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A formal proof is given that for N -boson systems in which two-body interaction potentials are described by
a single Gaussian the ratio of higher-order to the lowest-order hyper-radial potentials decreases at N → ∞ as
N−1/2 or faster. As a result, for such potentials, the convergence of binding energies for ground and several lowest
excited states, obtained in expansion of the N -body wave function over the hyperspherical-harmonics basis,
improves with increasing number of bosons. For a phenomenological three-body repulsive potential, introduced
to account for the missing hard core, the ratio of higher-order to lowest-order hyper-radial potential, corresponding
to this three-body potential, also decreases as N−1/2 or faster when N → ∞. Although adding the three-body
contributions leads to increased influence from the total nondiagonal couplings around the node of the lowest
hyper-radial potential, the arguments are given that this should not dramatically deteriorate the convergence if
the range of repulsion is properly chosen. This means that the hyperspherical-harmonics expansion with soft
two-body and repulsive three-body effective forces may become an attractive tool for studying the spectra of
many-body systems. It is suggested that fine tuning of the three-body repulsion to reproduce the binding energies
over a large region of N is possible. In particular, it has been shown that an N -independent choice for the
three-body repulsion exists for which the ground-state binding energies of N � 112 atoms of helium, obtained
in the lowest-order approximation of the hyperspherical-harmonics expansion, are close to the prediction of the
Green’s function Monte Carlo method with a hard-core He-He potential.
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I. INTRODUCTION

The interaction potentials between two atoms are known
to have a strong repulsive core due to their complex internal
structure. This repulsive core creates difficulties in studying the
systems, made of many atoms, from first principles. Because of
this core the solutions of the many-body Schrödinger equation
obtained in various variational approaches by expansions over
some sets of basis functions converge slowly. In particular,
slow convergence of the expansion over hyperspherical-
harmonics basis for three- and four-body systems when
the hard core is present has been known for a very long
time [1].

In two recent publications [2,3], aimed at studying universal
relations between different binding energies in helium clusters
within the hyperspherical-harmonics expansion, it has been
noticed that for weakly bound systems these relations do
not depend on the details of the two-body interactions but
only on the masses of the atoms. Therefore, in Refs. [2,3]
the hard-core He-He potential has been replaced by a soft
potential that reproduces the helium dimer binding energy, the
scattering length, and effective range predicted by calculations
with hard-core potentials. However, using only this soft two-
body potential overbinds the helium trimer and other helium
clusters since repulsion at short He-He distances is missing. To
account for this repulsion, a hypercentral three-body potential
has been phenomenologically introduced. This potential was
represented by a single Gaussian and its range and depth
were adjusted to fit the helium trimer binding energy. The
calculations performed with this potential for four, five, and
six atoms of helium gave very similar binding energies to those
obtained with the hard-core He-He potential in other ab initio
approaches in Refs. [4,5].

It has been noticed in Ref. [2] that the convergence of
the hyperspherical expansion for the soft phenomenological
potentials improves both for the ground state and the first
excited state when the number of helium atoms increases from
four to six. This observation has motivated the investigation
carried out in the present paper with the aim to find out if the
improvement of convergence can be expected to continue with
a further increasing of the number of helium atoms.

The convergence of the ground-state binding energy de-
pends on how strong the couplings between the lowest- and
higher-order terms of hyperspherical-harmonics expansion
are. Therefore, the main focus in the present paper is the ratio
of the higher-order and the lowest-order hyper-radial potentials
for bosonic systems. This ratio is studied using a specific
presentation of hyperspherical harmonics via the symmetrized
products of oscillator single-particle wave functions [6,7], as
explained in Sec. II. With this method the matrix elements
in the hyperspherical basis can be calculated easily for any
number of particles N . The asymptotic expression for the ratio
between the lowest- and other-order hyper-radial potentials
for N → ∞ is derived in Sec. III for two-body potentials
described by a single Gaussian. It proves the decrease of the
relative strength of the nondiagonal couplings, thus explaining
the observations of improved convergence in Ref. [2] for
N = 5 and N = 6. In Sec. III B further improvement of the
convergence is demonstrated for N = 8, 10, and 20 for the
same potential. Section III C discusses the qualitative changes
in convergence for potentials described by two Gaussians and
gives a few examples of the binding energy convergence. The
hypercentral three-body force is introduced in Sec. IV. The
leading contributions to the hyper-radial potentials for a large
number of atoms and the ratio between the nondiagonal to
diagonal hyper-radial potentials related to this force are derived
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and the consequence for convergence is discussed. Section V
discusses the possibility of fine tuning the three-body force
and draws conclusions.

II. HYPERSPHERICAL FORMALISM

In the present paper, it is assumed that the internal spin of
bosons is 0+ and that the total spin of the N -boson systems is
0+ as well.

A. Hyperspherical expansion and radial equations

In the hyperspherical-harmonics method [8], the N -body
wave function �N is a function of a vector ρ in a 3(N − 1)-
dimensional space formed by N − 1 Jacobi coordinates ξi =√

i/(i + 1)(
∑i

j=1 rj /i − r i+1). In this space, the hyperspher-
ical coordinates (ρ,ρ̂) are introduced, where the hyper-radius
ρ is the square of the length of ρ,

ρ2 =
N−1∑
i=1

ξ 2
i =

N∑
i=1

r2
i − R2 = 1

N

N∑
i<j

(r i − rj )2, (1)

r i are individual coordinates of bosons, and R =
(
∑N

i=1 r i)/
√

N is the normalized coordinate of the center of
mass. The rest of the 3N − 4 variables are the hyperangles
ρ̂ ≡ {θ1, θ2, . . . ,θ3N−4} but their choice is not important in the
approach used in the present work.

The wave function �N (ρ,ρ̂) is expanded onto a complete
set of eigenfunctions YKγ (ρ̂) of the angular part of the 3N − 4-
dimensional Laplacian �ρ̂ [8]

�ρ̂YKγ (ρ̂) = K(K + 3N − 5)YKγ (ρ̂). (2)

The quantum number K is a hyperangular momentum and the
index γ denotes the set of all other possible quantum numbers.
The hyperspherical harmonics YKγ (ρ̂) are constructed to be
symmetric with respect to permutations of identical boson
coordinates. The hyperspherical-harmonics expansion then
reads

�N (ρ,ρ̂) = ρ−(3N−4)/2
∑
Kγ

χKγ (ρ)YKγ (ρ̂). (3)

For total spin and parity 0+ the value K runs from 0 to infinity
with the step of 2 excluding K = 2 for which symmetric
hyperharmonics do not exist. The hyper-radial functions
χKγ (ρ) are found from the solution of the coupled set of
differential equations(

d2

dρ2
− LK (LK + 1)

ρ2
− 2m

h̄2 [E + VKγ,Kγ (ρ)]

)
χKγ (ρ)

= 2m

h̄2

∑
K ′γ ′ �=Kγ

VKγ,K ′γ ′(ρ)χK ′γ ′(ρ), (4)

where LK = K + (3N − 6)/2, m is the boson mass and the
hyper-radial potentials VKγ,K ′γ ′(ρ) are the matrix elements of
the two-body interactions,

VKγ,K ′γ ′(ρ) = 〈YKγ (ρ̂)|
∑
i<j

Vij (r i − rj )|YK ′γ ′(ρ̂)〉. (5)

Three-body and any other interactions can also be added when
necessary.

B. Construction of hyperspherical harmonics

The hyperspherical harmonics YKγ (ρ̂) are constructed here
using the method developed in Refs. [6,7], in which

YKγ (ρ̂) = �0Kγ (ρ,ρ̂)/R0K (ρ). (6)

Here, �κKγ (ρ,ρ̂) is an eigenfunction of the the Schrödinger
equation with the two-body potential Vij = ωr2

ij , for which
exact solutions are known, and RκK (ρ) is the hyper-radial
wave function [8]

RκK (ρ) = b−n/2

(
2κ!

�(κ + K + n/2)

)1/2 (ρ

b

)K

× LK+(n−2)/2
κ (ρ2/b2)e−ρ2/2b2

, (7)

with b = √
h̄/mω being the oscillator radius and n = 3N − 3.

The number of nodes κ is set to zero for practical purposes
as discussed in Ref. [6]. The right-hand side of Eq. (6)
is multiplied above and below by the 0s center-of-mass
wave function �000(R) and the product �0Kγ (ρ,ρ̂)�000(R)
in the nominator is expanded onto the linear combination of
the symmetrized products �Ki(r1,r2, . . . ,rN ) of the single-
particle oscillator wave functions φα(r i) with the total number
of oscillator quanta equal to K . Therefore, the hyperharmonics
YKγ (ρ̂) can be written as

YKγ (ρ̂) =
∑

i C
Kγ

i �Ki(r1,r2, . . . ,rN )

�000(R)R0K (ρ)
. (8)

The individual coordinates r i are chosen in an arbitrary fixed
coordinate system independent of the center-of-mass motion
and the coefficients C

Kγ

i are chosen in such a way that YKγ (ρ̂)
does not depend on the choice of the origin of the coordinate
system, nor on the hyper-radius ρ or the oscillator radius b. To
achieve this and to provide a well-defined angular momentum
of the system, the expansion coefficients C

Kγ

i are found as the
eigenvectors of three matrices: the matrix J2 of the total spin,
the matrix R2 of the center-of-mass radius, and the matrix of
the 3A − 4-dimensional hyperangular Laplacian �ρ̂ rewritten
in individual coordinates {r i}. These eigenvectors correspond
to the eigenvalues J (J + 1), 3

2b2 and K(K + n − 2) of the
matrices J2, R2, and �ρ̂ , respectively (see Ref. [7] for more
details).

C. Hyper-radial potentials

The calculated coefficients C
Kγ

i are used to obtain the
hyper-radial potentials VKγ,K ′γ ′(ρ) that enter Eq. (4),

VKγ,K ′γ ′(ρ) =
∑
ii ′

C
Kγ

i C
K ′γ ′
i ′ VKi,K ′i ′ (ρ). (9)

VKi,K ′i ′(ρ) are related to the matrix elements
〈�K ′i ′ |

∑
i<j Vij |�Ki〉 in the oscillator basis |�Ki〉 by

the inverse Laplace transform [6]

VKi,K ′i ′(ρ) = (�(K + n/2)�(K ′ + n/2))1/2

ρK+K ′+n−2

1

2πi

∫ i∞

−i∞
ds

× esρ2
s−(K+K ′+n)/2 〈�K ′i ′ |

∑
i<j

Vij |�Ki〉, (10)

in which s = b−2 and the integration path bypasses the origin
in the counterclockwise direction.
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III. LOWEST-ORDER APPROXIMATION AND ITS
COUPLING TO HIGHER-ORDER TERMS

A. Lowest-order K = 0 approximation for Gaussian potentials

In the lowest-order approximation, K = 0, only one term
is retained in the expansion (3) with the radial function χ0(ρ)
satisfying the equation[

d2

dρ2
− L(L + 1)

ρ2
− 2m

h̄2 [E + V00(ρ)]

]
χ0(ρ) = 0. (11)

The hyper-radial potential V00(ρ) is evaluated from Eq. (10) in
which the matrix element 〈�00|

∑
i<j Vij |�00〉 is replaced with

N(N−1)
2 〈�00|VN,N−1|�00〉. The function �00 is just a product

φ00(r1)φ00(r2) · · · φ00(rN ) of the single-particle oscillator 0s

wave functions φ00(r) = 2(s3/π )1/4e−sr2/2Y00(r̂), where Y is
the spherical harmonics.

Assuming the Gaussian shape of the two-body potential,

Vij (r) = V0e
−(r/α)2

, (12)

we find that

〈�00||VN,N−1||�00〉 = V0

(
1 + 2

sα2

)−3/2

(13)

and, after integration over ds in Eq. (10),

V00(ρ) = N (N − 1)

2
V0M

(
3

2
,
n

2
, − 2ρ2

α2

)
, (14)

where M is the confluent hypergeometric function. Asymptot-
ically, V00(ρ) decreases as ρ−3.

B. Coupling between the lowest-order and other
hyperspherical harmonics

The hyperharmonics of the order K are obtained from
all possible N -body oscillator wave functions �Ki , where
i = {ν1l1m1; . . . ; νN lNmN }, νj is the number of nodes, and
lj (mj ) is the orbital momentum (its projection) of the
single-particle state of the j th boson,

∑N
i=1(2νi + li) = K and,

in addition,
∑N

i=1 mi = 0 for zero total spin of the system.
However, only the sets i of the type (0s)N−2(ν1l1)(ν2l2), where
2ν1 + l1 + 2ν2 + l2 = K , will give nonzero contributions to
the nondiagonal hyper-radial potentials

V00,Ki(ρ) = N (N − 1)

2

(
�

(
n
2

)
�

(
n
2 + K

))1/2

ρn+K−2

1

2πi

∫ i∞

−i∞
ds

× esρ2
s−(n+K)/2〈�0|VN,N−1|�Ki〉. (15)

For these i,

〈�0|VN,N−1|�Ki〉 = ai(N )ci(K)〈φ00||V (
√

2rN,N−1)||φν0〉,
(16)

where ν = K/2. The coefficients ai(N ) arise because all
exchange terms in �Ki but one give zero contribution to the
matrix element 〈�0|VN,N−1|�Ki〉. They are equal to

ai(N ) = 2/
√

N, 2ν1 + l1 = 0,

= 1 + δν1ν2δl1l2√
N (N − 1)/2

, 2ν1 + l1 �= 0, (17)

TABLE I. Coefficients ci(K) for K = 4.

i ci

(0s)N−12s 1/4
(0s)N−2(0d)2 1/

√
6

(0s)N−20p1p −1/2
(0s)N−2(1s)2

√
5/24

thus carrying an explicit dependence on the number of bosons.
They decrease with N because more exchange terms in �Ki

become available. As for the coefficients ci(K), they are the
standard Talmi-Moshinski brackets 〈ν0,00:0|1:1|ν1l1,ν2l2:0〉
for transforming the product of the single-particle wave
functions |φν1l1 (rN−1)φν2l2 (rN ) : 0〉 into the oscillator wave
functions in the relative x = (rN−1 − rN )/

√
2 and the two-

body center-of-mass X = (rN−1 + rN )/
√

2 coordinates [9].
These coefficients are always smaller than one and they do not
depend on N . Examples of ci(K) for the next-to-lowest-order
harmonics, K = 4, are given in Table I. For i = (0s)N−1(νs)
the coefficients ci(K) are equal to (−1)K/2K/2.

Using the single-particle oscillator wave functions

φνl(r) =
√

2ν!

�(ν + l + 3/2)
s(2l+3)/4rle−sr2/2Ll+1/2

ν (sr2),

(18)

we can evaluate the matrix element in Eq. (16):

〈φ00||V (
√

2rN,N−1)||φν0〉

=
√

�
(
ν + 3

2

)
ν!�

(
3
2

) V0

(
2

sα2

)ν (
1 + 2

sα2

)−ν−3/2

. (19)

Then integrating over ds in Eq. (15) we get for ν = K/2

V00,Ki(ρ) = ai(N )ci(K)

√
�

(
n
2

)
�

(
K+3

2

)
�

(
3
2

)
�

(
K
2 + 1

)
�

(
n
2 + K

)
× N (N − 1)

2
V0

(
2ρ2

α2

)K/2

× M

(
K + 3

2
;
n

2
+ K; −2ρ2

α2

)
. (20)

The confluent hypergeometric function M can be presented as

M

(
K + 3

2
;
n

2
+ K; −2ρ2

α2

)
= �

(
n
2 + K

)
�

(
n+K−3

2

)
�

(
K+3

2

)In,K (ρ),

(21)

where

In,K (ρ) =
∫ 1

0
dt e−2ρ2t/α2

t (K+1)/2(1 − t)(n+K−5)/2. (22)

Using Eqs. (14), (20), and (21) the ratio UKi(ρ) of the nondi-
agonal to diagonal hyper-radial potential can be constructed:

UKi(ρ) ≡ V00,Ki(ρ)

V00,00(ρ)
= ai(N )ci(K)

√
2K�

(
n
2 + K

)
�

(
n
2

)
�(K + 2)

× �
(

n−3
2

)
�

(
n+K−3

2

) (
2ρ2

α2

)K/2
In,K (ρ)

I00(ρ)
. (23)
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FIG. 1. (Color online) Upper limit for the ratio UKi(ρ) of
nondiagonal to diagonal hyper-radial potential as a function of ρ

calculated for K = 4 and i = (0s)N−1(νs). The range α = 10.03 a.u.
of the two-body potential has been used.

As N → ∞, and therefore as n → ∞, this ratio tends to

UKi(ρ) → ai(N )ci(K)

√
2K

�(K + 2)

(
2ρ2

α2

)K/2
In,K (ρ)

I00(ρ)
.

(24)

Since the integrands of both In,K (ρ) and I00(ρ) are positive and
the integrand of In,K (ρ) is obtained from the integrand of I00(ρ)
by multiplying the latter by the function tK/2(1 − t)K/2 which
is smaller than one over the interval 0 � t � 1, then In,K (ρ) <

I00(ρ) for all ρ and N . Thus the ratio UKi(ρ) should decrease
with large N . The rate of decrease, however, depends on ρ. As
ρ → 0 the ratio of the two hypergeometric functions in V00,Ki

and V00 is one so that UKi(ρ) tends to zero and decrease with
N as ai(N )N−K/2. As ρ → ∞, UKi(ρ) → ai(N ) when N →
∞, which is obtained using asymptotic expressions for the
confluent hypergeometric functions. For finite ρ the decrease
of UKi(ρ) with N is not as fast as for ρ → 0 but not as slow as
for ρ → ∞. This is demonstrated in Fig. 1, where UKi(ρ) are
shown as functions of ρ for several values of N for K = 4 and
i = (0s)N−1(2s), for which decrease with N is expected to be
the slowest. The UKi(ρ) were calculated using α = 10.03 a.u.

Thus, we have proved that the contribution from an individ-
ual set i to the hyper-radial potential V00,Kγ decreases with N .

Next, it should be proved that
∑

i C
Kγ

i V00,Ki/V00 decreases
with N as well. It should be noted first that for any K there
is only one i which gives the slowest decrease of UKi(ρ) with
N , namely i = (0s)N−1(νs), where ν = K/2. Then the con-
tribution to UKi(ρ) from this i, C

Kγ

i V00,Ki/V00,Ki , decreases
with N as well because |CKγ

i | � 1. Other sets of i that give
nonzero terms in nondiagonal coupling potentials, namely, i =
(0s)N−2(ν1l1)(ν2l2), at a fixed ρ and K give the contribution of
| ∑i C

Kγ

i V00,Ki(ρ)| � Ni(K) max(|V00,Ki(ρ)|), where Ni(K)
is the number of sets {ν1l1,ν2l2} with 2ν1 + l1 + 2ν2 + l2 =
K . Since Ni(K) does not depend on N , the corresponding
contribution

∑
i C

Kγ

i V00,Ki(ρ) decreases with N at the same
rate as V00,Ki(ρ), which for these i is ∼1/

√
N (N − 1) as N →

∞. Thus, the strength of nondiagonal coupling decreases with
respect to the lowest-order term for Gaussian potentials when
the number of bosons increases.

To demonstrate improved convergence with N as the non-
diagonal couplings become weaker, the ground-state energies
for N = 8, 10, and 20 helium atoms were calculated with the
soft He-He potential from Ref. [2], for which V0 = −1.227 K
and α = 10.03 a.u. Below, this potential is referred to as
potential A. The resulting energies are shown in Table II
for several Kmax together with the energies for N = 4 and
N = 6 from Ref. [2]. The h̄2/m = 43.281 307 (a.u.)2K value
were used in these calculations, the same as in Ref. [2]. The
hyper-radial potentials VKγ,K ′γ ′(ρ) were calculated using the
code developed in Ref. [7] and the system of differential
equations [Eq. (4)] was solved by expansion on a Sturmian
basis using the core STURMXX [10]. The energies published
in Ref. [2] for A � 6 are reproduced up to all five published
digits.

C. Two-Gaussian potentials

In the case when the two-body potential is a sum of two
Gaussians,

Vij (r) = V1e
−(r/α1)2 + V2e

−(r/α2)2
, (25)

the hyper-radial potentials V00,Ki(ρ) are determined by the
sum V

(1)
00,Ki(ρ) + V

(2)
00,Ki(ρ), the first term of which corresponds

to (V1,α1) and the second one to (V2,α2). Let us assume that
α1 > α2 and that both V1 and V2 are negative. The ratio UKi(ρ)

TABLE II. Absolute values of binding energies (in K) for a system of N helium atoms obtained with different two-body potentials (see
text) for several values of Kmax. The energies for N = 4 and N = 6 with set A are the same as in Ref. [2]. The fifth digit for energy of the
N = 20 system obtained with Kmax = 20 and potential C may be not sufficiently accurate.

Potential A Potential B Potential C

Kmax N = 4 N = 6 N = 8 N = 10 N = 20 N = 4 N = 20 N = 200 N = 4 N = 20 N = 200

0 0.725 98 3.7731 9.7159 18.855 117.81 2.3779 161.93 19931 0.7358 42.888 4989.5
4 0.746 45 3.8076 9.7607 18.908 117.89 2.4044 163.90 20114 1.0316 45.857 5117.7
6 0.750 15 3.8099 9.7623 18.909 117.89 2.4283 164.97 20162 1.3796 48.036 5162.3
8 0.751 06 3.8108 9.7632 18.910 117.89 2.4480 165.77 20250 1.6096 50.346 5223.4
10 0.751 28 3.8109 9.7633 18.910 117.89 2.4566 166.43 20299 1.6510 52.726 5266.7
12 0.751 35 3.8109 9.7633 2.4648 166.99 1.6719 55.114
14 0.751 37 3.8109 2.4684 1.6767
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then becomes

UKi(ρ) = V
(1)

00,Ki(ρ)

V
(1)

00 (ρ)

1 + V
(2)

00,Ki(ρ)/V
(1)

00,Ki(ρ)

1 + V
(2)

00 (ρ)/V
(1)

00 (ρ)
. (26)

For α1 > α2, M(a,b; − 2ρ2

α2
1

) > M(a,b; − 2ρ2

α2
1

) for all values a

and b that appear in the hyperspherical approach. Therefore,
the ratio V

(2)
00,Ki(ρ)/V

(1)
00,Ki(ρ), calculated using Eqs. (14) and

(20), is restricted by V2α
K
1 /(V1α

K
2 ) so that UKi(ρ) is restricted

as well,

U
(1)
Ki (ρ)

1

1 + V2
V1

� UKi(ρ) � U
(1)
Ki (ρ)

(
1 + V2

V1

αK
1

αK
2

)
(27)

for all N . In Eq. (27), U
(1)
Ki (ρ) ≡ V

(1)
00,Ki(ρ)/V

(1)
00 (ρ). It has

been shown above that U
(1)
Ki (ρ) decreases with N at least as

N−1/2. Therefore, UKi(ρ) is also a decreasing function of N

and convergence of the hyperspherical expansion for a sum
of two attractive Gaussian potentials should be similar to the
convergence for one-Gaussian potential.

The situation is different when V1 and V2 have dif-
ferent signs. Then at some point ρ0, V00(ρ0) = 0 while
V00,K=4i(ρ0) �= 0. At such points, even if individual U

(j )
K=4i(ρ)

decrease with N , the total nondiagonal coupling V00,K=4i(ρ0)
is infinitely larger than the lowest-order diagonal potential
V00(ρ0). Whether this influences the convergence of the
hyperspherical-harmonics expansion depends on the relative
strength of V00,K=4i(ρ0), the centrifugal potential Vcent(ρ) ≡
h̄2

2m
LK (LK + 1)/ρ2 at ρ = ρ0, and the total binding energy E.

If |V00,K=4i(ρ0)| � Vcent(ρ0), the convergence of the hyper-
spherical expansion should not deteriorate much whether the
binding energy E is large or small. If |V00,K=4i(ρ0)| is com-
parable or larger than Vcent(ρ0) then convergence over K for a
fixed N will be determined by how small the V00,K=4i(ρ0) are
with respect to the binding energy E. For V00,K=4i(ρ0) ∼ E or
V00,K=4i(ρ0) > E the convergence should be poor. However,
E increases with N and at some point where E becomes much
larger than the largest nondiagonal coupling V00,K=4i(ρ0) the
convergence should improve. To illustrate this idea, the binding
energies for N = 4, 20, and 200 were calculated with two po-
tentials, (B) V (r) = −2.227e−(r/10.03)2 + 12.3e−(r/2)2

and (C)
V (r) = −5.134e−(r/10.03)2 + 20e−(r/5)2

, both of which give the
same He-He binding energy of −1.296 mK as the potential A
from Ref. [2]. The potential B produces for N = 4 a node in the
hyper-radial potential V00(ρ) where the centrifugal potential
Vcent(ρ0) significantly larger than V00,K=4γ (ρ0) [see Fig. 2(a)];
however, V00,K=4γ (ρ) has a noticeable tail at large ρ. The
resulting binding energy changes very slowly with increasing
Kmax (see Table II). The convergence for N = 20 and 200 is
better because V00,K=4γ (ρ0) becomes smaller with respect to
E. As for potential C, it gives for N = 4 a strong nondiagonal
potential V00,K=4γ (ρ) at ρ0, larger than both the centrifugal po-
tential and the energy E [see Fig. 2(b)]. As a result, the conver-
gence of the hyperspherical expansion for this potential deteri-
orates (see Table II). The same is true for N = 20, although the
difference between the two nearest energies becomes smaller.
As V00,K=4γ (ρ0) decreases with respect to E with increasing
N [Fig. 2(c)], the convergence of the binding energy improves.
This is clearly seen for N = 200 calculations with potential C.
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FIG. 2. (Color online) Two nondiagonal hyper-radial potentials
V00,K=4γ (ρ) in comparison to the lowest-order potential V00(ρ),
centrifugal potential Vcent, and the ground-state energy E for N = 4
(a),(b) and N = 200 (c) atoms of helium calculated with two sets of
the He-He potential.

IV. LOWEST-ORDER APPROXIMATION WITH
HYPERCENTRAL THREE-BODY FORCE AND ITS

COUPLING TO THE HIGHER-ORDER TERMS

A. Lowest-order approximation

For hypercentral three-body force

W (ρijk) = W0e
−2ρ2

ijk/β
2
, (28)

where ρijk = 2
3 [(r i − rj )2 + (rj − rk)2 + (r i − rk)2] is the

three-body hyper-radius, the hyper-radial potential W00(ρ) of
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the N -body system is related to the three-body oscillator matrix
element 〈�00|WN−2,N−1,N |�00〉:

W00(ρ) = N !

3!(N − 3)!

�
(

n
2

)
ρn−2

1

2πi

∫ i∞

−i∞
ds

× esρ2
s−n/2 〈�00|WN−2,N−1,N |�00〉. (29)

To calculate this matrix element, new variables, the normalized
Jacobi coordinates are introduced:

x1 = (rN−2 − rN−1)/
√

2,

x2 =
√

2

3
[(rN−2 + rN−1)/2 − rN ], (30)

x3 = (rN−2 + rN−1 + rN )/
√

3.

Then using the relations

r2
N + r2

N−1 + r2
N−2 = x2

1 + x2
2 + x2

3 , (31)

r2
N,N−1 + r2

N−1,N−2 + r2
N−2,N = 3x2

1 + 3x2
2 , (32)

we get

〈�00|WN−2,N−1,N |�00〉 = W0 〈φ00(x)|e−4x2/β2 |φ00(x)〉2

= W0

(
1 + 4

sβ2

)−3

. (33)

The hyper-radial potential then becomes

W00(ρ) = N !

3!(N − 3)!
W0M

(
3;

n

2
; −4ρ2

β2

)
. (34)

As ρ → ∞, W00(ρ) decrease as ρ−6, faster than the ρ−3

decrease of the two-body potential V00(ρ).

B. Coupling between the lowest-order and other
hyperharmonics for three-body hypercentral potential

The nondiagonal potential W00,Kγ (ρ) for three-body po-
tentials (28) are obtained in a similar way to the case of the
two-body potentials,

W00,Kγ (ρ) =
∑
ii ′

C
Kγ

i C
K ′γ ′
i ′ W00,Ki(ρ), (35)

where

W00,Ki(ρ) = N !

3!(N − 3)!

[
�

(
n
2

)
�

(
n
2 + K

)]1/2

ρn+K−2

1

2πi

∫ i∞

−i∞
ds

× esρ2
s−(n+K)/2 〈�00|WN−2,N−1,N |�Ki〉. (36)

Only the i’s of the type (0s)N−3(ν1l1m1)(ν2l2m2)(ν3l3m3),
where 2ν1 + l1 + 2ν2 + l2 + 2ν3 + l3 = K and m1 + m2 +
m3 = 0, give nonzero contributions to W00,Ki(ρ). However, the
slowest decrease with N will come only from i = (0s)N−1(νs),
where ν = K/2, because of reasons similar to those discussed
in Sec. III B. For this i

〈�00|WN−2,N−1,N |�Ki〉

= (−)K
(

2

3

) K
2 3W0√

N
〈φ00(x)|e−4x2/β2

× |φ00(x)〉〈φ00(x)|e−4x2/β2 |φν0(x)〉

= 3(−)KW0√
N

√
�

(
K+3

2

)
�

(
K
2 + 1

)
�

(
3
2

)
×

(
8

3sβ2

) K
2

(
1 + 4

sβ2

)−3− K
2

. (37)

The coefficient 3/
√

N comes from the normalization factor
in the symmetrized wave function �K=4i and the number
of exchange terms that give nonzero contribution to the
matrix element 〈�00|WN−2,N−1,N |�Ki〉. The (−)K (2/3)K/2 is
the Talmi-Moshinsky transformation coefficient 〈0s,2s:0|2 :
1|0s,2s:0〉 for particles with masses two and one. Substituting
Eq. (37) into (36) and integrating over ds we get

W00,Ki(ρ) = N (N − 1)(N − 2)

2

W0√
N

(
−

√
8

3

ρ

β

)K

×
√

�
(

n
2

)
�

(
K+3

2

)
�

(
3
2

)
�

(
K
2 + 1

)
�

(
n
2 + K

)
× M

(
3 + K

2
;
n

2
+ K; −4ρ2

β2

)
. (38)

Following a reasoning similar to that of Sec. II B we can easily
come to conclusion that W00,Ki(ρ)/W00(ρ) decreases at least as
N−1/2 in the N → ∞ limit. However, it is the sum of the attrac-
tive two-body and repulsive three-body contributions that en-
ters the Schrödinger equation. The convergence will, therefore,
be determined by the strength of V00,Kγ (ρ0) + W00,Kγ (ρ0) at
the node ρ0 of V00(ρ) + W00(ρ). Once again, as in Sec. II C,
if the nondiagonal couplings V00,Kγ (ρ0) + W00,Kγ (ρ0) are
comparable either to centrifugal or the total energy, the
convergence of the hyperspherical expansion will be poor.
If these couplings are much smaller than either Vcent(ρ0) or E

then the convergence should improve. At present, three-body
potentials are not yet included in the code developed in
Ref. [7] so the coupling potentials V00,Kγ (ρ) + W00,Kγ (ρ)
cannot be shown here and the K > 0 calculations cannot
yet been done. However, the contribution to these couplings
that comes from i = (0s)N−1(νs) is calculated for K = 4 and
results are presented in Fig. 3 for N = 10 and 200. The
calculations were performed with the two-body potential A and
the three-body potential with W0 = 0.422 K and β = 14 a.u.
for which converged calculations for N = 4,5,6 are given in
Ref. [2].

For N = 10, the hyper-radial potential V00(ρ) + W00(ρ)
does not have any nodes while the nondiagonal potential
V00,K=4i(ρ) + W00,K=4i(ρ) is much smaller than the diagonal
one. Therefore, good convergence of the hyperspherical ex-
pansion should be expected. With increasing N , the repulsive
three-body contributions increase as N!

(N−3)!3! ∼ N3, faster than

attractive two-body contributions increasing as N!
(N−2)!2! ∼ N2.

However, W00(ρ) decreases faster with ρ than V00(ρ). As a
result of the competition between these two different trends,
the hyper-radial repulsive core appears at some N growing fast
with further increasing particle number so that the system is
bound only due to a small attractive pocket in the asymptotic
area. This is clearly seen in Fig. 3(b) for N = 200. In this
situation, the largest absolute value of nondiagonal potentials
may become much larger than the depth of the attractive
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FIG. 3. (Color online) Nondiagonal hyper-radial potentials
V00,K=4i(ρ) + W00,K=4i(ρ) in comparison to the lowest-order po-
tential V00(ρ) + W00(ρ), centrifugal potential Vcent(ρ), and the
ground-state energy E for N = 10 (a) and N = 200 (b) atoms of
helium.

pocket but if the nodes of both the nondiagonal potentials and
the V00(ρ) + W00(ρ) are close to each other, the nondiagonal
couplings at ρ0 could be small with respect to the total binding
energy E, which for large N is approximately equal to the
depth of the attractive pocket. This seems to be the case for
N = 200 for the particular choice of the three-body potential
[see Fig. 3(b)] and a reasonably fast convergence of the
hyperspherical expansion could be expected here. In general, it
is difficult to make definite predictions for the binding energy
convergence when three-body forces are involved because of
their large hypercore. However, plotting simple graphs similar
to Fig. 3 can give an idea about the convergence prior to solving
the differential set of equations (4) for large N .

V. DISCUSSION AND CONCLUSIONS

It has been shown above that the convergence of the
ground-state binding energy of N bosons obtained from the
hyperspherical-harmonics method improves with N if the
two-body potentials are represented by a single Gaussian. This
happens because the relative strength of nondiagonal coupling
potentials decreases with respect to the lowest-order diagonal
potential as N−1/2 or faster. This is the consequence of an

increased number of exchange terms in the symmetric N -body
wave function that give zero contribution to the nondiagonal
couplings. The convergence should remain similarly good for a
sum of two attractive Gaussian two-body potentials; however,
it should deteriorate if one of the Gaussians is repulsive.
Although individual ratios of nondiagonal to diagonal hyper-
radial potentials corresponding to each Gaussian decrease with
N , the total nondiagonal potentials may not be sufficiently
small at the node of the lowest-order diagonal potential or
even over the range where the this potential has maximum,
thus leading to a worse convergence rate. The deterioration of
convergence can also be expected when a three-body hyper-
central repulsive potential is included. Although the ratio of
nondiagonal to diagonal hyper-radial potentials corresponding
to this force decrease with N in the same way as for two-body
potentials (if Gaussian shape is assumed for the three-body
force), the sum of the two-body and three-body contributions
leads to a qualitatively new picture due to the different
dependence on N and ρ of these contributions. At large N the
N -body systems are bound only due to a small attractive pocket
in the total hyper-radial potential the depth of which (roughly
equal to the total binding energy) can be very small with respect
to the strength of nondiagonal couplings at their maximum.
The tail of these couplings can still be strong enough at the
node of the diagonal potential, thus slowing the convergence
down. Whether the range of the effective three-body force can
be chosen in such a way to give a good convergence over a
large interval of N needs further investigation.

With the range of the effective three-body force chosen in
Ref. [2] for helium atoms, the N = 4,5,6 binding energies are
practically the same as those obtained in the diffusion Monte
Carlo [4] and Monte Carlo hyperspherical calculations [5] with
a hard-core He-He potential. On the other hand, for N = 5 and
N = 6 the converged ground-state binding energies are very
close to those obtained in the minimal approximation K = 0.
Figure 3(a) suggests that this tendency will stay at around N =
10; therefore, the minimal approximation can be sufficient
to calculate the ground-state energies for 7 � N � 10 for
which the diffusion [4] and hyperspherical [5] Monte Carlo
calculations are available. The results of such calculations are
shown in Table III. While the energy for N = 7 is similar to
exact many-body calculations with hard-core potentials, the
energies for N = 8, 9, and 10 are somewhat smaller. The
K = 0 calculations have been also done for N = 20, 40, 70,
and 112 to compare to the Green’s function Monte Carlo
calculations from [11]. In this region, the K = 0 binding
energies obtained with the soft potentials are much smaller
than the energies from the Green’s functions Monte Carlo
method with the hard core potentials. Although a noticeable
contribution from V00,K=4i(ρ) around the node in V00(ρ) is
present at 20 � N � 112 so that the binding energies will
increase when other terms of the hyperspherical expansion
are added, it is unlikely that this increase will be significant
because |V00,K=4i(ρ)| � |V00(ρ)| for those ρ where |V00(ρ)|
has maximum.

The small binding energies for 10 � N � 112 obtained
with phenomenological potentials can be interpreted in two
ways: either the effective two-body and three-body forces are
N -dependent or a choice of the three-body repulsion is inap-
propriate. Although N -dependence of effective interactions is
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TABLE III. Absolute values of binding energies (in K) of N

helium atoms obtained in the K = 0 approximation (HH0) with the
phenomenological two-body soft plus three-body repulsive potential,
converged hyperspherical calculations (HH) from Ref. [2] with the
same potential, diffusion Monte Carlo (DMC) calculations [4], Monte
Carlo hyperspherical (MCH) calculations [5], and Green’s function
Monte Carlo (GFMC) calculations [11] with hard-core He-He
potential. The K = 0 calculations for a modified phenomenological
three-body force (HH0M) are shown in the rightmost column.

N HH0 HH DMC MCH GFMC HH0M

4 0.5389 0.5688 0.5584 0.5569 0.5334 0.557
5 1.2881 1.3266 1.3022 1.2965 1.31
6 2.2938 2.3389 2.3194 2.3095 2.34
7 3.4863 3.5641 3.5657 3.58
8 4.8040 5.0374 5.0203 4.9325 5.02
9 6.1995 6.6765 6.6779 6.61
10 7.6393 8.5010 8.4952 8.35
20 22.286 32.546 31.3
40 50.902 99.492 94.9
70 93.530 218.68 213
112 153.29 403.2 402

a definite possibility, a different choice of phenomenological
three-body force has been explored here first. It was found that
for V0 = −1.234 356 6 K and α = 10 a.u. from Ref. [3] and for
W0 = 18 K and β = 5.8 a.u. the N -dependence of the binding
energies obtained in the K = 0 approximation is similar to that
obtained with the Green’s functions Monte Carlo method for
N � 112 (see Table III and Fig. 4). Once again, these energies
will increase when full hyperspherical basis is employed in
the calculations. However, this simple example shows that fine
tuning of the N -independent three-body repulsion to reproduce
the binding energies of helium clusters over a wide range on
N is perhaps possible.

10 100
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E
/N

 (
K

)

HH0 set1

GFMC

HH0 set2

FIG. 4. (Color online) Binding energies of N helium atoms
obtained in K = 0 hyperspherical-harmonics calculations with two
phenomenolocial potentials, (1) V0 = −1.227 K, α = 10.03 a.u.,
W0 = 0.422 K, β = 14 a.u., and (2) V0 = −1.234 356 6 K, α = 10
a.u., W0 = 18 K, and β = 5.8 a.u., in comparison to the Green’s
function Monte Carlo calculations from Ref. [11].

Until now, only the convergence of the ground-state binding
energy has been discussed. However, the system of radial
equations (4) with the same hyper-radial potentials describes
all excited 0+ states. Since V00,Ki(ρ)/V00(ρ) for a single
Gaussian potential decreases as N−1/2 or faster it is expected
that for a soft two-body potential the convergence of 0+
excited states improves with N as well, provided these states
are bound and their energy is not very much different from
the ground-state energy. In fact, the calculations with the
soft two-body potential from Ref. [2] for N = 10,100,200
(not shown here) confirm this. To understand convergence
for other spins and parities of the N -body system, the
behavior of VKγ,K ′γ ′(ρ)/VKγ,Kγ (ρ) for arbitrary Kγ should
be considered.

In this paper, no attempt is made to prove a decrease of
VKγ,K ′γ ′(ρ)/VKγ,Kγ (ρ) with N for arbitrary Kγ and arbitrary
spin. Following the reasoning of Secs. III and IV may prove
difficult in this case as more terms i that contribute to the hyper-
radial potentials become available and states with other relative
two-body orbital momentum should be taken into account
as well. The most elegant way to proceed with analyzing
the ratio VKγ,K ′γ ′(ρ)/VKγ,Kγ (ρ) in the general case would
involve the fractional parentage expansion of hyperspherical
harmonics introduced in Refs. [8,12]. The coefficients ai(N )
of the present paper can, in fact, be related to the fractional
expansion coefficients from these works. Investigating their
behavior with increasing N could be the best way to learn
about convergence in the general case. Similar comments
could be made about fermionic systems. It is more difficult
to draw conclusions about the ratio VKγ,K ′γ ′(ρ)/VKγ,Kγ (ρ)
for fermions since the minimum value of K increases with
N due to the Pauli principle and too many i’s are needed.
However, one can hope that a decrease with N will persist
because it is related to rapid increase of the number of
exchange terms in the many-body oscillator basis functions
that give zero contributions to hyper-radial potentials for
K �= K ′.

Finally, in the present paper the convergence has been
explored only for a Gaussian shape of the two-body and
three-body potentials, motivated by their use in Ref. [2].
More convergence studies are needed for other shapes of the
two-body and three-body potentials. However, the Gaussian
shape for phenomenological effective potentials seems to be
a good choice. With this choice, the binding energies for
N � 6 helium atoms are reproduced [2] and the trend, that
convergence of hyperspherical expansion for such potentials
may improve with the number of particles [2], has been
confirmed in the present paper. This makes the hyperspherical-
harmonics method with phenomenological soft two-body
and repulsive three-body forces attractive for studying the
properties of many-body systems in general and the universal
relations in particular.
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