

2
z̄1 ± r√

2
z̄2

)N

(1 + |z1|2 + |z2|2)N/2(1 + r2)N/2
, (24)

where we must understand now r = r (N)
e (ξ ). Since

|〈z1,z2|N ; ±r〉| is maximum at (z(0)
1,±,z

(0)
2,±) = (∓ r√

2
, ± r√

2
),

the variational Husimi distribution (23) captures the exact
two-packet structure displayed in Fig. 1, although rotated π/4.
Moments and Wehrl’s entropy are insensitive to this global
rotation, so we keep this variational state for which explicit
expressions and calculations turn out to be simpler.

B. Moments and Wehrl-Lieb conjecture

Explicit analytic expressions for the νth moment M+
N,ν

of the variational-cat Husimi distribution (23) are easily

obtained for the rigidly linear phase ξ = 0 [r = r (N)
e (0) = 0],

giving

M+
N,ν(0) =

∫
R4

[
�

(N)
0,+(z1,z2)

]ν
dμ(z1,z2)

= (N + 1)(N + 2)

(1 + νN )(2 + νN )
, (25)

which are in complete agreement with exact-numerical calcu-
lations, as displayed in Fig. 2 for the particular case of ν = 2.
The same happens to the Wehrl entropy for ξ = 0, which can
be obtained as

W+
N (0) = lim

ν→1

1

1 − ν
ln M+

N,ν(0) = N (3 + 2N )

(N + 1)(N + 2)
. (26)

For other values of ξ , integrals can always be numerically
done [see, e.g., Fig. 2 for MN,2(ξ ) and WN (ξ ) as a function of
ξ for N = 4,8,16]. In the rigidly bent phase ξ = 1, we have
been able to obtain the asymptotic behavior for N → ∞, in
particular,

M+
N,ν(ξ )

N→∞−→
{
ν−2, if ξ = 0
21−νν−2, if ξ = 1,

(27)

and

W+
N (ξ )

N→∞−→
{

2, if ξ = 0
2 + ln(2), if ξ = 1.

(28)

In fact, expressions (27) and (28) also give a good approxima-
tion for N  1 in the “floppy” region 0 < ξ < 1 since changes
in moments and Wehrl entropy are sharper and sharper as N

increases, both being approximately constant in each phase as
inferred from Fig. 2.

At this point, one could ask himself/herself to what extent
are the results for the parity-symmetry-adapted CS (20)
better or different from the ordinary CS Ansatz (16). We
must say that Wehrl entropy for the Husimi distribution
�

(N)
ξ of the (ordinary) CS (16) is constant, WN (ξ ) =

N (3 + 2N )/[(N + 1)(N + 2)], as a function of the control
parameter ξ [through the dependence of r = re(ξ )] and,
therefore, it does not capture the delocalization of the ground
state across the phase transition displayed in Fig. 1 and
quantified by the IPR and Wehrl entropy in Fig. 2. On the
contrary, the Husimi distribution �

(N)
ξ,+ in Eq. (23) nicely

captures this delocalization, exhibiting an entropy excess of
ln(2) from linear to bent phases, in agreement with exact
numerical results.

We should also point out that the behavior displayed in
Eqs. (27) and (28) has also been found by us in the Dicke
model of matter-field interactions in the thermodynamic limit
N = 2j → ∞ (the number of atoms), which also exhibits a
QPT from normal to superradiant (see Ref. [20]).

To finish this section, we would like to comment on the still
unproven Lieb’s conjecture. It was conjectured by Wehrl [27]
and proven by Lieb [28] that any Glauber (harmonic oscillator)
coherent state |α〉 has a minimum Wehrl entropy of 1. In the
same paper by Lieb [28], it was also conjectured that the
extension of Wehrl’s definition of entropy for spin-j CS’s (6)
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will yield a minimum entropy of 2j/(2j + 1). Here we propose
that the extension (15) of Lieb’s definition of entropy will
yield a minimum entropy of N (3 + 2N )/[(N + 1)(N + 2)]
for SU(3) projective CS’s (4). We have seen that the ground
state of the vibron model in the rigidly linear phase (ξ = 0) is
itself a SU(3) CS, and its Wehrl entropy reaches this minimum.
The same value is attained for the Wehrl entropy of any other
SU(3) CS like Eq. (4). In the rigidly bent phase (ξ = 1), the
ground state is not a SU(3) CS anymore, but has a “catlike”
structure (linear combination of CS’s) giving a Wehrl entropy
excess of ln(2).

C. Zeros of the variational Husimi distribution

It is well known that the Husimi density is determined
by its zeros through the Weierstrass-Hadamard factorization.
It has also been observed that the distribution of zeros
differs for classically regular or chaotic systems and can be
considered as a quantum indicator of classical chaos (see, e.g.,
Refs. [9,11,12]). Moreover, recently we have presented a
characterization of the Dicke model QPT by means of the zeros
of the Husimi distribution in the variational approach [20].

Here we shall explore the distribution of zeros of the Husimi
density as a fingerprint of QPT in the vibon model. From
Eq. (23) we obtain

�
(N)
ξ,+(z1,z2) = 0 ⇒ z2 − z1 = i

√
2

r
(N)
e (ξ )

tan

(
(2l + 1)π

2N

)

(29)

with l = −[N/2], . . . ,[N/2] − 1 and [N/2] = Floor(N/2). If
we separate real and imaginary parts as z1,2 = x1,2 + ip1,2, the
last condition can be cast as

x1 = x2, (30)

p2 = p1 +
√

2

r
(N)
e (ξ )

tan

(
(2l + 1)π

2N

)
. (31)

For r (N)
e (ξ ) = 0 the Husimi distribution �

(N)
ξ,+(z1,z2) has no

zeros. For finite N , the value r (N)
e (ξ ) = 0 is only attained in the

rigidly linear phase ξ = 0 (see Fig. 3). In the thermodynamic
limit N → ∞ we have that r (∞)

e (ξ ) = re(ξ ) = 0,∀ξ<ξc = 0.2
[see Fig. 3 and expression (18)], so that �

(∞)
ξ,+(z1,z2) has no

zeros in the linear phase. For r (N)
e (ξ ) 	= 0 the zeros are localized

along straight lines (“dark fringes”) in the x1x2 (position) and
p1p2 (momentum) planes. In the momentum plane, the density
of zeros grows with N and ξ [viz., with r (N)

e (ξ ), since it is an
increasing function of ξ ]. In the thermodynamic limit N → ∞,
there is a sudden growth of zeros for ξ > ξc = 0.2, which
accumulate in a vicinity of p2 = p1 in the momentum plane
p1p2. A similar behavior is also shared by the Dicke model
(see Ref. [20]).

IV. CONCLUSIONS

We have found that moments and Wehrl entropies of the
Husimi distribution provide sharp indicators of a quantum
phase transition in the vibron model. They detect a delocaliza-
tion of the Husimi distribution across the critical point ξc, and

we have employed them to quantify the phase-space spreading
of the ground state.

Calculations have been done numerically and through a
variational approximation. We have represented the Husimi
distribution, which exhibits a different shape in each phase.
We have calculated the inverse participation ratio and the
Wehrl entropy, which prove to be good indicators of the QPT.
The variational approach, in terms of parity-symmetry-adapted
coherent (cat) states, complements and enriches the analysis,
providing explicit analytical expressions for the moments and
Wehrl entropies which coincide remarkably with the numerical
results, especially in the rigidly linear and bent phases
(outside the floppy region ξ ≈ ξc) and in the thermodynamic
limit.

In the rigidly linear phase, Wehrl’s entropy attains its
minimum N(3+2N)

(N+1)(N+2) , according to a generalized Wehrl-Lieb
conjecture, thus indicating that the ground state for ξ = 0 is
a SU(3) projective CS. In the bent phase, Wehrl’s entropy
undergoes an entropy excess (or “subentropy” [29]) of ln(2).
This fact implies that the Husimi distribution splits up into two
identical subpackets with negligible overlap in passing from
linear to bent phase; In general, for s identical subpackets
with negligible overlap, one would expect an entropy excess
of ln(s). This delocalization of the exact Husimi distribution in
the bent phase is not captured by the variational approximation
in terms of the ordinary SU(3) CS (16), which gives a constant
value of IPR PN and Wehrl entropy WN across the phase
transition. On the contrary, the parity-symmetry-adapted CS
of Eq. (20) nicely reproduces the exact ground state behavior,
as seen in Fig. 2.

The QPT fingerprints in the vibron model have also been
tracked by exploring the distribution of zeros of the Husimi
density within the analytical variational approximation. We
have found that there is a sudden growth of zeros above
the critical point ξc, especially in the thermodynamic limit.
Zeros of the variational Husimi (cat) distribution exhibit a
richer structure in momentum than in position space. This
behavior is also shared by the Dicke model [20]. This
subject deserves further attention and will be studied in future
works.

The different structure of zeros of the Husimi distribution
for classically regular or chaotic systems has also been
considered in the literature as a quantum indicator of classical
chaos (see, e.g., Refs. [9,11,12]). For example, in Ref. [12]
it is shown that, in integrable regions, the zeros lie on one-
dimensional curves, while in chaotic regions the distribution
is bidimensional and the zeros fill the phase space. We have
restricted ourselves to the phase-space analysis of the ground
state in the vibron model. The vibron model is a regular
(nonchaotic) system, so we can assert that the sudden growth
of zeros above the critical point ξc denotes a QPT but is not a
symptom of chaos.
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